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Abstract—Social media have a great potential to improve
information dissemination in our society, yet, they have been
held accountable for a number of undesirable effects, such as
polarization and filter bubbles. It is thus important to understand
these negative phenomena and develop methods to combat them.
In this paper we propose a novel approach to address the problem
of breaking filter bubbles in social media. We do so by aiming to
maximize the diversity of the information exposed to connected
social-media users. We formulate the problem of maximizing the
diversity of exposure as a quadratic-knapsack problem. We show
that the proposed diversity-maximization problem is inapprox-
imable, and thus, we resort to polynomial non-approximable
algorithms, inspired by solutions developed for the quadratic-
knapsack problem, as well as scalable greedy heuristics. We
complement our algorithms with instance-specific upper bounds,
which are used to provide empirical approximation guarantees
for the given problem instances. Our experimental evaluation
shows that a proposed greedy algorithm followed by randomized
local search is the algorithm of choice given its quality-vs.-
efficiency trade-off.
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I. INTRODUCTION

Social media play a critical role in today’s information soci-
ety, not only by connecting people with their friends, but also
as a means of news dissemination. A recent survey estimates
that 6 out of 10 adults in the US get their news on social
media [15]. Although initially it appeared that social media
can contribute to the democratization of content generation
and distribution, most recently, a series of negative effects and
undesirable phenomena have emerged, such as filter bubbles,
polarization, fake news, and more. An indication for the extent
of the problem can be seen by Facebook’s own admission
that social media can have the unintended consequence of
corroding democracyﬂ

Given these negative effects, a recent body of research has
focused on solving different aspects of the problem. Proposed
approaches include detecting [2]], [4], [S], [10], [12]], [16] and
reducing polarization of opinions [22], [24], recommending
users-to-follow and content to bridge opposing views [11],
[19], [23]], and balancing information exposure in a social
network [9]).

Uhttp://money.cnn.com/2018/01/22/technology/
facebook-democracy-social-media/index.html, January 22, 2018
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One particular aspect of the problem is the emergence of
filter bubbles in social media [26]], where individuals are con-
nected to like-minded net-citizens or information sources of
similar disposition, becoming unexposed to information they
disagree with, and effectively isolated in their own cultural or
ideological bubbles.

In this paper we propose a novel approach to address the
problem of breaking filter bubbles. Our underlying assumption
is that a filter bubble is the lack of diversity in the information
exposure among connected individuals in the social network.
We further assume that diversity of information exposure in
the social network can be increased by means of content
recommendation. What this means is that in addition to the
content that circulates in the network “organically” via shares
and re-posts among users, the social-media platform may
consider to strategically recommend suitably-chosen content
to selected individuals in order to increase diversity, and thus,
help bursting filter bubblesE]

A desirable property for such a mechanism of diversity-
enabling recommendations is that the social-media platform
should make a small amount of recommendations, as these
can be perceived as interventions to the organic operation
of the network. Thus, a natural question to ask is: “given a
fixed amount of content-recommendation activity, which users
should we target and what recommendations to make, so as
to maximally increase diversity?” Intuitively, we would like
to target users who are part of filter bubbles (their friends
and themselves are exposed to similar content), are influential
among their connections, and are likely to take into account
the recommended content.

Our problem formulation puts together all these compo-
nents. Naturally, we need to make a number of modeling
assumptions. We assume that we know the structure of the
social graph, and the influence that users exert on each other,
expressed as edge weights on the social graph. We also
assume that we can quantify the information exposure of
each individual as a number in a pre-specified range (we use

2To increase transparency, the social-media platform may need to distinctly
mark, or display in a specific format, such recommendations so that users are
aware of its presence and objective. Additionally, users may need to opt-
in receiving such recommendations. We consider, however, that such design
considerations are orthogonal to our study and beyond the scope of this paper.
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(b) Graph with diversified expo-
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Fig. 1: Toy graph with different exposure assignments

[-1,1]), e.g., expressing the grade of the content consumed
by an individual in a continuous spectrum, for example,
conservative—liberal. Finally, we assume that we can estimate
the degree to which an individual is likely to take into account
a specific recommendation, e.g., the probability to re-post the
recommended item. Although estimating these parameters is
orthogonal to our study, it is easy to see that one can develop
simple proxies for them, using data available in the social-
media platform.

Example: A toy example demonstrating our concept is shown
in Figure |1} using the Karate-club network, which is known to
contain two communities. The colors on the nodes represent
different exposure levels, say two different “news diets” that
the network users consume. In Figure [Ta] each community
has different exposure level, leading to a network with echo
chambers and no diversity. In Figure [Tb] we depict the optimal
solution to our problem, where we ask for the best £k = 4
users, to change their exposure and maximize the total network
diversity—assuming that all users opt-in to receive alternative
news diets and the user cost is constant. In this simple example
the algorithm picks the two hubs of each community.

From the technical point of view, we formulate the problem
of maximizing diversity of exposure as a special case of the
quadratic-knapsack problem (QKP) [[7]. Our first result shows
that the diversity maximization problem is not only NP-
hard, but also NP-hard to approximate within a multiplicative
factor. Thus, we study a number of polynomial algorithms
inspired by the quadratic-knapsack formulation, such as meth-
ods based on semidefinite-programming (SDP) relaxation and
linearization techniques. We also propose two scalable greedy
algorithms, which take advantage of the special structure of
our problem.

Our results show that the SDP-based algorithm is the best
performing on a diverse range of settings, followed very
closely by one of the greedy methods. This is very useful
because while the SDP algorithm is expensive, the greedy has
linear complexity with respect to the number of nodes in the
network, and thus, has excellent scalability properties.

Our relaxation provides upper bounds on the quality of
solution. In addition we propose alternative upper bounds
with varying trade-offs of tightness-vs.-efficiency. All these
bounds allow us to obtain empirical approximation guarantees
for given problem instances. For instance, for the problem

instances used in our experiments, we are able to assert that
our algorithms give solutions with typical approximation factor
between 1.5 and 2.5; despite the problem being NP-hard to
approximate.

In summary, in this paper we make the following contribu-
tions:

 Inspired by the problem of breaking filter bubbles, we
formulate the problem of maximizing the diversity of
exposure, as a special case of the quadratic-knapsack
problem.

o We prove that the diversity maximization problem is NP-
hard to approximate within a multiplicative factor.

o We study several algorithms for the problem, including
an SDP-based algorithm, an algorithm based on lineariza-
tion, and two greedy methods.

o« We develop upper bounds with different trade-offs of
tightness-vs.-efficiency, which provide empirical approx-
imation guarantees for given problem instances.

o« We present an extensive experimental evaluation that
provides evidence for the best-performing methods, and
quality-vs.-efficiency trade-offs.

The rest of the paper is organized as follows. We start
our presentation by reviewing the related work, in Section
We then present our notation in Section and we formally
define the diversity maximization problem in Section
The NP-hardness proof is also presented in Section In
section |V| we discuss algorithms for the binary version of
the problem, and we present upper bounds for the optimal
solution. The extension of the diversity-maximization problem
to the continuous case is discussed in Section We present
our experimental evaluation in Section and we conclude
in Section by offering our final remarks and suggestions
for future work.

II. RELATED WORK

Our work relates to the emerging line of work on breaking
filter bubbles and reducing polarization on social media. To
the best of our knowledge, this is the first work to approach
this problem from the point of view of increasing diversity
of information exposure, and formulating it as a quadratic
knapsack-style problem.

Detecting polarization: Recently, a significant body of work
has emerged that focuses on measures for characterizing
polarization in online social media [2], [S[, [10], [16], [22].
These works consider mainly the structure in social-media
interactions and quantify polarization or compute node polarity
scores using network-based techniques. Other papers study the
emergence of polarization on various opinion-formation mod-
els: Dandekar et al. [6]] generalize DeGroot’s model to account
for biased assimilation, while Vicario et al. [27]] propose a
variant of the bounded-confidence model, where discordant
edges are rewired and two opposing opinion clusters emerge.

Reducing polarization: Given the negative effects of frag-
mentation, there has been recent work that focuses on methods
for reducing polarization [[11]], [22]], [24]. Matakos et al. [22]]



study the problem of convincing a set of individuals to adopt a
neutral opinion and act as mediators in the discussion. Musco
et al. [24] study a similar problem, albeit with the dual objec-
tive of minimizing both polarization and disagreement among
individuals. Garimella et al. [[11] consider the problem of
introducing new edges between the two sides of a controversy,
so as to reduce polarization.

There are two key differences between these works and our
approach. First, while these works focus on minimizing other
measures of polarization, our aim is to maximize the diversity
of content that an individual is exposed. Second, while these
works consider how to affect user opinions, we only consider
the exposure of a user. We consider our setting more realistic
since in practice, it is difficult to know the opinions of the
users.

A complementary line of work studies mechanisms that
expose social-media users to content that is not aligned with
their prior beliefs [19]], [23]], [28]]. While these works focus
on how to present information to users, addressing issues of
interface and incentives, our work addresses the question of
who to approach with the new information.

Quadratic knapsack: Our formulation maps the diversity
maximization problem to a special case of the quadratic-
knapsack problem (QKP). The general form of QKP was
introduced by Gallo et al. [[7]. A classical technique to solve
0-1 quadratic problems is to linearize them by introducing
auxiliary variables and transforming the problem to an integer
linear program (ILP) formulation. Glover et al. [13]] presented
a concise way to rewrite a 0—1 quadratic problem as an
equivalent 0O—1 linear program with only n auxiliary variables
and 4n constraints.

Of particular interest are semidefinite programming (SDP)
techniques, as they can yield tighter relaxations than using
linearization, albeit at the expense of higher running time.
Therefore, central to our work is the methodology of Helm-
berg et al. [17]], who approach QKP by introducing a series
of SDP relaxations of increasing tightness. Additionally, to
strengthen the formulation a number of inequalities defining
the QKP polyhedron (called the boolean quadric polytope)
have been studied [25]. On a high level, our problem is also
related to the MAX-CUT problem, which has been shown to
admit an approximation ratio of 0.878 [14]], using semidefinite
programming. However, as we prove shortly, our problem is
harder as it admits no polynomial approximation guarantee.

III. DIVERSITY INDEX

Consider a social network represented as a graph G =
(V, E, w), where the node set V represents a set of individuals,
the edge set F represents social connections, and w : £ — R
is a weight function that represents the strength of the social
connections. The weight of an edge (i,j) € E is denoted by
w;j. The number of nodes and edges are denoted by n and
m, respectively.

We write A to denote the adjacency matrix of the graph
G, whose entry A;; is equal to w;; if (i,j) € E, and 0
otherwise. We assume that the graph G is undirected, and

so A is symmetric. We also denote by D the diagonal matrix
whose i-th diagonal entry is equal to the weighted degree of
individual ¢, i.e., D;; = Zj w;j. The Laplacian matrix of the
graph GisL=D — A.

We assume that each individual ¢ € V' has an overall expo-
sure to content represented by a value s;. The value s; may
represent the leaning of the content individual ¢ is exposed to
on an issue, as measured by endorsed or shared news articles.
Without loss of generality we assume that s; € [—1,1]. We
also consider the discrete case where s; € {—1,1}. The vector
of exposure for all the individuals in the graph is denoted by
s = [8i];cy-

Given a vector of exposure s for the individuals of a network
we are interested in measuring the network diversity with
respect to s. Intuitively, high diversity should indicate that
many individuals tend to have different exposure than that of
their social connections. Furthermore, diversity should account
for the strength of social connections. These considerations
motivate our definition of the diversity index in a social
network.

Definition III.1 (Diversity index). Given a graph G =
(V,E,w), and a vector of exposure s € [—1,1]" for the
individuals in V, the diversity index n(G,s) of the graph G
with respect to the exposure vector s is defined as :

T](G, S) = Z wij (Si — S]‘)Q . (1)
(i.7)eE
An equivalent way of writing Equation (1), using the
laplacian L of the graph G is:

n(G,s) = Z wij (85 — sj)2 —s'Ds—s'As=s'Ls.
(4,5)EE
2
Higher value for the diversity index indicates more diverse
networks.

In the rest of a paper, given a vector x we write Diag(x) to
denote the matrix with x as its diagonal, and given a matrix
X we write diag(X) to denote the vector corresponding to
the diagonal of X. As it is common, we denote by T (X) the
trace of a matrix X. Finally, we write X > 0 to denote that
X is a positive semidefinite matrix.

IV. PROBLEM FORMULATION

In this paper our main focus is on the discrete case where
exposure s; is either —1 or 1. This corresponds to the case
where discussions are characterized by two dominant and op-
posing perspectives, which, exacerbated by filter bubbles often
leads to polarization and lack of diversity of exposure: some
examples are the fragmentation into liberals vs conservatives,
brexit vs bremain, right-wing vs left-wing. Additionally, this
assumption leads to a more attractive formulation, while being
at least as challenging computationally. We also investigate the
continuous case but provide it more as an extension.

Our goal is to maximize the diversity index n(G,s) of a
graph GG, assuming that we know the current exposure vector
s. We consider maximizing the diversity index by selecting



individuals and “flipping” the leaning of their exposure (from
—1 to 1, or vice versa), under a budget constraint.

As mentioned in the introduction, changing the exposure of
a individual corresponds to recommendations that an individ-
ual possibly opts-in. The issue of interface and communication
with the individuals is of independent interest and we consider
it orthogonal to our work.

Given an exposure vector s, after changing the exposure
of k individuals, the new exposure vector can be written as
y = s —¢’, where s’ is a sparse vector with at most k non-
zero elements. In particular, s; = —2if s, = —1 and s} = 2 if
s; = 1. Alternatively, we can write the new exposure vector as
y =s—2 Diag(s) x, where x € {0,1}" is an indicator vector
with z; = 1 if the exposure of the ¢-th individual has changed
and x; = 0 otherwise. This formulation highlights the nature
of the problem as a variable-selection problem.

We consider a knapsack-type constraint for x with a weight
vector b, where b; expresses the cost in altering the exposure
of individual ¢ (for example, some individuals may have a
strong predisposition towards certain issues). We define the
following problem:

Problem 1. Given a graph G = (V| E), an exposure vector
S, a node-weight vector b, a budget k, we ask to find a binary
vector X, such that the knapsack constraint b'x < k is sat-
isfied and the resulting diversity index n(G,y) is maximized,
where y = s — 2 Diag(s) x.

We now formulate the corresponding optimization problem.
Using the definition of the diversity index from Equation (2)
we have
(s — 2 Diag(s)x) " L (s — 2 Diag(s) x)
s'Ls+4x" Diag(s) L Diag(s) x
—4s"L Diag(s) x.

Recall that we want to maximize this quantity. The term
sTLs is a constant and has no influence on the maximization,

therefore can be removed from the objective. For convenience,
we define

Q = Diag(s) L Diag(s), q = s' L Diag(s), and

y' Ly =

P = Q — Diag(q). 3)

Note that P is constant and does not depend on the opti-
mization variable x. We take advantage of the fact that x = x?
to write our program in purely quadratic form. We define the
following quadratic binary knapsack (QBK) problem:

max x Px
subject to b'x<k, beR" (QBK)
x € {0,1}".

It is not difficult to see that QBK is NP-hard, by a simple
transformation from MAX-CUT. It suffices to set b; = 0, and
the problem reduces to:

y' 'Ly
subject to y € {—1,1}",

max

which is equivalent to a general instance of MAX-CUT.
Despite this similarity, our problem is harder than MAX-
CUT. This is because MAX-CUT admits an approximation
algorithm with ratio 0.878 [14], while it can be shown that
QBK is inapproximable.

Proposition 1. The QBK problem is NP-hard to approxi-
mate.

The Proposition asserts that there cannot be a polynomial-
time approximation algorithm for the QBK problem with a
multiplicative approximation guarantee. It does not preclude
though the existence of an algorithm with additive approxima-
tion guarantee.

Proof. We prove the Proposition by a reduction from SUB-
SET-SUM, a known NP-complete problem [8]. An in-
stance of SUBSET-SUM consists of n 4 1 positive integers
mi,....,m, and M. The problem asks if there is a subset
S C{1,..,n} such that >, _om; = M.

Define A =", m;.

Given an instance of SUBSET-SUM, we construct an
instance of QBK as follows: the underlying graph G is a star
graph with n+1 leaves. The central node is node 0. We assign
weights to edges (0,7) by wg; = —m,, for i = 1,...,n, and
weight wg p41 = M — A —1 to edge (0,n + 1). We set the
budget £ = M and the node weights by = 0, b; = m;, for
1=1,...,n,and b,41 = M +1 — for b,, 1 any other number
bigger than M also works, since the goal is to make selection
of this coefficient infeasible. Finally we set s; = 1, for all

1=0,1,...,n,n+1, so that the matrix P is the laplacian L.
Observe that the resulting laplacian has the form
-M+1 mq My, M—-A-1
mi —m1 tee 0 0
L= : :
My, 0 —My, 0
M-A-1 0 0 -M+A+1

Now consider a binary vector x = [z;],_q .- We inter-
pret x as a solution to QBK, and the coordinates [x1, ..., ;]
as indicator variables for a solution to SUBSET-SUM.

First note that due to the knapsack constraint b'x < M,
since b, +1 = M +1 and since b; > 0 for all ¢, it is 41 = 0.

If o = 0, then any feasible solution to QBK can be at
most 0, and in fact the value 0 can be obtained by the feasible
vector x = 0.

If zp = 1, let S C {1,...,n} be the set of all other non-
zero coordinates in a feasible solution to QBK. The value of
the solution is f = (=M + 1) + 23, cqam; — D ,cgmi =
> icg Mi—M+1. Due to the knapsack constraint ) ;g m; <
M, it follows that if the answer to SUBSET-SUM is no we
have f < 0, while if the answer to SUBSET-SUM is yes
then f can obtain the value 1.

We conclude that the optimal value to QBK is 1 if and only
if the answer to SUBSET-SUM is yes, while the optimal
value to QBK is O if and only if the answer to SUBSET-
SUM is no.



Furthermore, any polynomial-time approximation algorithm
with a finite (multiplicative) approximation guarantee that
could be used to solve QBK, will need to provide a non-zero
value for QBK if any only if the answer to SUBSET-SUM is
yes. Thus, no such algorithm can exist, unless P = NP. [J

V. ALGORITHMS

In this section we discuss the proposed algorithms for the
diversity-maximization problem, and present upper bounds on
the optimal solution.

We start by the observation that QBK is a non-convex
optimization problem (due to P being not positive-semidefinite
and the constraint x € {0,1}"), which is expected since
convex problems can be solved in polynomial time. We can
show however, that we can still produce a convex semidefinite
relaxation to this problem. Such a relaxation forms the basis
for our first algorithm.

A. Semidefinite-programming relaxation

Semidefinite-programming (SDP) relaxations have long
been studied in the optimization community. The idea was
introduced by Lovasz [20], but it was arguably the seminal
work of Goemans and Williamson for the MAX-CUT prob-
lem [14] that brought SDP relaxations into the spotlight.

We have noted that our problem (QBK) is a non-convex
0-1 quadratic program with a linear constraint on x. The
general quadratic knapsack problem, first introduced by Gallo
et al. [7]], is defined for an arbitrary symmetric matrix. Since
its introduction, a multitude of methods have been developed
to solve the problem. Of particular interest to us is the work
of Helmberg et al. [|[I7], in which they introduce a series of
SDP relaxations.

Now we present the SDP relaxation to the QBK problem.

Lift to a matrix variable. As is the common practice with
semidefinite relaxations, we “lift” the program to the space
of square matrices. In particular, we lift vector x to a matrix
X by introducing the constraint X = xx ' . This constraint is
equivalent to X having rank 1 and being positive semidefinite.
However, the rank-1 constraint is not convex, thus, we relax it
to X > xx'. From the Schur complement this is equivalent
to

x' 1

L

Observe that the constraint X — xx' > 0 implies also that
X > 0.

Objective function. The objective of the SDP relaxation is
written as a function of the new variable X in the trace form
Tr(PX), since x'"Px = Tr(x"Px) = Tr(Pxx").

Integrality constraint. The integrality constraint x € {0, 1}"
can be written as x> = X. In the SDP relaxation we write this
as diag(X) = x. We note that the polytope corresponding to
the 0—1 quadratic optimization problem is called the boolean
quadric polytope [25]. The boolean quadric polytope has
a number of facet-defining inequalities, which can used to

tighten the relaxation by cutting off parts of the relaxation
polytope.
Knapsack constraint. We now proceed to describe how to
express the linear knapsack-type constraint b'x < k with
respect to the new variable X. One straightforward way is to
apply the constraint on the diagonal elements of X, leading
to

Tr(Diag(b) X) < k. 4

In order to further tighten the relaxation we replace con-
straint (@) by a tighter one, which is due to Helmberg et
al. [17]]. In their work, they show that the square representation
constraint

Tr(bb'X) < k?

is tigher than constraint (4).

The resulting SDP relaxation. Putting everything together,
our SDP relaxation becomes

max Tr(P X)

subject to  Tr(bb'X) < k?
X - xxT 0 (SDP-QBK)
diag(X) = x.

The SDP-QBK problem is convex and can be solved
efficiently by readily available packages.

Rounding. Let Opt = (X*,x*) be an optimal solution of
SDP-QBK, obtained by a convex-optimization solver.

The last step is to round the optimal solution Opt to a binary
vector X that is a feasible solution for the QBK problem.

In order to derive such a binary solution for QBK, we
follow the randomized-rounding approach proposed by Luo et
al. [21]]: Consider a semi-definite program (P) over a binary
vector X, and its relaxation (R) over a lifted variable matrix X,
where X =xx . Let X* be the optimal solution to (P), and
consider a random vector z drawn from a Gaussian distribution
with zero mean covariance X*, or, z ~ A(0, X*). It can be
shown that z defines a distribution for which the quadratic
objective of (R) is maximized and its quadratic constraints
are satisfied in expectation. Then, a feasible binary solution x
to (P) can be constructed as follows

1) solve (R) to find optimal solution X*;

2) draw z ~ N(0,X*);

3) round z to a binary X;

4) repeat (3) until the constraints of (P) are satisfied.

As shown by Luo et al. [21]], in certain cases, this random-
ized rounding technique can give solutions with a provable
quality guarantee. This is clearly not the case in our problem,
as we have shown that it is inapproximable. However, the
randomized rounding technique can still be used as a powerful
heuristic in the context of SDP relaxation.

In our case, after solving the relaxed problem SDP-QBK
and obtaining an optimal solution Opt = (X*,x*), we draw a
random vector z ~ N (x*, X* — x*x* "), The coordinates of
x* are between 0 and 1, and the coordinates of z are truncated
to be between 0 and 1. The vector z is rounded to a binary



Algorithm 1: SDP-Relax

input : matrix P; node weights b; budget k; number of
iterations [

output: indicator vector X

solve SDP-QBK and obtain Opt + (X*,x");

form covariance matrix ¥ < X* — x*x* | ;

compute the Cholesky factorization ¥ = V'V ';

initialize X <— 0 and f «+ O;

for: < 1,...,1 do

sample z < x* + V r, where r ~ A/(0,1);

/) 7~ N(x5 X —x x*T)

do

| %' < randomized_rounding(z);

9 | whileb'x' > k;

10 if f <X'PX'" then

1 | k<% and f+ P,

QA U B W N -

® 3

12 return X;

vector X using randomized rounding, i.e., X; is set to 1 with
probability equal to z;.

The optimal solution Opt = (X*,x*) of SDP-QBK
maximizes the stochastic quadratic objective

Esz(x*,X*fx* x*T) [ZTP Z] N

which is also the stochastic version of the objective for
QBK. The optimal solution Opt = (X*,x*) also satisfies
the constraint

Epn(x X+ —x= x=T) [2 Db z] < k.

Thus, the binary vector x obtained by the randomized rounding
satisfies the constraint X 'bb'x < k? in expectation. In
addition, until x satisfies the knapsack constraint of the QBK
problem b'x < k new randomized binary vectors X are
drawn. The resulting algorithm SDP-Relax is shown as
Algorithm [T]

B. Glover’s linearization

An alternative way to handle the difficulty of quadratic pro-
grams and solve them efficiently is to perform linearization,
i.e., reformulate the quadratic program as a linear program
using auxiliary variables and constraints. A concise way to lin-
earize a 0—1 quadratic programs is Glover’s linearization [13]].
According to this technique we set z; = x; Z?:l Pjjx; and
reformulate our program as:

(GLOVER)

n
maximize ZZZ
i=1
x €{0,1}"
n
i=1
vl < zi < U,

ZP’LJIJ - Ui(l — .’L‘Z) S Zi,
j=1

subject to
t=1,...,n (5
i=1,...,n, (6)

Zifzpijl'j*Li(lfwi), 7;:1,...,71, (7)
Jj=1

where L; and U; are lower and upper bounds for z;, respec-
tively. Observe that we can easily obtain such bounds; for each
L; it suffices to set ; = 0 if P;; <0 and z; = 1 if P;; > 0,
while to obtain U; it suffices to set z; = 0 if if P;; > 0, and
I'J:].lfpm < 0.

Inequalities (3)—(7) enforce the following equivalence be-
tween problems QBK and GLOVER. If z; = 0 for some
i, then (B)) ensures that z; = 0 and (B)+(7) are redundant. If
x; = 1 for some ¢, then + ensure that z; = Z;’le Pz,
and l) is redundant. In either case, z; = x; Z;’:l Pijx; for
each z.

After formulating GLOVER, we solve the continious relax-
ation of this integer program, and we obtain a bound on the
initial program. The obtained fractional solution x is converted
into a binary vector X using a similar procedure as before: we
repeatedly perform randomized rounding, where each Z; is set
to 1 with probability equal to x;, until we obtain a feasible
solution.

C. Greedy algorithms

Solving an SDP problem, up to a desirable accuracy e,
requires time polynomial in the problem size n and log %
However, SDP solvers are using expensive interior-point
methods with running time O(n?). Thus, the SDP-Relax
algorithm discussed in the previous section is expected to
produce solutions of high quality, but it is not scalable to
problem instances of large size.

In this section, we present two greedy algorithms for the

QBK problem, which scale linearly to the size of the input
graph. Additionally, as we will see in our experimental evalu-
ation, the greedy algorithms yield solutions of extremely high
quality, in practice.
Simple greedy. The first scalable algorithm is a simple
greedy (S—-Greedy), which takes advantage of the structural
properties of P. Recall from Equation that the entries of
P incorporate information about the structure of the social
network, as well as the exposure values of the neighbors of
each node.

Notice that the diagonal entries P;; of matrix P take values
in [—Dy;, Dj;], where D;; is the weighted degree of node i,
while the rest of the matrix is sparse. Also observe that in
the 01 quadratic function x ' P x, setting an element of x
to 1 means that the corresponding diagonal element of P is
selected. Therefore, it is beneficial to select first those indices
that correspond to the highest diagonal values of P. In order
to account for the node weight b we select the node with the
highest ratio P;;/b;, that is, the most cost-effective node for
its contribution to the objective.

Altogether, the S—-Greedy algorithm selects nodes in de-
scending order of value Pj;/b;, while the total weight of
selected nodes (", b;x;) does not exceed the budget k.

Iterative greedy. An obvious drawback of S—-Greedy is that
nodes are selected independently, and thus, selected nodes may
have the effect of canceling each other.

Our second greedy strategy (named iterative greedy, or
simply I-Greedy) overcomes this drawback by selecting



Algorithm 2: T-Greedy

input : matrix P; node weights b; budget k; iterations I
output: indicator vector x;

1 initialize x, < 0, x + 0 and f + O;
2 fori<1,...,1 do
3 x' — x;
4 while b'x’ < k do
5 x +— x';
-k x'TPx’ / / .
6 j* + argmax; y x < xand xj < 1,
’ .
Tjx 1;
8 if f < x'Px then
9 be<—xandf<—xTPx;
10 r < random {j | z; = 1};
11 z, <+ 0;

12 return x,;

nodes iteratively and evaluating the gain in the objective
function for each new node. The I-Greedy algorithm first
generates a feasible solution x by initially setting all nodes
to 0. Then it iteratively sets the value of a variable from 0
to 1, so as to achieve the highest gain in the objective value,
normalized for node cost, i.e., it seTzlects the node 7 that achieves
the highest value of the ratio X Px' where x' differs from
the current solution x as to havingl its ¢-th coordinate equal to
1 instead of 0. The algorithm continues adding nodes while
the total weight of selected nodes (Zi b;x;) does not exceed
the budget k.

To further explore the search space, and allow the possibility
of recovering from a bad choice during the greedy selection,
we enhance the algorithm with an additional local-search step.
According to this, a node in the current solution is selected
at random, removed from the solution, and other nodes are
selected greedily to replace the removed node. The local-
search step is repeated for a given number of iterations I. The
I-Greedy algorithm returns the best solution found during
its execution.

The I-Greedy algorithm is described in Algorithm

To analyze the running time of I-Greedy, consider the
computation of the value x'" P x’. A naive implementation
uses vector-matrix multiplication and results in complexity
O(n?). However, we can improve the running time consid-
erably, by observing that multiplying a matrix with a binary
vector is equivalent to selecting its rows or columns that
correspond to indices with value 1 in the vector. Therefore
we can compute the updated value x’TP x’ by selecting a
single column and row for the new index, and summing the
nodes that are indexed by the current index set. Assuming that
a solution has at most ¢ nodes, the cost is O(¢). The total cost
in selecting the best index is O(nf). Overall, the total running
time of the I-Greedy is O(nf2I). In typical scenarios we
can assume ¢, I << n, making the algorithm very efficient.

D. Mixed integer quadratic programming

For problem instances of small size, we can solve QBK
optimally, using a mixed-integer quadratic programming pack-

age. Although the computational complexity of such a method
is exponential in the worst case, powerful general-purpose
solvers may work well for real-world (not worst case) inputs.

By solving the problem optimally on small-size datasets, we
can evaluate our more scalable techniques by checking how far
off they are from the optimal solution. In our experiments we
use CPLEX, a standard mixed-integer quadratic programming
solver.

E. Upper bounds

In this section we derive three upper bounds for problem
QBK. Our bounds are applicable to the special case of all
nodes having the same cost (b = 1). This is equivalent to
setting a cardinality constraint on vector x. The bounds also
hold in the case that b; > 1, but they may not be as tight in
that case. The three bounds we present differ in computational
complexity and tightness.

Computing a tight upper bound for our problem has several
benefits. First we can compare the upper bound with the
value of the solution obtained by a method and having an
estimation of the approximation for a particular problem
instance. Second, a bound can be used to speed up some
of our algorithms, e.g., in a branch-and-bound routine when
computing the optimal solution, or as a cutting plane in the
SDP relaxation algorithm.

The Rayleigh theorem for Hermitian matrices M, provides
an upper bound for the quantity x ' M x based on the maxi-
mum eigenvalue Ay (M) of M:

x ' Mx < Amax (M) x ' x.
The constraint 1" x < k implies that x ' x < k, and therefore:
X Px < Anax (P) X 'x < Apax (P) k.

We can estimate the dominant eigenvalue Ay (P) itera-
tively. Taking advantage of the sparsity of P, the complexity
of estimating this bound is O(rI), where r is the number
of non-zero elements in P and [ is the number of iterations
required for convergence.

Our second bound can be computed in time O(n), based
on the following lemma, which is a consequence of Ger-
schgorin’s theorem.

Lemma 1. )\,,x(M) < R = max; {Mu + Zi;ﬁj \Mu\} .

Recall the definition of P, and observe that P;; = —s'L.; s;
and P;; = s;L;;, for © # j, where L.; is the -th column of
the Laplacian matrix, and L;; the (i, j) entry. It follows that
Pii + Zz#y ‘PU| = Pii + Dii’ where Dii is the Weighted
degree of node i. From Lemma [1| it follows that Ay,ax(P) <
R = max;{P;; + D;;} and consequently

x ' Px < kR.

The third bound is based on the following observation:
given upper bounds on the rows of P, due to the cardinality
constraint on x, the value of the objective function can be at
most the sum of the & highest row-upper bounds. Accordingly,



an upper bound on each row can be obtained by summing the
top k nonnegative nodes. This bound is more expensive than
the other two, as it requires O(n?) operations, but we expect
it to be tighter.

VI. EXTENSION TO THE CONTINUOUS CASE

Here we extend our problem formulation to the continuous
case: we want to select k individuals and modify their exposure
to some value in the interval [—1,1]. The goal is again to
maximize the diversity index. The choice of the algorithm is
which individuals to select and a recommended exposure level
for each one of them.

Problem 2. Given a graph G = (V, E), an exposure vector s,
and an integer k, identify a sparse vector x with k non-zero
nodes x; € [—1+ s;,1 + s;], such that the resulting diversity
index n(G,x — s) is maximized.

By setting y = x — s we obtain the following problem:

y 'Ly,

Iyl <1, (8)
card(y +s) < k.

max

subject to

This problem is difficult to solve due to the non-convex
cardinality constraint. Again, we will use a semidefinite re-
laxation to turn the non-convex problem into a convex one.
First we introduce the variable Y = yy . We can represent
the constraint |ly|l.c < 1 either with the linear constraint
diag(Y) < 1 or with the tighter but quadratic constraint
HYHOO S 1, where ||MHOO = max; j=1,...,n |M,]|

Next we describe how to rewrite the non-convex cardinality
constraint. We observe that:

ly +s|?2=1T]Y +ss' 4+2ys'|1.

Additionally, for every vector u with card(u) = k it is
[lul|? < k?||lul|%,. Thus, we can replace card(y +s) < k2
with 17[Y +ssT 4+ 2ys'|1 < k?[ly +s||2, < 4k?. The last
inequality follows since [|y|lco < 1 and [|s||oc < 1 implies
ly + sl < 2. Here, |A| denotes the element-wise absolute
value of matrix A.

Finally, we relax the non-convex Y = yy' constraint by
a matrix inequality, which relies on the Schur complement, as
we have shown before. The resulting relaxation is:

max Tr(LY)

subject to || Yoo <1
1Y +ss’ +2ys'|1 < 4k? @
Y-yy' =o0.

The optimal value of the quadratic program (9) is an upper
bound on the optimal value of program (3). The optimal
solution Y will not always be a rank-one matrix but we can
truncate it and keep only its dominant eigenvector.

The semidefinite program (9) can now be solved efficiently
using off-the-shelf methods.

VII. EXPERIMENTS

In this section, we present an experimental evaluation of
the algorithms we presented. The goal of our experiments is
threefold: First, we want to compare the performance of the
algorithms in terms of the achieved value of the objective
function. Second, we want to evaluate the scalability of the
algorithms. Finally, we want to investigate the factors affecting
the performance of the algorithms.

All experiments are conducted on an HPC machine with
8-cores and 32 GB of RAM.

Datasets. We consider five datasets representing different
types of social networks. We use networks where each node is
associated with a value between —1 and 1, which we assume
that reflects its exposure. We consider the following datasets:

Karateﬂ The well-known dataset representing a social network
of a karate club at a US university in the 1970s. The social
network is partitioned into two distinct equal-sized communi-
ties.

Booksﬂ A network of books about US politics, sold
by amazon.com. Edges represent frequently co-purchased
books. Books are classified as Liberal (43), Conservative (49),
and Neutral (13). Neutral books are randomly assigned to one
of the two communities.

Blogsf] A directed network of hyperlinks between weblogs on
US politics recorded in 2005 [1]]. Blogs are classified as either
Liberal or Conservative. We disregard edge directions and
keep the largest connected component. The resulting dataset
contains two communities with 636 and 586 nodes each.

Elections: A network of twitter followers of D. Trump and H.
Clinton collected in the end of 2016. We consider two com-
munities of users, partitioned by the usage of hashtags #maga
and #imwithher. We keep the largest connected component and
iteratively prune nodes to guarantee that every node has degree
greater than 1.

Twitter: A large network of twitter users collected between
2011 and 2016, filtered for keywords related to three contro-
versial topics: gun control, abortion, and obamacare |18|]. For
the exposure of the users we use the ideology scores estimated
by Barberd et al. [3]. We only expect the two greedy algorithms
to scale on this dataset, therefore in order to evaluate all
our algorithms we also generate a smaller dataset. We rank
the nodes of the network according to their pagerank values,
and keep the largest connected component formed from the
subgraph of the top-100 nodes. We refer to this smaller dataset
as Twitter100.

To evaluate our algorithms in networks that are already
diverse and there is no latent community structure, we create
a version of networks Karate, Books, and Twitter100, where
nodes are assigned a random exposure value. The resulting
networks are called Karate-D, Books-D, and Twitter100-D,
respectively.

3https://networkdata.ics.uci.edu/data.php?id=105
“https://networkdata.ics.uci.edu/data.php?id=8
Shttps://metworkdata.ics.uci.edu/data.php?id=102



TABLE I: Dataset Statistics

TABLE III: Upper bounds

Dataset Nodes Edges Avg Degree  Positive  Negative n
Karate 34 78 4.58 17 17 10
Karate-D 34 78 4.58 18 16 43
Books 105 441 8.40 43 49 35
Books-D 105 441 8.40 54 51 224
Twitter100 80 1403 17.53 25 55 90
Twitter100-D 80 1403 17.53 42 38 710
Blogs 1222 16717 27.36 636 586 1419
Elections 18893 269 696 14.27 6612 12281 28164
Twitter 200073 4009548 50038.04 81793 118280 251450

TABLE II: Solution quality and bounds from the relaxations

Dataset k IQP SDP-Relax Glover I-Greedy S-Greedy
Karate 0.1n 46 46 (46.43) 46 (52.28) 46 46
02n 56 56 (59.13) 54 (69.05) 56 51

n 61 61 (63.48) 52 (78.00) 57 51

Karate-D 0.1n 50 50 (53.69) 49 (65.85) 50 50
02n 55 55 (60.74) 50 (79.84) 53 52

n 61 61 (63.89) 50 (93.00) 55 48

Books 0.1n 207 207 (207.81) 207 (235.90) 207 207
02n 264 262 (272.26) 249 (330.01) 264 248

n 309 306 (318.43) 267 (447.00) 298 253

Books-D 0.1n 265 262 (272.95) 249 (328.32) 263 252
02n 285 281 (298.48) 280 (388.82) 284 254

n 309 307 (318.44) 282 (497.50) 286 243

Twitter100 0.1n 425 425 (425.19) 424 (479.52) 425 424
02n 599 599 (601.38) 589 (791.55) 599 592

n — 793 (804.21) 733 (1406.00) 790 647

Twitter100-D 0.1n 743 742 (752.94) 722 (917.99) 742 715
02n — 757 (775.53) 729 (1071.32) 761 715

n — 793 (804.21) 775 (1496.00) 766 737

Blogs 0.1n - — 9878 (12659.06) 9879 8889
Elections 0.01n — - — 117950 117482
Twitter 0.001n — - - — 1678753

Table l[| shows the statistics of our datasets. All networks are
treated as undirected. All edge weights and node costs are set
to 1.

Performance evaluation. We first evaluate the algorithms
with respect to the diversity-index score they achieve.
SDP—-Relax is the SDP-based algorithm, Glover is the
linearization algorithm, I-Greedy and S—-Greedy are the
two greeedy algorithms, while IQP is the exact algorithm.

Table [lI] shows the results obtained by the algorithms on
all datasets. For the smaller datasets, Karate, Books and
Twitter100, we set £k = 0.1n,0.2n,n, while for the larger
datasets we set £k = 0.1n for Blogs, and £k = 0.01n for
Elections. For the largest dataset Twitter, we set k = 0.001 n.

We observe that SDP—-Relax is the best-performing algo-
rithm: it finds solutions of quality very close to that of IQP,
which is optimal. Especially surprising is the performance of
I-Greedy, which is almost equal to SDP-Relax. It even
outperforms SDP-Relax slightly in some instances. On the
other hand, I-Greedy performs less well for £ = n, which
is expected, given its greedy nature.

It is important to note that IQP terminates in reasonable
time only for networks of up to 100 nodes. We also observe
that the SDP relaxation is tight and achieves upper bounds
very close to the optimal value (always less than 1.007 times
the optimal). Glover, on the other hand, does not give
tight relaxations: its upper bounds can get quite off. Finally,
S—-Greedy manages to achieve good performance for small-
size instances, due to picking first the high diagonal elements,
but it fails to give good solutions for larger instances.

In addition, we evaluate the quality of the three upper
bounds (Section [V-E)). Table [[II] shows the results. Bound3
is the most expensive to compute, but is also tightest. On

Dataset k  Optimal Boundl Bound2  Bound3
Karate 0.1n 46 122 63.62 57
0.2n 56 262 130.63 33
n 61 934 452.32 145
Karate-D 0.1n 50 99 76.43 59
0.2n 55 169 118.23 90
n 61 570 302.43 145
Books 0.1n 207 535 297.6 245
0.2n 264 1035 560.20 387
n 309 5235 2766.04 857
Books-D 0.1n 265 552 363.26 338
0.2n 285 872 494.53 439
n 309 3528 1249.18 778
Twitter100 0.1n 425 890 498.27 481
0.2n 599 1590 855.50 807
Twitter100-D  0.1n 743 1176 1035.32 809
TABLE IV: Running times (in seconds)
Dataset k IQP SDP-Relax Glover I-Greedy S-Greedy
Karate 0.ln  0.093 1355 0.814 0.009 0.002
02n 0274 1.326 0.575 0.018 0.001
n 1.620 1.820 0.587 0.035 0.001
Karate-D 0.1n 0172 1.436 0.692 0.010 0.002
02n 0275 1271 0.613 0.019 0.002
n 0329 1.460 0.558 0.036 0.001
Books 0.1n  0.098 158.297 6.259 0.078 0.002
02n 0334 165.299 5.157 0.154 0.002
n 2543 213.720 4744 0.266 0.006
Books-D 0.1n 0503 146.344 6.138 0.123 0.002
02n 1493 138.263 6.225 0.150 0.002
n 3726 188.170 4744 0.253 0.006
Twitter100 0.1n  0.855 44813 3.745 0.042 0.001
02n 71362 50.523 3.139 0.083 0.002
n >7200 56.670 2.870 0.086 0.002
Twitter100-D 0.1n 40284 40.972 3.687 0.041 0.002
02n  >7200 39.720 2.980 0.077 0.001
n  >7200 42811 3.007 0.072 0.002
Blogs 0.1n - —  947.980 10.070 0.103
Elections 0.01n - - - 333.727 12.961
Twitter 0.001n. - - - - 3000.676

the other hand, Boundl is the cheapest to compute, by it can
get quite bad. We also observe that is more tight for diverse
networks. This is due to the impact of the diagonal elements of
P on the computation of the bound: the diagonal elements are
smaller for diverse networks. Finally, Bound2 is fairly tight
for £ = 0.1n but it gets worse for £ = n. In general, we
observe that for all bounds the value is much closer to the
optimal for small instances, which is somewhat expected. It is
worth noting that for the case k = n, despite the fact that the
optimal diversity-index value is the same no matter the initial
assignment of exposures (since all exposures can be changed),
the bounds obtained are different.

Scalability. We also perform a scalability analysis of the
algorithms, shown in Table We are able to run all algo-
rithms for the smaller datasets, Karate, Books, and Twitter100,
although IQP did not terminate after two hours on Twitter100
for k = n and Twitter100-D for £ = 0.2n. For the Blogs
dataset, Glover, I-Greedy, and S—-Greedy are scalable,
while TQP and SDP-Relax run out of memory. I-Greedy
and S-Greedy are very scalable, and run fast even on
big datasets. S-Greedy scales well even on the very large
network, Twitter.

All in all, for the polynomial algorithms the running time
is in-line with their theoretical complexity, while IQP is very
fast for some instances but does not terminate within two hours



TABLE V: Characteristics of the first five nodes selected by
IQP on the Twitter100 dataset

# Echo Degree  PageRank
chamber

1 3 6 7

2 7 11 11

3 8 12

4 15 13 13

5 1 3 3

for some other instances.

Continuous case. We also evaluate our SDP-relaxation for
the continuous case (Section [VI). Due to the presence of
two quadratic constraints, the relaxation terminates only on
smallest dataset, Karate. The running time is 209.95 seconds
and the optimal value of the relaxation is 61.17. However
after rounding to a feasible solution to the initial problem,
the values of the solutions drops considerably, to 32.35, lower
than that of the discrete problem. We conclude that while the
continuous problem is theoretically interesting, the proposed
algorithm does not perform well—thus, we pose this problem
as an interesting direction for future work.

Case study. We conclude the experiments by taking a closer
look at the first five nodes selected by IQP in the Twitter100
dataset. We characterize the nodes by ranking them according
to three measures: the size of their “echo chamber,” defined as
the number of their neighbors with the same exposure, their
centrality, measured by PageRank score, and their degree. The
results are shown in Table [Vl We observe that the selected
nodes are amongst the highest ranked nodes in all three
categories. It appears that the most important feature when
changing the exposure of an individual is the size of their
echo chamber, This is in line with the observed performance
of S-Greedy that implements this logic and performs well
for small k.

VIII. CONCLUSION

In this paper we considered the problem of diversifying
user exposure to content in social networks. We formally
defined the diversity index of a social network, and formulated
the problem of maximizing diversity. We showed that the
diversity-maximization problem is NP-hard to approximate.
Despite this result, we studied algorithms that in practice offer
solutions of high quality, including an SDP-based algorithm,
an algorithm based on linearization, and two scalable greedy
methods. Furthermore, we provided several upper bounds
with varying tightness-vs.-efficiency trade-off. Our experi-
ments with real data demonstrate the effectiveness of our
algorithms in the diversity-maximization problem. We also
introduced a continuous version of our problem, and an SDP-
relaxation. Although the continuous version is a relaxation of
the discrete problem we studied, the proposed SDP algorithm
is not satisfactory neither in terms of quality nor efficiency. We
consider this variant an interesting and challenging problem to
study in the future.
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