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Abstract—With the arrival of the big data era, more and more
data are becoming readily available in various real world appli-
cations and those data are usually highly heterogeneous. Taking
computational medicine as an example, we have both Electronic
Health Records (EHR) and medical images for each patient. For
complicated diseases such as Parkinson’s and Alzheimer’s, both
EHR and neuroimaging information are very important for dis-
ease understanding because they contain complementary aspects
of the disease. However, EHR and neuroimage are completely
different. So far the existing research has been mainly focusing on
one of them. In this paper, we proposed a framework, Memory-
Based Graph Convolution Network (MemGCN), to perform
integrative analysis with such multi-modal data. Specifically,
GCN is used to extract useful information from the patients’
neuroimages. The information contained in the patient EHRs
before the acquisition of each brain image is captured by a mem-
ory network because of its sequential nature. The information
contained in each brain image is combined with the information
read out from the memory network to infer the disease state at the
image acquisition timestamp. To further enhance the analytical
power of MemGCN, we also designed a multi-hop strategy that
allows multiple reading and updating on the memory can be
performed at each iteration. We conduct experiments using the
patient data from the Parkinson’s Progression Markers Initiative
(PPMI) with the task of classification of Parkinson’s Disease (PD)
cases versus controls. We demonstrate that superior classification
performance can be achieved with our proposed framework,
comparing with existing approaches involving a single type of
data.

I. INTRODUCTION

With the arrival of the big data era, more and more data are
becoming readily available in various real world applications.
Those data are like gold mines and data mining technologies
are like tools that can dig the gold out from those mines.
Taking medicine as an example, we have a large amount
of medical data of different types nowadays, from molecular
to cellular to clinical and even environmental. As has been
envisioned in [1]], one key aspect of precision medicine, which
aims at recommending the right treatment to the right patient
at the right time, is to integrate those multi-scale data from
different sources to obtain a comprehensive understanding of
a health condition.

Many data mining approaches have been proposed for
analyzing medical data in recent years. For example, Ghas-
semi et al. [2] modeled the mortality risk in intensive care
unit with latent variable models. Caruana et al. [3|] utilized
generalized additive model to predict the risk of pneumonia

and hospital readmission. Zhou et al. [4] developed a matrix
factorization approach for predictive modeling of the disease
onset risk based on patients’ Electronic Health Records (EHR)
data. Tensor modeling techniques have also been leveraged in
electronic phenotyping [5]l, [|6] and clinical natural language
processing [7[]. More recently, deep learning has emerged as
a powerful data mining approach that can disentangle the
complex interactions among data features and achieve superior
performance. Because of the complex nature of medical prob-
lems, researchers have also been exploring the applicability of
deep learning models in helping with medical problems using
medical images [8], [9], EHRs [4], [10], physiological signals
[L1], [12]], etc., and obtained promising results.

Despite the initial success, so far most of the existing works
on data mining for medicine have been focusing on one single
type of data (e.g., images or EHRs). However, typically dif-
ferent data sources contain complementary information about
the patients from different aspects. For example, concerning
neurological diseases, we can get general clinical information
of patients, such as diagnosis, medication, lab, etc., from
EHRs; while we can obtain specific biomarkers regarding
white matter, gray matter, and the change of different Regions-
of-Interest (ROI), from brain images. Integrative analysis of
both EHR and neuroimages can help us understand the disease
in a better and more comprehensive way. In reality, such
integrative analysis is challenging because of the following
reasons.

o Heterogeneity. The nature of patient EHR and neuroim-
ages are completely different: the EHR for each patient
can be regarded as a temporal event sequence, where at
each timestamp multiple medical events (e.g., diagnosis,
medications, lab tests, etc.) can appear; while each neu-
roimage is essentially a collection of pixels. Therefore
the ways to process these two types of data could be
very different.

o Sequentiality. EHR data are sequential and a specific
brain image is static. The brain status reflected in a
certain brain image can be related to the EHR of the
corresponding patient before the acquisition of the image.
Effective integration of such heterogeneous information
into a unified analytics pipeline is a challenging task.

With the above considerations, we proposed a novel Memory-



based Graph Convolutional Network (MemGCN) to perform
integrative analysis with both patient EHRs and neuroimages.
As its name suggests, there are two major components in
MemGCN.

o Graph Convolutional Network (GCN) [[13]. GCN is a
deep learning model that generalizes the Convolutional
Neural Nets (CNN) [14] on regular lattices to irregular
graphs. GCN has been proved to be very effective on
extracting useful features from graphs.

o Memory Network [15]. Memory network is a new type
of model that connects a regular learning process with a
memory module, which is usually represented as a matrix
that memorizes the historical status of the system. At
each iteration some useful information is extracted from
the memory to help the current inference while the same
time the memory unit will be updated.

In our framework, the GCN module extracts features from
the human brain networks constructed from the brain images.
The longitudinal patient EHRs are stored in the memory
network to encode the historical clinical information about the
patient before the acquisition of the image. The information
extracted from the memory network will be combined with the
feature from GCN to discriminate PD cases and controls. We
conduct experiments on real world data from the patients in the
Parkinson’s Progression Markers Initiative (PPMI) [[16]] and
obtained superior performance comparing with conventional
methodologies.

The rest of this paper is organized as follows. Section II
presents the technical details of our framework. The experi-
mental results are introduced in Section III, followed by the
related work in Section IV and conclusions in Section V.

II. METHOD

A. Overview

As illustrated in Fig. [I] the proposed method MemGCN
is a matching network that is designed for metric learning
on not only brain images but also clinical records. The pre-
processed brain connectivity graphs are transformed by graph
convolutional networks into representations, while memory
mechanism is in charge of iteratively (multiple hops) reading
clinical sequences and choosing what to retrieve from memo-
ries in order to augment the representations learned by graph
convolution. For the purpose of metric learning, inner product
similarity and bilinear similarity are separately introduced
in the matching layer. The output component is composed
of a fully connected layer and a softmax for relationship
classification of acquisition pairs. Accordingly, we present
MemGCN, a matching network embeds multi-hop memory-
augmented graph convolutions and can be trained in an end-
to-end fashion with stochastic optimization.

B. Graph Convolution

The brain connectivity graph is characterized by defining
its ROI nodes and the interactions among them. Since the
graph-structured data are non-Euclidean, it is not straight-
forward to use a standard convolution that has impressive

performances on grid. Hence, we resort to geometric deep
learning approaches [[17]], [18] to deal with the problem of
learning features on brain connectivity network.

In general, let G = ({1,---,n},E, W) be an undirected
weighted graph, where W = (w;;) is a symmetric adjacency
matrix satisfying w;; > 0 if (4,j) € € and w;; = 0 if
(i,j) ¢ &. According to spectral graph theory [19]], the
graph Laplacian matrix can be computed as A = I —
D '/2WD~'/2, where D € R"*" is the diagonal degree
matrix with d;; = ) i wij, and I € R™*™ is the identity
matrix. Note that A is a positive-semidefinite matrix and

its eigendecomposition can be written as A = ®APT,
where ® = (¢p, - ,d,) are the orthonormal eigenvectors
and A = diag(A1,--- ,A(n)) is the diagonal matrix of non-

negative eigenvalues 0 = Ay < --- < Ay,

In our scenario, the vertices of graph G are corresponding
to ROIs. Define a brain connectivity acquisition as an input
signal x = (x1,--,X,), where x; € R" is a feature
vector associated with vertex i. The convolution operation is
conducted on Fourier domain instead of the vertex domain.
Consider two signals x and g, it can be proved that the
following equation exists,

X g = B(BTx) © (BTg) = Bgy(A)Tx
= ®diag(gr,- - Gn)X (D

where © is the element-wise Hadamard product and x = ®Tx
defines the Graph Fourier Transform. The function jg(.) can
be regarded as learnable spectral filters. Previous studies [[13]],
[20]-[22] on geometric deep learning have proposed a variety
of filter functions to achieve promising properties such as
spatial localization and computational complexity. Chebyshev
spectral convolution network (ChebNet) [22] is utilized in our
model. Before introducing representation learning by Cheb-
Net, we first give the details about how to construct a graph
G and build its edges £ with ROI vertices of the collection of
brain image acquisitions.

Spatial Graph Construction

The brain connectivity graph can be represented as a square
matrix x € R™" with the numerical values indicating
the connectivity strength of ROI pairs. However, the region
coordinates of anatomical space can provide the crucial spa-
tial relations between ROIs which have not been taken into
account in conventional works of the domain [23]]. Motivated
by the work [24], which applied graph convolution on a
functional Magnetic Resonance Imaging (fMRI) task, a spatial
graph based on 3-dimensional coordinates is constructed for
our model. The coordinates are associated with a predefined
number of ROIs and share a common coordinate system.

In detail, the xyz-coordinates {(v,,, v}, v7,,)}m—y of
region center are able to present' the spatial location
of the corresponding ROI ¢. The global ROI coordi-
nates are computed by the average aggregation v; =
Sz, wMoy SNz ),Vi € (1,---,n). Thus, the
edges £ can be constructed by a Gaussian function based on
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Fig. 1. Memory-based Graph Convolutional Network for brain connectivity graphs with clinical records. For simplicity, we depict the clinical records via a
sequence of vectors in the figure. In practice, each clinical sequence is corresponding to a neuroimage acquisition.

k-Nearest Neighbor similarity, which is

Vi —70, 2 . . .
wij = {exp(—lzgzﬂl)7 if ie NjorjelN; @

0, otherwise.

where w;; denotes the edge weights between vertex ¢ and
vertex j, N; and N denote the neighbors for i and j
respectively. In practice, we set G as a 10-Nearest Neighbor
graph. Therefore, the spatial information of ROI is formulated
into our model in terms of the graph structure.

ChebNet

With the constructed graph G, its graph Laplacian matrix
A can be obtained. Now our goal is to learn a high-level
representation for each image acquisition by feeding its input
signal x as well as the shared A into the neural network.
From the general sense, it can capture the local traits of each
individual brain images and the global traits of the population
of subjects.

To address the issues of localization and computational
efficiency for convolution filters on graphs, ChebNet exploited
a series of polynomial filters represented in the Chebyshev
basis,

r—1 r—1
90(A) =Y 0,T,(A) = 6,8T,(A)@" (3)
p=0 p=0

where A = 2\-'A — I is the rescaled Laplacian which
leads to its eigenvalues A = 2)\-'A — I in the interval
[—1,1]. 6 is the r-dimensional vector Chebyshev coefficients
parameterizing the filters. And Tj,(\) = 20T _1(\) —Tj_a(\)
defines the Chebyshev polynomial in a recursive manner with
To(A) =1 and Ty (A) = A

To explicitly express filter learning of the graph convolution,
without loss of generality, let k! denote the index of feature

map in layer I, the k!*!-th feature map in its layer of sample
m is given by
fin
Ym ki+t1r = Z 96,1141 (A)Ym,lcl cR" 4)
kl=1
yielding f;, X fous vectors of trainable Chebyshev coefficients
Opri+1 € R”. In detail, y,, , denotes the feature maps of
the [-th layer. For the input layer, y,, j: can be simply set
as X4, ¢ = 1,---,n, which is the i-th row vector of the
n x n brain connectivity matrix. Given a sample x € R"*",
its output of graph convolution can be collected into a feature
matrix y = (y1,¥y2,"** »¥f,..) € R"Jout, where each row
represents the learned high-level feature vector of an ROIL.

C. Memory Augmentation

The key contribution of MemGCN is incorporating sequen-
tial records into the representation learning of brain connec-
tivity in terms of memories. Our model is proposed based on
Memory Networks [15], [25]] which has a variety of successful
uses in natural language processing tasks [26]—[28] including
complex reasoning or question answering. When we define a
memory, it could be viewed as an array of slots that can encode
both long-term and short-term context. By pushing the clinical
sequences into the memories, the continuous representations
of this external information are processed with brain graphs
together so that a more comprehensive diagnosis could be
made. Inspired by the observation, the memory-augmented
graph convolution are designed.

We start by introducing the MemGCN in the single hop
operation, and then show the architecture of stacked hops in
multiple steps. Concretely, the memory augmentation can be
divided into two procedures: reading and retrieving(see Fig. [I)).
Clinical Sequences Reading

Suppose there is a discrete input clinical sequences s;, j =
1,---,t, where j is the index of a clinical record extracted
from the certain timestamp. In memory network, it needs to
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Fig. 2. Illustration of memory augmented graph convolution in a single hop
(the 1-st hop). See Section for the details.

be transformed as continuous vectors z;, j = 1,---,¢ and
stored into the memory. We use a fixed number of timestamps
t to define the memory size. The dimension of the continuous
space is denoted as d while the dimension of the original
clinical features is denoted as D. To embed the sequential
vectors S1,---S¢, a d X D embedding matrix A is used. That
is z; = As;. The matrix z = (21, -- - ,z;) can be regarded as
a new input memory representation.

Meanwhile, similar to the method in [25]], an output memory
to generate continuous vectors {e;} is involved. The corre-
sponding embeddings are obtained from e; = Bs;, where
B also is a d x D embedding matrix. Different from other
computational forms of attentive weights [29], two memories
in our model are maintained by the separate sequence reading
procedures, which are responsible for memory access and
integration respectively in the retrieving procedure.

Memory Representation Retrieving

To retrieve memory vectors from the embedding space,
we firstly need to decide which vector to choose. Not all
records in a sequence contribute equally when it comes to
the representation learning for brain graphs. Hence, attentive
weights are adopted here to make a soft combination of all
memory vectors. Mathematically, the weights are computed by
a softmax function on the inner product of the input memory
vectors z; and the learned ROI vectors y;,

exp(yiz;)
> 1 exp(yiz;r)

a;; = softmax(y;z;) = ()
Once the informative memory vectors are indicated by weights
«j;, the correspondence strength for attention are shown. As
Fig. E] illustrated, our attention is 2-dimensional that describes
similarities between the representations generated from two
modality sources. To make this feasible, we assume that both

memory and ROI vectors are in the embedding space with
same dimension. Next we represent the contextual information
by the aggregation of weights and output memory vectors.

Specifically,
ci =Y e (6)

j=1
where c; is a row vector of the context matrix c, and is aware
of a new representation for the ROIL.

To integrate the context vectors with feature maps of GCN,
element-wise sum is employed as y; = y;+c;. The intuition of
using the sum operator derives from the neural networks [30],
in which the learned features in the next layer would benefit
from both components in their networks.

The entire operations in a single hop are shown in Fig.
which is regarded as one layer (hop) of our model MemGCN.
The output feature matrix of the single hop y = (y1,--+ ,¥n)
is fed into the next hop, and again as an input of the next
GCN.

D. Multi-hop Layer

Basically, memory mechanism allow the network to read
the input sequences multiple times to update the memory
contents at each step and then make a final output. Compared
to single step attention [29]], [31], contextual information
from the memory is collected iteratively and cumulatively for
feature maps learning. In particular, suppose there are L layer
memories for L hop operations, the output feature map y at
the [-th hop can be rewritten as

yl+1:Hyl+Cl7l:17"'7L (7)

where H is a linear mapping and can be beneficial to the
iteratively updating of y. Similarly, the computational equa-
tions for weights and context vectors in Eq.(3) and Eq.(6) are
rewritten as

N exp(yizh) ®
Yt exp(ylzl)
]/:1 p yl ]/
t
cﬁ = Z aijei ©)]
j=1

In addition, a layer-wise updating strategy [25] for input and
output memory vectors at multiple hops are used, which is
keeping the same embeddings as A’ = -.. = Al and B! =
...=B~L,

Notice that the contextual states ¢ of the first hop are
determined by the two given modalities and then accumulated
into the generation of the contextual states in the following
hops. Consequently, the final output feature maps y* rely
on the conditional contextual states c',---,cE~! as well as
previous feature maps y',---,y~“~!, where y! is directly
generated from brain connectivity matrix x through one layer
graph convolution. The underlying rationale of the multi-hop
design is that it is easier for the model to learn what have
already been taken into account in previous hops and capture
a fine-grained attendance from memories in the current hop.



E. Matching Layer

Metric learning for brain connectivity graphs with multiple
layers normally involves several non-linearities so that the
complex underlying data structure can be captured. To train
such a neural network, a large amount of training data are
necessary to prevent overfitting [32]. Although large-scale
labeled dataset are often limited in clinical practice, metric
learning between sample pairs allow us increase the training
data significantly because of the possible combination of two
samples [33]]. In our case, take a brain image acquisition as a
sample, the goal of metric learning is to learn discriminative
properties to distinguish whether the sample pairs in the same
diagnosis class or not.

The basic hypothesis is that, if two samples share the same
diagnosis result, the matching score between their high-level
feature maps should be high. Here, two sorts of matching
function are explored to calculate the similarities between pairs
of acquisitions.

Inner Product Matching

Let x,, and x,, denote any pair of initial brain connec-
tivity matrices, y,Ln’i and yfn,’i denote their associated feature
vectors learned from the L-th hops by MemGCN, where @
is a vertex of ROI. The Euclidean distance computed in the
matching layer is a vector with each dimension corresponding
to each ROI, which is,

di(Xms X) = |V 1 = Vimrillos i=1,--- .0 (10)
Thus, d = (dy,--- ,dy) is the output of the matching layer.
Instead of computing the distance directly, the feature maps
are normalized along with dimension of hidden features and
then a inner product is used to get a similarity vector,

ST (X y X2 ) = (yfm)Ty#,)i, t=1,---,n. (11)
where sim; is the inner product similarity on ¢-th dimension,
and it is equivalent to Euclidean distance if the vectors are
normalized.

Bilinear Matching

Above matching function in Eq.(II) only considers the
similarity of the corresponding ROI vectors of a given paired
brain graphs. The similarities computed by different ROI
are not modeled. To the aim, a simple bilinear matching
function [34]] is used here. The matching score is defined as

$imi j (Xms X)) = (¥ ) " Myb o i, j=1,--+ ,n. (12)
where sim; ; is the similarity between ROI ¢ and j based on
bilinear matching. M € Rfourxf2ur is a matrix parameterizing
the matching between the paired feature maps. With the
matching procedure in Eq.(I2), the output of the matching
layer is a matrix, with each element suggesting the strength
of ROI connections. It is worth to note that if the parameter
matrix M is an identity matrix, the bilinear matching reduces
to the inner product matching.

F. Model Training

As in MemGCN, our output layer models the probability of
each sample pair is matching or non-matching. The similarity
representation from matching layer is passed to a fully con-
nected layer and a softmax layer for the eventual classification.
For each pair, set the output of fully connected layer is a
feature vector r. We calculate the probability distribution over
the binary classes by
)

p = softmax(w;r (13)

where w,. € R? is a trainable parameter.

We train our model using a regularized cross-entropy loss
function. Let X = {(X, X, )} be the training set of N
acquisition pairs. NV is the number of total pairwise combina-
tion of brain graphs. The number of acquisitions M is much
smaller than N. The loss function we minimize is

N
E = Z S’m,m’ IOg pm,m’ + (1 - ym,m’) log(l - pm,m’)
m,m’

+710]2 (14)

where ¥, v denotes the label for sample pair (X, Xm),
©® is the collection of trainable parameters. The MemGCN is
trained on machines with NVIDIA TESLA V100 GPUs by
using Adam optimizer [35]] with mini-batch.

III. EXPERIMENTS
A. Dataset

The data we used to evaluate MemGCN are obtained from
the Parkinson Progression Marker Initiative (PPMI) [16] study.
PPMI is an ongoing PD study that has meticulously collected
various potential PD progression markers that have been
conducted for more than six years. Neuroimages and EHRs
are considered as two modalities in this work.

To obtain brain connectivity graphs, a series of prepro-
cessing procedures are conducted. For the correction of head
motion and eddy current distortions, FSL eddy-correct tool
is used to align the raw data to the b0 image. Also, the
gradient table is corrected accordingly. To remove the non-
brain tissue from the diffusion MRI, the Brain Extraction
Tool (BET) from FSL [36] is used. To correct for echo-
planar induced (EPI) susceptibility artifacts, which can cause
distortions at tissue-fluid interfaces, skull-stripped b0 images
are linearly aligned and then elastically registered to their
respective preprocessed structural MRI using the Advanced
Normalization Tools (ANT{]) with SyN nonlinear registration
algorithm [37]. The resulting 3D deformation fields are then
applied to the remaining diffusion-weighted volumes to gen-
erate full preprocessed diffusion MRI dataset for the brain
network reconstruction. In the meantime, ROIs are parcellated
from T1-weighted structural MRI using Freesufeif}

The connectivity graphs computed by three whole brain
tractography methods [38]] for are applied, which is a coverage

Uhttp://stnava.github.io/ANTS/
Zhttps://surfer.nmr.mgh.harvard.edu
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TABLE I
RESULTS FOR CLASSIFYING MATCHING VS. NON-MATCHING BRAIN GRAPHS ON THE TEST SETS OF TENSOR-FACT, ODF-RK2, AND HOUGH IN TERMS
OF ACCURACY AND AUC METRICS. PERFORMANCES WITHOUT AND WITH EXTRA MODALITIES ARE SHOWN. “FUSION” MODALITY MEANS CLINICAL
RECORDS OF BOTH MOTOR AND NON-MOTOR FEATURES. (HOP NUMBER L. = 3 FOR MEMGCNS).

Extra Modalities Methods tensor-FACT ODF-RK2 Hough
Accuracy AUC Accuracy AUC Accuracy AUC

Raw Edges 65.94 (3.78) 58.47 (4.05) 67.56 (4.12) 60.93 (5.60) 67.90 (4.09) 64.49 (3.56)
PCA 69.19 (3.13) 64.10 (2.10) 68.38 (2.50) 60.93 (2.63) 66.28 (4.60) 63.46 (3.52)

None MLP 84.22 (2.76) 8236 (2.87) | 8231 (2.68)  82.53 (4.74) | 84.27 (2.63)  81.77 (3.74)
GCN-inner 93.69 (2.15) 92.67 (4.94) 93.23 (2.63) 93.04 (5.26) 92.80 (2.51) 93.90 (5.48)
GCN-bilinear 93.89 (1.76) 94.77 (6.08) 94.00 (2.65) 94.32 (5.72) 93.34 (2.26) 93.35 (5.14)
AttGCN 93.62 (2.99) 94.25 (5.88) 94.76 (3.31) 94.33 (5.23) 94.01 (1.94) 94.74 (5.35)

Fusion AtLstmGCN 94.70 (2.35)  94.38 (5.41) | 94.80 (2.71)  94.87 (4.49) | 94.64 (2.02)  94.80 (5.51)
MemGCN-inner 95.43 (2.22) 96.42 (6.36) 95.54 (2.98) 96.59 (6.44) 95.48 (2.34) 96.49 (6.41)
MemGCN-bilinear 95.47 (2.25) 96.48 (6.40) 95.87 (2.56) 96.84 (6.36) 95.64 (2.00) 96.74 (6.51)

of the tensor-based deterministic approach (Fiber Assignment We selected hyperparameter values through random

by Continuous Tracking [39]]), the Orientation Distribution
Function (ODF)-based deterministic approach (the 2nd-order
Runge-Kutta, RK2 [40]), as well as the probabilistic ap-
proach (Hough voting [41]]). 84 ROIs are finally obtained.
We define each the coordinates for ROIs using the mean
coordinate for all voxels in the corresponding regions (see
Spatial Graph Construction in Section for the details).
After preprocessing, we collect a dataset of 754 Diffusion
Tensor Imaging (DTI) acquisitions, where 596 of them are
brain graphs of Parkinson’s Disease (PD) patients and the rest
158 are from Healthy Control (HC) subjects. The spatial graph
we constructed has 84 vertices and 527 edges, with each vertex
is corresponding to an ROL

Additionally, sequential EHR records are aligned with cor-
responding brain connectivity graphs. For each acquisition x,
a sequence of its associated input features (sq,---,s;) can
be used for the external memories. Note that the sequences
are chunked at the time points of neruoimaging acquisition,
and we only use the subsequences before the time point to
make a reasonable experimental design. Usually, the number of
timestamps in sequences are different because subjects provide
their medical records with distinct frequencies, we set the
length of sequence as ¢ = 12 according to the statistics of
the PPMI study. Padding is utilized for those sequences with
fewer timestamps. The specific clinical assessments we study
here are motor (MDS-UPDRS Part II-III [42]) and non-motor
(MDS-UPDRS Part I [42] and MoCA [43]]) symptoms which
are crucial for evaluating a disease course of PD. There are 79
discrete clinical features and 331 dimensions after binarization,
then we have the original dimensions of clinical feature which
is D = 331.

B. Experimental Setup

Implementation Details

To learn similarities between brain connectivity matrices,
acquisitions in the same group (PD or HC) are labeled as
matching pairs while those from different groups are labeled
as non-matching pairs. Hence, we have 283, 881 pairs in total,
with 189, 713 matching pairs and 94, 168 non-matching pairs.

search [44]]. Batch size is 32. Initial learning rate is He-3,
and early stop is used once the model stops improving. The
L2-regularization weight is le-2. For each graph convolution
operation, the order of Chebyshev polynomials and the feature
map dimension are respectively set as r = 30 and [, = 32.
For the memory network, memory size and dimension of
embedding are respectively set as ¢ = 12 and d = 32. The
code is available at |https://github.com/sheryl-ai/MemGCN|
Baselines

To test the performance of MemGCN, we report the em-
pirical results of comparisons with a set of baselines. Here
are the methods that classify brain graphs without any other
modalities.
e Raw Edges. 1t is one simple approach that is to directly use
the numerical values from the connectivity matrix to represent
the brain network. The feature space is a 84 x 84 vector.
e PCA. Principal Component Analysis (PCA) is used to reduce
the data dimensionality. After forming a sample-by-feature
input matrix, PCA is performed by keeping the first 100
principal components, which is an optimal setting in practice.
o MLP. Multilayer perceptron (MLP) is employed. The hidden
dimension of the first layer is set as f,,; = 1024. We use a
3-layers fully connected network, with its output layer reduces
the dimension down from 64 to 2 by a softmax. It previously
used on brain graphs in [45]].
o GCN-inner. Metric Learning for brain networks using GCN
is first introduced in [24], where a global loss function is used
to supervise pairwise similarities. The cross-entropy loss is
adopted in our experiments to be consistent with other models.
e GCN-bilinear. The bilinear matching layer proposed in
Section is added on the basis of GCN to conduct metric
learning. It is a version of MemGCN-bilinear without memory.

Furthermore, neural networks without memory mechanism
that can embed the clinical data are built as baselines.
o A#tGCN. Instead of using input and output memories on
sequences, only one embedding matrix for the computation
of attentive weights is incorporated with GCN via the sum
operation.


https://github.com/sheryl-ai/MemGCN

TABLE II
COMPARISONS FOR MEMGCN BY VARIOUS SETTING OF THE NUMBER OF HOPS AND THE MATCHING METHODS.

. tensor-FACT ODF-RK2 Hough
# of hops Matching
Accuracy AUC Accuracy AUC Accuracy AUC
1 inner product 94.20 (2.42) 94.07 (5.19) 94.03 (2.32) 94.39 (5.15) 94.61 (2.05) 95.72 (5.50)
2 inner product 95.36 (2.60) 96.35 (6.36) 95.40 (2.27) 96.39 (6.35) 95.21 (2.92) 96.10 (6.30)
3 inner product 95.43 (2.22) 96.42 (6.36) 95.54 (2.98) 96.59 (6.44) 95.48 (2.34) 96.49 (6.41)
1 bilinear 94.68 (2.04) 95.32 (5.98) 93.88 (2.22) 94.17 (5.49) 94.37 (1.89) 95.17 (4.95)
2 bilinear 95.19 (2.14) 96.06 (6.18) 94.61 (2.91) 95.27 (5.89) 95.23 (2.50) 96.17 (5.26)
3 bilinear 95.47 (2.25) 96.48 (6.40) 95.87 (2.56) 96.84 (6.36) 95.64 (2.00) 96.74 (6.51)

o AtLstmGCN. A standard bi-directional LSTM with atten-
tion [29] is established for sequential EHR data and then its
context states are combined with GCN feature maps.

Finally, two variants of our model are given.

o MemGCN-inner. The proposed MemGCN with the inner
product matching layer.

o MemGCN-bilinear. The proposed MemGCN with the bilin-
ear matching layer.

For a fair comparison, the reported models are built under
the same pairwise matching architecture for metric learning.
Inner product matching are employed in the baseline model if
it is not stated as a bilinear version. 5-fold cross validation on
754 DTI acquisitions (1-fold for generating held-out testing
pairs) are conducted in all of our experiments.

C. Results

Matching vs. Non-matching Classification

Table [[| reports the performance for the binary classification
task. The metrics for evaluation are Accuracy and Area Under
the Curve (AUC).

From the results we can observe that, the Raw Edges, and
simple feature extraction approach such as PCA cannot pre-
dict a reliable distance for sample pairs and correspondingly
achieve promising results on the matching classification task.
More layers with extra non-linearities have a good influence
on the fully connected networks to capture the complicated
patterns from acquisitions. All the GCN based methods can
largely improve both of Accuracy and AUC performance
in three DTI sets generated by Tensor-FACT, ODF-RK2,
and Hough tractography algorithms, which demonstrates the
effectiveness of graph convolution on the brain connectivity
graphs. Overall, the bilinear matching strategy is outperform
the inner product matching strategy slightly on both GCN
and MemGCN. The best AUC performance is 96.48, 96.84,
and 96.74, which are accomplished by MemGCN-bilinear
with fusion clinical sequences as the external modality. With
attention mechanism, AttGCN and AttLstmGCN also perform
well in the given circumstances. However, they cannot boost
the results significantly compared to the vanilla GCN. The
reason that MemGCN behaves better than them is probably
separate memories for reading and retrieving are employed in
a multi-hop network.

Table shows the concrete effects of increasing the
number of hops on inner product and bilinear matchings. The
number of hops is tuned from 1 to 3. The results on Accuracy

and AUC metrics illustrate that our multi-hop framework
indeed improves performance constantly.
Identical ROIs vs. Discriminative ROIs

The interpretability of MemGCN is investigated. As the
representation learned in the inner product matching layer can
be explained as pairwise similarities at 84 ROI dimensions,
it describes the significance of each ROI in metric learning.
Therefore, we compute the average similarities for all the
PD-PD pairs and the average similarities for all the PD-HC
pairs. ROIs with the highest scores in the PD group could be
considered as the identical ROIs for PD, while those with the
lowest scores in the PD versus HC group are regarded as the
discriminative ROIs.

The interpretable results depends on memory augmentation
of motor, non-motor, and the fusion data are presented in Ta-
ble While the whole functions of the human brain regions
are still unclear, it is quite intriguing that MemGCN can locate
some of the modality-related ROIs, which might be critical for
PD study. For instance, The most identical ROI for PD with
motor features as augmentation is the Thalamus with one of its
major role as motor control. Also, lingual gyrus discovered by
non-motor features is linked to processing vision, especially
related to letters. On the other hand, MemGCN can help us to
find which ROI is sufficiently discriminative to distinguish PD
patients with healthy controls. Several important ROIs belongs
to the current research of clinicians and domain experts are
detected, i.e., Caudate and Putamen areas.

To show the representation generated from the bilinear
matching layer, we draw the edges between ROIs with high
similarities in Fig.3. Similar to Table the most identical
edges for PD group and the most discriminative edges between
PD and HC groups are depicted. The interesting patterns we
found might be deserved to the further exploration in clinical
scenarios.

Longitudinal Alignment: Case Study

From Fig. [(a)] and A(b)] we observe that though the struc-
tures of three hops of memory layer are same, the values
of the attention weights they learned are quite different in
typical cases. The matrices we draw in terms of colormaps
in Fig.4 indicate the attentive weights o for one PD case
and one healthy control case. Here we abandon the first 2
padding dimensions of the shown cases and give 10 memory
positions (rows in the matrices). The attendance of all the
84 ROI vertices are depicted (columns in the matrices). A



TABLE III
THE INTERPRETABILITY OF THE OUTPUT REPRESENTATION OF MEMGCN’S INNER PRODUCT MATCHING LAYER. TOP-5 IDENTICAL ROIS IN PD
GROUP AND DISCRIMINATIVE ROIS BETWEEN PD AND HC GROUPS ARE LISTED. SIMILARITY SCORES ARE GIVEN.

Motor Non-motor Fusion
ROI Name Score ROI Name Score ROI Name Score
Right Thalamus Proper 0.9258 Rh Paracentral 0.8563 Rh Pars Opercularis 0.9344
. Lh Insula 0.9253 Rh Lingual 0.8180 Rh Lateral Occipital 0.8372
Identical ROIs i . . K
(PD Group) Right Pallidum 0.9226 Right Pallidum 0.8091 Left Accumbens Area 0.7887
u
P Lh Rostral Middle Frontal 0.9210 Lh Parsorbitalis 0.6554 Rh Parahippocampal 0.7827
Parahippocampal 0.9206 Left Thalamus Proper 0.6387 Rh Frontalpole 0.7742
Right Putamen -0.9134 Left Putamen -0.7423 Right Thalamus Proper -0.8960
L Right Accumbens Area -0.9075 Lh Frontal Pole -0.5754 Left Caudate -0.8439
Discriminative ROIs . .
(PD HC G ) Left Hippocampus -0.9059 Lh Supramarginal -0.5731 Lh Paracentral -0.8227
Vs. rou
P Right VentralDC -0.9058 Lh Inferior Parietal -0.5693 Lh Middle Temporal -0.7865
Left Caudate -0.9014 Lh Paracentral -0.4851 Lh Cuneus -0.7528

* Lh and Rh are the abbreviations of Left Hemisphere and Right Hemisphere respectively.

rh-supe ntal rhesupe o ntal

th-rostralmjddlefrontc

(@) (®)
Fig. 3. The connectivity patterns learned by the bilinear matching layer.
(a) The top identical edges for PD group; (b) The top discriminative edges
between PD and HC groups.

darker color indicates where MemGCN is attending during
the multi-hop updating for representations. Basically, given a
specific case, which time point has more influences on his/her
PD progression and which ROI is more important according to
the clinical evidences can be analyzed through this longitudinal
alignment between DTIs and EHRs.

In general, the first hop attention appears to be primarily
concerned with identifying the salient interaction between
time-aware sequences and ROIs’ feature maps. In this hop, the
majority values are close to zero and only a few values are
close to one, such that a sketch of key ROIs and timestamps are
signified. The second and the third hops are then responsible
for the fine-grained interactions that are relevant to optimizing
the representation for the distance learning task.

Another important observation is that the PD case has
different interaction patterns compared to the healthy control.
At each hop, PD has a relatively narrow attention and fewer re-
sponses across memory positions. Consider the PD case shown
in Fig. longitudinal alignments occur at timestamps 2, 4,
and 6 after 3-hop updating, meanwhile a series of ROIs might
function on the disease progression. By the Desikan-Killiany
Atlas, the darker ROI dimensions from 76 to 79 are Rh Insula,
Right Thalamus Proper, Right Caudate, and Right Putamen,
respectively, which matches our expectation for the PD case.

IV. RELATED WORK

We briefly review the existing research that is closely related
to the framework proposed in this paper.

EHR Mining. In recent years many algorithms have been
proposed to mine insights from patient EHRs. Initially those
methods were static in the sense that they first construct
patient vectors by aggregating their EHR with in a certain
observational time window and then build learning approaches
(e.g., predictive models and clustering methods) on top of
those vectors [2]], [3]. Most of these methods are shallow
except the DeepPatient work which applied AutoEncoder to
further compress the patient vectors and obtain better repre-
sentations [40]. Recently researchers have also been exploring
CNN and RNN type of approaches to incorporate the temporal
information in patient EHRs into the modeling process [47]—
[49]]. However, these methods compressed the patient EHRs
to a vector before it was fed to the final model, which is not
as flexible as the memory network we adopted.

GCN for Neuroimage Analysis. Many data mining ap-
proaches have been developed to perform neuroimage analysis
in recent years [50], among which deep learning models are
very popular because of their huge success in various computer
vision problems [51]]. Recently, Ktena et al. [24]] propose
to learn a metric from patients’ neuroimages on top of the
features constructed using GCN (where the graph is basically
the patients’ brain network constructed on the ROIs), which
can discriminate the cases versus controls with autism. Zhang
et al. [52] extend such approach to handle the multiple modal-
ities of the brain networks (e.g., constructed from different
tractography algorithms on DTI images). However, none of
them incorporated any clinical records from the patients. Our
work is the first step towards filling the gap.

V. CONCLUSION

We propose a novel framework, memory-based graph con-
volution network (MemGCN), to perform integrative analysis
of patient clinical records and neuroimages. On the one hand,
our experiments on classification of Parkinson’s Disease case
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Fig. 4. Visualizations of attention interaction matrices of MemGCN for one PD and one HC case during 3 memory hops. The rows and columns of the
matrices respectively denote memory positions and ROI vertices. The darker color in the colormaps means a larger value which is close to 1, and the lighter

color means a smaller value which is close to 0.

patients with healthy controls demonstrate the superiority of
MemGCN over conventional approaches. On the other hand,
the interpretable high-level representations extracted from the
inner product or bilinear matching layers are capable of
indicating group patterns of brain connectivity via ROI nodes
or their edges for PD subjects and healthy controls.

Here we explored the operators of the graph convolution
via ChebNet and the embedding via memory mechanism as
feature extractors for neuroimages and patient health records
respectively. The pairwise distance under the metric learning
setting in our framework makes a progress in modeling a small
cohort data such as PPMI. An important future direction is
to design deep architectures that can lower the amount of
training data meanwhile learn meaningful representations. We
are especially interested in continuing to develop more general
end-to-end trainable models in the space of boosting system
performance on small data.
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