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Abstract—Extracting common narratives from multi-author
dynamic text corpora requires complex models, such as the
Dynamic Author Persona (DAP) topic model. However, such
models are complex and can struggle to scale to large corpora,
often because of challenging non-conjugate terms. To overcome
such challenges, in this paper we adapt new ideas in approximate
inference to the DAP model, resulting in the DAP Performed
Exceedingly Rapidly (DAPPER) topic model. Specifically, we
develop Conjugate-Computation Variational Inference (CVI)
based variational Expectation-Maximization (EM) for learning
the model, yielding fast, closed form updates for each document,
replacing iterative optimization in earlier work. Our results
show significant improvements in model fit and training time
without needing to compromise the model’s temporal structure
or the application of Regularized Variation Inference (RVI). We
demonstrate the scalability and effectiveness of the DAPPER
model by extracting health journeys from the CaringBridge
corpus — a collection of 9 million journals written by 200,000
authors during health crises.

Index Terms—topic modeling, graphical model, regularized
variational inference, healthcare, text mining, approximate in-
ference, non-conjugate models

I. INTRODUCTION

Topic modeling is a popular technique for automatically
discovering compact, interpretable, latent representations of
corpora. Many corpora exhibit an important structure, such
as authorship or a temporal dependency between documents.
Classic topic models like Latent Dirichlet Allocation (LDA)
scale to large datasets [1]–[3], but do not account for any
special structure in the corpus. Subsequent topic models are
designed around such corpora, or are reparameterized to
capture other features in the texts. For instance, the Correlated
Topic Model (CTM) captures correlations between topics [4].
The added complexity of these models comes at a cost,
however. In the case of CTM, the model is parameterized with
non-conjugate terms — resulting in an additional variational
parameter and requiring conjugate gradient descent to be
run repeatedly on each document of the corpus. Up until
recently CTM defined the standard approach in dealing with
non-conjugate terms in variational inference. Topic models
uniquely designed for corpora with a temporal structure,
such as Dynamic Topic Model (DTM) and Continuous Time
Dynamic Topic Model (CDTM), face similar issues as the

CTM [5], [6]. In each of these models the scalability is
compromised by non-conjugate terms.

In recent work, the Dynamic Author-Persona (DAP) topic
model was introduced for corpora with multiple authors writ-
ing over time [7]. DAP represents each author by a latent
persona — where personas capture the propensity to discuss
certain topics over time. However, inference in DAP inherited
the challenges with non-conjugacy from CTM and DTM.

In this paper, we seek to improve the scalability of the
DAP topic model. Our approach is to adapt new ideas
in approximate inference to DAP’s variational Expectation-
Maximization (EM) algorithm. Specifically, we develop a
Conjugate-Computation Variation Inference (CVI) based vari-
ational EM algorithm, a powerful approach for transforming
inference in non-conjugate models to conjugate models, lead-
ing to fast, closed form updates to parameters [8]. The advan-
tage of CVI over other related approaches is that it preserves
the closed form updates to parameters in the conjugate terms.
We show how a CVI based inference algorithm applies to
a complex, temporal topic model like DAP, and how this
new inference algorithm improves model performance and
dramatically reduces the time required to train the model.

Our primary motivation for developing a faster inference
algorithm for the DAP model is the desire to scale the model
to the CaringBridge (CB) corpus, which is a collection of 9
million journals (≈1 billion words) written by approximately
200,000 authors during a health crisis. CaringBridge journals
are written by patients and caregivers and posted to the
CaringBridge website, to be shared privately with friends and
family. The CB corpus holds enormous potential for insights
on the challenges and experiences faced by those with serious,
and often life threatening illnesses. The size and complexity
of the data, however, present a modeling challenge too great,
until now.

Our results show that the DAPPER model achieves likeli-
hoods better than competing models, including LDA, DTM,
CDTM, and DAP. Moreover, we show that DAPPER’s
conjugate-computation updates result in significant improve-
ments in speed over its predecessor. Finally, we demonstrate
the scalability of the DAPPER model by training it to the
CB and Signal Media One-Million News Article corpora, and
share the compelling narratives found by DAPPER’s latent
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personas.
The rest of the paper is as follows: in Section II, a

background on recent advances in approximate inference is
given. Section III presents a brief overview of the DAP model.
Section IV details the CVI approach for accelerating the
DAP model and describes a connection between CVI and
expectation propagation. Section V introduces the evaluation
datasets and procedures. Section VI shares the results of the
experiments. Finally, Section VII summarizes the contributions
of this paper.

II. BACKGROUND

Approximate inference plays an important role in fitting
complex probabilistic graphical models (PGM) which often
have intractable posteriors and cannot be computed exactly.
Interest in approximate inference techniques like variational
inference, is growing because it tends to scale better than
classical techniques, such as Markov Chain Monte Carlo [9].
Variational inference, in particular, transforms the inference
problem into an optimization problem with the goal of finding
hidden variables z to the variational distribution q such that
q(z) closely approximates the posterior p(z | y), where y
are the observed data [10]. This equates to minimizing KL
divergence between the approximate and true posterior:

q∗(z) = arg min
q∈Q

KL(q(z) || p(z | y)) .

In PGMs the dependency between nodes, and their corre-
sponding probability distributions, can form either conjugate
or non-conjugate pairs. Non-conjugate pairs occur in a number
of famous models, such as CTM and DTM [4], [5]. The chal-
lenge with non-conjugate priors, however, is that the posterior
does not belong to the same family as the prior, and often the
posterior cannot be obtained in a closed form analytically [11].
As a result, models with non-conjugate terms often require the
introduction of additional variational parameters and gradient
based optimizations which significantly slows down training.

Advances in Variational Inference In recent years tremen-
dous progress has been made in improving both the speed,
quality, and ease of application of variational inference. In
2013, Hoffman et al. introduced stochastic variational infer-
ence (SVI): a method that reparameterizes the gradient of
the Expected Lower BOund (ELBO) in terms of the natural
parameters in order to derive a fast stochastic gradient descent
(SGD) algorithm for variational inference [2], [3]. The SVI ap-
proach is an important contribution because of the tremendous
speed-up that results. Further, reparameterizing the ELBO
so as to derive natural gradients, which leads to stochastic
optimization, is closely related to traditional coordinate ascent
variational inference. Natural gradients provide more stable
learning, as opposed to gradient methods that are better suited
for optimization in Euclidean geometry [12]. SVI is limited in
that it requires the model’s parameters to have an exponential
family form, and hence is not directly applicable to non-
conjugate models like CTM or DTM.

Recent advances, like Black Box Variational Inference
(BBVI), demonstrate a promising new way to speed-up up-
dates to non-conjugate terms [13]. The approach introduced
in BBVI uses stochastic gradient updates, where the noisy
stochastic observations are computed using Monte Carlo tech-
niques. BBVI results in a variational inference algorithm that
is faster than conventional approaches and eliminates the need
to derive inference algorithms for new models.

Conjugate-Computation Variational Inference The com-
putational downside of BBVI is that does not take advantage
of conjugate terms with closed form updates. Khan and
Lin introduce Conjugate-computation Variational Inference
(CVI) which cleverly allows inference on models with non-
conjugate terms to be computed as a conjugate computation
[8]. A conjugate computation is simply the adding of the
natural parameters of a prior to the sufficient statistics of
the likelihood. In short, the CVI approach allows for fast
updates to complex PGMs. Moreover, unlike SVI which takes
gradients of the ELBO in the natural-parameter space, CVI
uses stochastic mirror descent in the mean-parameter space
that eschews Euclidean geometry (i.e. squared loss) in favor
of a Bregman divergence defined by the convex-conjugate
of the log-partition function. Khan and Lin [8] demonstrate
that this approach leads to inference in a conjugate model,
where non-conjugate terms have been replaced by exponential
family approximations. Further, CVI lets models be trained
with stochastic mini-batches — in the style of SVI. As a result,
even complex models with difficult non-conjugate terms can
be trained quickly and efficiently.

The goal of the CVI algorithm is to maximize a lower bound
to the marginal likelihood:

arg max
λλλ∈ΛΛΛ

L(λλλ) = Eq[log p(y, z)− log q(z | λλλ)]

where ΛΛΛ is the set of valid variational parameters, λλλ the vari-
ational parameter, and q(z | λλλ) the variational approximation.
Traditionally, the bound is optimized via gradient descent, i.e.
λλλi+1 ← λλλ+ρi∇λλλL(λλλi), where ρi is the learning rate. An
equivalent formulation of this gradient, which highlights the
divergence function, is:

λλλi+1 ← arg max
λλλ∈ΛΛΛ

〈λλλ,∇λλλL(λλλi)〉 −
1

2ρi
||λλλ− λλλi||22

CVI assumes distributions are minimal exponential families,
meaning there is a one-to-one mapping between λλλ and the
mean parameters µµµ ∈M. The lower bound is reparameterized
in terms of µµµ such that L̃(µµµ) = L(λλλ), and mirror descent
gradient updates for this bound are derived. Additionally, in
making the mean-field assumption, which assumes that the
parameters are posteriori independent, the gradient update can
be expressed as a summation over all nodes k ∈ 1, . . . ,M :

max
µµµ

M∑
k=1

[〈
µµµk, ∇̂µµµL̃(µµµi)

〉
− 1

ρi
BA∗(µµµk||µµµk,i)

]
, (1)



where i refers to the iteration number, and BA∗ is a Bregman
divergence — such as KL divergence, defined over the convex-
conjugate of the log-partition A∗. The choice of divergence
function is to account for the geometry of the parameter
space. Khan et al. prove convergence for the general case of
Bregman divergences, even in the stochastic gradient setting
[14]. The maximization in (1) only requires optimizing for a
single node k and hence can be done either in parallel, or as a
doubly stochastic scheme by randomly picking a term in the
summation.

One of the primary results proved by Khan and Lin [8]
is that (1) can be implemented as Bayesian inference in
a conjugate model. Their method hinges splitting the joint
distribution into non-conjugate and conjugate terms (denoted
p̃nc(y, z) and p̃c(y, z), respectively) and replacing the difficult
non-conjugate term with an exponential family approximation
whose natural parameter is λ̃λλi. Hence, the posterior is approx-
imated with a variational distribution defined by:

q(z | λλλi+1) ∝ exp(φ(z), λ̃λλi)p̃c(y, z) ,

where λ̃λλi is the natural parameter of the exponential-family
approximation to p̃nc, computed as a weighted sum of the
gradients of the non-conjugate term. Khan and Lin [8] show
that the exponential-family approximation’s parameter λ̃λλi and
the variational posterior’s parameter λλλ are updated by:

λ̃λλk,t =
∑
a∈Nk

Eq/k,i[ηηηa,k(za/k,ya/k)] +∇µk
Eqi [log p̃∼a,knc ]

(2a)

λλλi+1 = (1− ρi)λλλi + ρiλ̃λλi (2b)

where ηηηa,i(za/i,ya/i) are simply the natural parameters for
the conjugate parts of the model, and Nk the local neigh-
borhood containing zi and its children. By replacing non-
conjugate terms with exponential family approximations, CVI
allows even complex models to be trained quickly and effi-
ciently.

III. DYNAMIC AUTHOR-PERSONA TOPIC MODEL

The Dynamic Author-Persona (DAP) topic model is de-
signed for corpora with multiple authors writing over time [7].
Giaquinto et al. introduce the DAP model and demonstrate
its ability to identify common narratives shared by patients
and caregivers journaling during a serious health crisis on the
website CaringBridge. While the model can produce valuable
qualitative results from smaller datasets, it struggles to scale
to industrial sized problems.

To model temporal dependencies between parameters DAP
uses a Variational Kalman Filter, similar to [5], [6]. The
structure of the DAP model, shown in Figure 1, is partic-
ularly unique due to the parameter αααt,p, which captures the
distribution over topics for each persona p at time point t. The
structure of the DAP model results in the joint distribution that
factorizes as:

Fig. 1. Graphical representation of the Dynamic Author-Persona topic model
(DAP). On top, topic distributions for each persona evolve over time by
αααt|αααt−1 ∼ N (αααt−1,ΣΣΣ). The distribution over words for each topic is
βββ ∼ Dir(η). Each author a ∈ {1, . . . , A} is represented by a distribution
over personas defined by κκκa ∼ Dir(ω). The distribution over topics for each
document θθθd ∼ N (αααtxt,d,ΣΣΣt) is dependent on the persona assignment
xt,d ∼ Mult(κκκa) for that document’s author, and the evolving topic
distribution αααt. Words, denoted w, are assigned to topics according to the
multinomial zd,n ∼Mult(σ(θθθt,d)).

K∏
k=1

p(βββk | η)

A∏
a=1

p(κκκa | ω)

T∏
t=1

P∏
p=1

p(αααt,p | αααt−1,p,ΣΣΣt−1)×

Dt∏
d=1

p(xt,d | κκκad)p(θθθt,d | αααt,1:Pxt,d,ΣΣΣt)

Ndt∏
n=1

p(zd,n | σ(θθθt,d)) ,

(3)

where σ(·) is a softmax function introduced to obey the
constraint that zd,n lies on the simplex.

The structure and parameterization of the model, however,
introduces a number of non-conjugate terms, namely p(zd,n |
σ(θθθt,d)) and p(θθθt,d | αααtxt,d,ΣΣΣt). Consequently, estimating
the topic assignment z, topic proportions θθθ, and persona
assignment x is challenging. The remaining model terms,
the variational parameter used in the mean-field variational
inference algorithm, and a brief description is given in Table
I.

The DAP model’s scalability issues stem from its non-
conjugate terms — for which there are no fast, closed form
updates. To derive parameter updates the DAP model’s in-
tractable posterior is approximated with a variational poste-
rior under the mean-field assumption. In standard fashion,
the Evidence Lower BOund (ELBO) is maximized, which
is equivalent to minimizing the KL divergence between the
variational in true posteriors. Once the ELBO is specified,
updates are derived for each parameter by selecting terms
containing that parameter and optimizing. However, due to
the non-conjugate terms, fast, closed-form updates are not
always possible. In particular the DAP model’s E-Step —
which runs multiple times for each document in the corpus —
must use exponentiated gradient descent to learn the persona
assignment τττ of an author, and conjugate-gradient descent to



TABLE I
NOTATION AND PARAMETERS USED IN THE DAP MODEL. VARIATIONAL

REFERS TO THE CORRESPONDING PARAMETER IN THE MEAN-FIELD
VARIATIONAL INFERENCE ALGORITHM.

Parameter Variational Description

wt,d Words in document dt
zn φφφn Assigns word n to a topic
θθθt,d γγγt,d Topic distribution for document dt
vt,d v̂t,d Covariance between topics for dt
µ0 Prior for mean of ααα0

Σ0 Prior for covariance of ααα0

αααt,p α̂ααt,p Persona p’s topic distribution
ΣΣΣt Σ̂ΣΣt Covariance in topic distributions
ω Prior for κκκa
κκκa δδδa Author a’s personas distribution
xd,t τττ t,d Assigns author of dt to a persona
η Prior parameter for βk
βββk λλλk ∀k distribution over words

learn the mean and variance parameters of the document’s
topic distribution.

IV. DAP PERFORMED EXCEEDINGLY RAPIDLY

The non-conjugate terms in the DAP model compromise
the scalability of the model. CVI presents an opportunity to
directly address DAP’s bottlenecks, while keeping the existing
closed-form parameter updates. We refer to DAP trained with
the new CVI based inference algorithm as Dynamic Author-
Persona Performed Exceedingly Rapidly (DAPPER). Details
of the derivation of DAPPER’s inference algorithm are shared
below. In particular, the algorithm is structured like variational
EM, where local variational parameters are updated in the
Expectation step on a mini-batch or the entire corpus, and then
global model parameters are updated in the Maximization step.

A. E-Step

In the E-step we update each document d’s topic proportions
θθθd, the assignment of each word to a topic zn, and the
assignment of each author to a persona xd.

1) Document Topic Proportions: Each document is given
a hidden parameter θθθd representing the proportions of each
topic. We begin by identifying the conjugate and non-
conjugate terms involving θθθd. For θθθd we have a conjugate term:
p̃θc = N (θθθd | αααtxd,Σt). Here N (θθθd | αααtxd,Σt) is a Gaussian
conditioned on a Gaussian because the mean parameter is the
dot product between two fixed terms αααtxd, giving a natural
parameter: [

Σ−1
t (αααtx) − 1

2Σ−1
t

]>
(4)

The second term involving θθθ required is the non-conjugate
term, which is p̃θnc = Mult(zn | σ(θθθd))

The variational distribution is defined q(θd,k) = N (θd,k |
γd,k) where γd,k = {mk, vk} for topic k has sufficient
statistics:

ss(θθθd,k) =
[
θd,k θ2

d,k

]>

Writing the approximate posterior q(θθθ) as a product of the
conjugate and non-conjugate parts gives:

qi+1(θθθ) ∝
[ K∏
k=1

exp(ss(θd,k)Θ̃ΘΘk,i)
]
N (θθθd | αααtxd,Σt)

where Θ̃ΘΘk,i are the natural parameters to the approximated
exponential family at iteration i.

The difficult non-conjugate term Mult(zn | σ(θθθ)) has
already been approximated in [4], specifically:

f = Eq
[

logMult(zn | σ(θθθ))
]

≥
K∑
k=1

mkφ
(k)
n − ζ−1

K∑
k=1

exp(mk +
vk
2

)− log(ζ) + 1
(5)

where, again, the parameter ζ is introduced to preserve a
lower bound. Thus, we can now take the gradient of f =
Eq[logMult(zn | σ(θθθ))] with respect to the mean parameters.

∇µf =
[

∂f
∂µ(1)

∂f
∂µ(2)

]>
Since the mean variational distribution’s mean parameters

are µµµ =
[
mk m2

k + vk
]>

, we can write mk = µ
(1)
k and

vk = µ
(2)
k −(µ

(1)
k )2. By the chain rule the gradient with respect

to the mean parameters are ∂f
∂µ(1) = ∂f

∂m − 2∂f∂v and ∂f
∂µ(2) =

∂f
∂v . Applying these gradients to the non-conjugate term in (5)
we can then compute the natural parameter of the variational
posterior:

∂f

∂m
− 2

∂f

∂v
m = φ(k)

n and
∂f

∂vk
=

1

2ζ
exp(mk +

vk
2

)

=⇒ ∇µµµ(f) =
[
φ

(k)
n − 1

2ζ exp(mk + vk
2 )
]>

(6)

where ζ has the same update as before: ζ ←
∑K
k=1 exp(mk+

vk
2 ). Thus by the CVI update rules given in (2), the natural

parameter of the topic proportions is given by a conjugate
computation adding (6) (the sufficient statistics) to (4) (the
natural parameter of prior):

ΘΘΘk,i+1 = ρi

[ ∑Nd

n=1 φ
(k)
n + Σ−1

t (αααtxd)k
−N
2ζ exp(mk + vk

2 ) + (− 1
2Σ−1

t,k,k)

]
+(1−ρi)ΘΘΘk,i

(7)
Ideally we want to compute the source parameters to the

variational posterior, i.e. mk and vk — which is straight-
forward1 given the natural parameter ΘΘΘk,i+1 computed in (7).
The final updates to the variational posterior’s source mean
and variances are computed:

mk,i+1 =
−Θ

(1)
k,i+1

2Θ
(2)
k,i+1

and vk,i+1 =
−1

2Θ
(2)
k,i+1

1These follow from the definitions for converting a Multivariate Gaussian
between its source and natural parameters, which can easily be looked up,
see for example [15].



2) Topic Assignment: Each word is assigned to a topic
through a hidden parameter zn. For zn the corresponding
conjugate term is p̃zc = Mult(wn | βββzn), and non-conjugate
term is p̃znc = Mult(zn | σ(θθθ)).

Define the variational distribution q(zn) = Mult(zn | φn)
for word n. Writing the approximate posterior q(zn) as a
product of the conjugate and non-conjugate parts:

qi+1(zn) ∝
[ Nd∏
n=1

exp(ss(zn)Φ̃ΦΦi)
]
Mult(wn | βββzn) (8)

where Φ̃ΦΦi are the natural parameters to the approximated
exponential family at iteration i, computed by:

Φ̃ΦΦi =
[
Φ̃1,i . . . Φ̃K,i

]>
= ρi∇φEqi

[
logMult(zn | σ(θθθ))

]
|φ=φi

+ (1− ρi)Φ̃ΦΦi−1

Using the previously computed approximation to the chal-
lenging term logMult(zn | σ(θθθ)) in (6), we now differentiate
it with respect to the mean parameter of q(zn), i.e. φ. This
gives:

∇µµµEqi
[

logMult(zn | σ(θθθ))
]

=
[
m1 . . . . . .mK

]>
= m

(9)

where mk is the mean of q(θd,k) = N (θd,k | mk, vk), for k ∈
1, . . . ,K. To update the natural parameter to the approximated
exponential family in (8), we use the equations:

Φ̃ΦΦi = ρi

(
∇µµµEqi [logMult(zn | σ(θθθ))]

)
+ (1− ρi)Φ̃ΦΦi−1

= ρim + (1− ρi)Φ̃ΦΦi−1

(10)

Since CVI transforms non-conjugate computations into con-
jugate computations the update to the variational parameter φφφn
is similar to the LDA case. Specifically, we compute the source
parameter of our variational posterior φφφn by:

φn,k,i+1 ∝ exp(Φ̃k,i + Eq[log βk,wn
]) (11)

where, as usual, the Dirichlet expectation Eq[log βk,v], is
computed by Ψ(λk,v) − Ψ(

∑V
j=1 λk,j). The first term Φ̃k,i

is the document’s topic distribution computed in the previous
section, hence (as expected) the CVI update for φφφ results in
a simple closed form update with the same form as in the
original DAP model.

3) Persona Assignment: For each document the author is
assigned to a persona through a hidden parameter xd. For xd
the conjugate term is p̃xc = Mult(xa | κda), and its non-
conjugate term is p̃xnc = N (θθθ | αtxd,Σt), where the coupling
in the mean αtxd made closed form updates in the DAP model
impossible.

Define the variational distribution q(xd) = Mult(xd | τd).
Writing the approximate posterior q(xd) as a product of the
conjugate and non-conjugate parts gives:

qi+1(xd) ∝
[ P∏
p=1

exp(ss(xd)τ̃d,p,i)
]
Mult(xd | κκκda) (12)

where τ̃ττd,i are the natural parameters to the approximated
exponential family at iteration i.

We compute the variational posterior by first taking the
gradient of the non-conjugate terms, where the non-conjugate
term f = Eqi [N (θθθ | αtxd,Σt)] evaluates to:

f =
−1

2

(
(γt,d − α̂tτt,d)>Σ−1

t (γt,d − α̂tτt,d)+
P∑
p=1

Tr
[
Σ−1
t diag

(
τt,d,p(α̂t,pα̂

>
t,p + Σ̂t)

)])
+ const

Taking the gradient with respect to the mean parameter τττ
gives:

∇τf = α̂t,pΣ
−1
t (γt,d − α̂t,pτt,d,p)−

1

2
Tr(Σ−1

t diag(α̂2
t,p + Σ̂t))

Next we use the CVI updates rule from (2) to compute the
natural parameter of our variational posterior q(xd) by:

τ̃ττd,i = ρi

(
Eq[logκκκda ] +∇τf

)
+ (1− ρi)τ̃ττd,i−1

where Eq[logκκκda ] is the expected natural parameters from the
conjugate term, and is equivalent to a Dirichlet expectation:
Ψ(δa,p)−Ψ(

∑P
j=1 δa,j). In order to map the natural parameter

τ̃ττd,i back to the source parameter of the variational posterior
q(xd), we use

τττd,i =
[

exp(τ̃ττd,1,i)∑P
p=1 τ̃ττd,p,i

. . .
exp(τ̃ττd,P,i)∑P

p=1 τ̃ττd,p,i

]>
B. M-Step

In the M-step we use sufficient statistics collected from
computing document-level variational parameters computed
during the E-step to update the global parameters βββ,κκκ, and
ααα. Because DAPPER makes use of stochastic mini-batches,
we use the learning rate defined for SVI and recommended
in CVI: ρi = (i + τ)−κ where τ ≥ 0 is the delay and
κ ∈ (0.5, 1.0] is the forgetting rate [2], [3], [8].

1) Topic’s Distribution over Words: The βββ term is al-
ready conjugate, and hence the variational distribution for
the topics, qi+1(βββ) =

∏K
k=1Dir(βββk | λλλk,i+1), already has

a closed form update: λλλk,i+1 = (1 − ρi)λλλk,i + ρi(η +∑D
d=1

∑Nd

n=1 φd,n,kwd,n).
2) Author’s Distribution over Personas: Since the κκκ terms

are already conjugate and have closed form solutions, it
follows that the update to variational posterior, qi+1(κκκ) =∏D
d=1Dir(κκκda | δδδda,i+1), has a simple closed form solution

using the convex combination: δδδda,i+1 = (1−ρi)δδδda,i+ρi(ω+∑D
d=1 τττd).



3) Persona’s Distribution over Topics: The αααt term is
conjugate to all other factors, and is global. The variational dis-
tribution for the distribution over topics for each personaαααt,1:P

is qi+1(αααt,p) =
∏T
t=1N (αααt,p | α̂ααt−1,p,i+1,Σt)

∏D
d=1N (θθθd |

md, vd). As shown in the original derivation of the DAP
model, a closed form update can be found for α̂ααt,p:

α̂ααnewt,p =
α̂ααt−1,p +

∑Dt

d=1 γγγt,dτt,d,p −
∑Dt

d=1 τt,d,p

1 +
∑Dt

d=1 τ
2
t,d,p

(13)

Thus, for mini-batch training we update α̂ααt,p,i+1, by first
computing α̂αα∗t,p from a mini-batch of documents. Then α̂ααt,p,i+1

is updated via a convex combination: α̂ααt,p,i+1 = (1 −
ρi)α̂ααt,p,i + ρiα̂αα

∗
t,p. Alternatively, to encourage personas to be

distinct the update (13) is replaceable by the Regularized
Variational Inference (RVI) update for αααt,p given in the DAP
model. CVI compliments RVI because closed form updates,
such as the α̂ααt,p update found by the regularized DAP model,
are preserved. After computing α̂ααt,p,i+1, we proceed as usual
and apply the forward and backward equations of the varia-
tional Kalman Filter to smooth over time time steps.

C. Connect Between CVI and Expectation Propagation
While DAPPER’s inference algorithm is based on CVI

— a recent advance in approximate inference, CVI itself
has theoretical connections to the well known expectation
propagation (EP) algorithm [16], [17]. The EP algorithm,
which is an extension of Assumed Density Filtering, infers
the approximate posterior q using localized inferences. With
posterior p, hidden parameters z, and observations y, we
assume p can be written as a product of terms: p(z | y) ∝∏N
i=0 fi(z), where f0(z) = p(z) expresses the prior density

and fi(z) = p(y | z) the likelihood. The EP algorithm then
approximates the posterior, choosing an approximating family
with density q(z) ∝

∏N
i=1 qi(z) and iteratively incorporating

qi(z) into q(z). First, EP computes the cavity distribution —
that is, deleting qi(z) from q(z), by q−i(z) ∝ q(z)/qi(z).
Second, a true Bayesian update incorporates fi(z):

p̂(z) = Z−1
i q−i(z)fi(z) , Zi = Ez∼q−i

[fi(z)]

where p̂(z) is a tilted exponential family. The exact posterior
is approximated, for exponential families minimizing KL
divergence between the posteriors,

qnew(z) = arg minKL(p̂(z)||q(z)) , (14)

corresponds to matching the moments of p and q. Finally,
update qnewi (z) by qnewi (z) ∝ q(z)q−i(z). Note, that the
update to qi(z) is the local minimization and can be formulated
as:

qnewi (z) = arg minKL(fi(z)q−i(z)||qi(z)q−i(z)).

From here two connections to CVI appear. First, EP also
computes an exponential family approximation in its approx-
imation of p̂(z), the tilted distribution induced by fi(z) [18].

While EP does this computation using moment matching,
moment matching corresponds to minimizing the Kullback-
Leibler divergence from the tilted distribution to the new
approximated marginal distribution [19], and moments can be
computed as derivatives of the log normalizer, hence:

µnew = EP̂ [φ(z)] = ∇q−i
logZi + µ−i

= ∇q−i
logEz∼q−i

[fi(z)] + η−i

For exponential families ∇ logZ = E[φ(y)], and therefore
this moment matching can be viewed as similar to conjugate
computations, here we add expectations of sufficient statistics
of q to the corresponding expectations of z in q−i(z)fi(z).
This shows that EP’s creation of the tilted distribution moment
parameter is analogous to CVI’s computation of the natural
parameter to the exponential family approximation, i.e. (2a).

The second connection to CVI lies in the “damping” tech-
nique used to improve the convergence of EP. Damping re-
places the generic update λi → λi+1 by a convex combination,
which reduces the step size so that only a partial update is
applied. CVI also updates the natural parameters with a convex
combination: λt+1 = (1 − β)λt + βλ̃t in CVI is essentially
just “damped” updates in EP [19]. This form of updating is
analogous to minimizing an alpha divergence (which includes
directed KL as a special case).

Despite a number of similarities, EP and CVI differ criti-
cally in convergence guarantees. Khan et al. show that CVI
converges under fairly mild assumptions, namely that q is
a minimal exponential family and the model’s conditional
distribution can be split into conjugate and non-conjugate
terms. EP, on the other hand, is not guaranteed to converge.
EP minimizes KL divergence for each local observation, but
does not directly minimize KL(p || q).

V. EXPERIMENTS

To evaluate the performance of DAPPER we perform a
quantitative comparison with similar topic models (LDA,
DTM, CDTM, and DAP), and a qualitative demonstration of
DAPPER’s scalability and output on the CB2 and Signal Media
One-Million News Article3 (SM) corpora [21]. For the quan-
titative comparison per-word log-likelihoods (PWLL) are
computed on test data, where PWLL =

∑D
d=1 log p(wd)∑D

d=1Nd
. While

PWLLs do not correlate with a model’s ability to discover
coherent topics [22], they do offer a fair comparison of how
well each model optimizes its objective function. Additionally,
the speed and efficiency of DAPPER relative to its predecessor
are measured by showing model performance as a function
of training time. The qualitative comparison demonstrates the

2CB data were acquired with the permission and collaboration of CB
leadership in accordance with CB’s Privacy Policy & Terms of Use Agree-
ment. Because of their highly sensitive content the CB dataset has been
anonymized, but deidentification techniques are imperfect [20] and hence we
cannot publicly release the CB dataset. Those interested in the dataset are
encouraged to contact the investigators. All code for training the DAPPER
model and running our experiments on the SM dataset, however, are available
at https://github.com/robert-giaquinto/dapper.

3http://research.signalmedia.co/newsir16/signal-dataset.html

https://github.com/robert-giaquinto/dapper
http://research.signalmedia.co/newsir16/signal-dataset.html


rich and compelling “health journeys” discovered by DAPPER
on the CB corpus.

A. Datasets

Both the CB and SM corpora are pre-processed by removing
common stopwords and reducing words to their lemma forms.
Document timestamps are converted into a continuous, relative
measure; for CB we use the number of weeks since author’s
first post (only looking at the first year of each authors
journals), and for SM we use the day within span of the corpus
(1-30 September, 2015).

CaringBridge. Established in 1997, CaringBridge is a
501(c)(3) non-profit organization that connects people and
reduces the feelings of isolation that are often associated with
a patient’s health journey. DAPPER and its predecessor are de-
signed with the CaringBridge corpus in mind. We demonstrate
scalability and quality of DAPPER’s output on the full CB
corpus. The CaringBridge corpus consists of 9,010,623 jour-
nals written by 200,388 authors (with a total of 937,503,945
words) between 2006 and 2016 on the CaringBridge website.
On average, authors write 100 words per journal and 45 journal
posts in the first year.

For a qualitative evaluation, 22,552 randomly selected CB
journals are set aside as a test set to evaluate the model and
track convergence, leaving 8,988,071 journals in the training
set. Our goal in training the DAPPER model on this dataset is
to show that the model can find compelling qualitative results
even on massive, complex datasets.

A quantitative evaluation on a subset of CB journals is
drawn from 2,000 randomly selected authors, leaving a total of
114,532 journals. We refer to this corpus as CB-subset. From
here 90% of the journals (N = 103, 018) are divided into the
training set, and the remaining 10% of each author’s journals
(N = 11, 728) make up the test set. Training and test sets
contain the same authors because personas distributions are
learned for each author during training. These authors journal
an average of 57 times during the first year, with a mean of
5 days between journal posts.

Signal Media Blogs. From the SM dataset we only consider
articles written by bloggers who wrote fewer than one blog
post per day during the corpus’ one month span. Subsetting the
data in this way is done to exclude major news organizations
and instead focus on bloggers who typically write about a
central theme. We refer to the subset as SM-blogs. After pre-
processing, the SM-blogs corpus consists of 97,839 documents
for training (15,848 blogs, 19,278,689 total words), and 10,887
documents for testing (same authors, 2,165,634 words).

B. Hyperparameters

To ensure a fair comparison we fix hyperparameters ap-
pearing in each of the models, such as number of topics and
convergence criteria. Relative differences between model per-
formances don’t vary significantly depending on the number
of topics chosen, and hence we only report results for models
with 25 topics on the CB-subset and 50 topics on the SM-
blogs. DAP and DAPPER seek 15 and 25 latent personas

TABLE II
OVERALL COMPARISON OF MODELS AFTER A MAXIMUM OF 24 HOURS OF

TRAINING ON CB-SUBSET AND SM-BLOGS CORPORA. PER-WORD
LOG-LIKELIHOODS ARE REPORTED FOR THE TEST CORPUS.

Model CB-subset SM-blogs

DAPPER (full batch) -6.73 -5.76
DAPPER (batch size = 512) -8.19 -6.31
DAP -8.84 -7.50
CDTM -8.81 -8.24
DTM -9.59 -7.93
LDA -9.23 -7.79

TABLE III
HOURS OF TRAINING FOR DAPPER TO OUTPERFORM DAP’S BEST
PERFORMANCE (PWLL = −8.65) ON THE CB-SUBSET TEST SET.

Batch Size Hours to Exceed PWLL = −8.65 Speedup

DAP 40.43 Baseline
256 37.32 1.1x
512 2.21 18.3x
1024 1.97 20.5x
2048 2.13 19.0x
4096 4.11 9.8x
Full Batch 7.18 5.6x

for the CB-subset and SM-blogs corpora, respectively, and fix
their regularization of personas to ρ = 0.2. Because DAPPER
can be trained on stochastic mini-batches we report results for
various mini-batch sizes and full-batch training.

VI. RESULTS

A. Model Performance Comparison

To compare the performance of DAPPER, we train and test
DAPPER along with four similar topic models (LDA, DTM,
CDTM, and DAP) on the quantitative corpora (see Section V).
Each model is trained for a maximum of 24 hours on a single
Haswell E5-2680v3 processor or until training performance
converged — although the DAP model is the only model
not to converge within 24 hours. Performance of each model
is shown in Table II. The DAPPER model shows significant
performance improvements over all competing models due to
its faster method for handling non-conjugate terms. Perfor-
mance for DAPPER is shown for a mini-batch size of 512,
which consistently achieved the best training set performance
after 24 hours, and DAPPER trained with full batch gradients
updates, which achieved the best overall test performance after
24 hours.

Table II highlights three important results: first, the DAP
topic model which is designed for the multi-author, temporal
structure of the CB dataset achieves competitive performance
but clearly suffers by not converging within 24 hours. Second,
the DAPPER model benefits from faster training and achieves
state-of-the-art performance. Third, smaller mini-batches like
512 result in good training performance that converges quickly
but the model does not generalize as well as DAPPER trained
with full batch gradients.

In Table IV we show the performance of the DAPPER
model on the SM-blogs corpus with varying hyperparameter



settings. Specifically, we train models with [100, 75, 50, 25]
topics, [50, 25, 15] latent personas, and mini-batch sizes of
either [256, 512, 1024, 2048] or full gradient training. Full
batch training results in the highest per-word log-likelihoods
on the test set. Varying the number of personas and the number
of topics has a noticable impact on performance (smaller
models tend to do slightly better), however batch size is
the most significant factor in achieving optimal performance.
Smaller models (in terms of number of personas and topics)
tend to do well on the 97,839 document SM-blogs corpus,
however the best models used full batch training with 50 topics
and either 15 or 25 personas.

B. Speed and Efficiency

Test set performance of the DAPPER model varies signif-
icantly depending on the batch size. Shown in Figure 2 is
the performance of the DAP and DAPPER models trained
on the CB-subset corpus and evaluated on the training and
test sets after each epoch (one full pass over the training
corpus). Each epoch of the DAP model takes an average of
6.7 hours to complete, whereas the DAPPER takes roughly 0.2
hours. The right plot (training set performance) shows that all
DAPPER batch sizes begin to converge to a similar value.
The training results (left plot in in Figure 2) show that all
batch sizes converge to a similar value. On the test set (right
plot in in Figure 2), however, larger batch sizes show better
generalization.

Smaller batch sizes improve quickly at first but ultimately
converge to lower PWLLs. The poor performance of small
batch sizes may be due to the mini-batches being too noisy.
Conversely, the larger batch sizes achieve the best perfor-
mances, but improve slowly at first. We summarize this
phenomenon in Table III, which reports how quickly DAPPER
overtakes the optimal test set performance achieved by DAP.
For example, a batch size of 256 converges almost imme-
diately and takes many hours to eventually surpass DAP’s
best test set result. Whereas a batch size of 1024 improves
steadily, and surpasses DAP’s best PWLL in a fraction of the
time. Despite the implication that the high variance of smaller
batch sizes limits performance, we saw no benefit to gradient
smoothing techniques, such as those proposed in [23].

C. Scalability and Qualitative Results

To demonstrate the scalability of the DAPPER model, we
train DAPPER on the full CB corpus. Figure 3 presents
selected personas discovered by a DAPPER model with 100
topics and 50 personas. The model is trained using a 24
processor machine for 94 hours, using a regularization of
ρ = 0.15 and a batch size of 4096. DAPPER’s efficient
inference algorithm scales to massive datasets. Additionally,
with stochastic updates only a constant amount of memory is
required. The personas shown in Figure 3 highlight a variety
of health journeys experienced by CB authors. In Table V we
list the most likely words associated with each topic as well
as the hand-defined labels assigned to each topic.

Scaling DAPPER to the full CB corpus makes it possible
to build larger, richer models — which in turn can discover
a broader range of narratives. Compared to results found by
DAP in [7], DAPPER’s scalability leads to the discovery
of many new topics and personas. Many of the new topics
discovered by DAPPER are unrelated health conditions. For
example, “Friend, Memories,” and “Life and Death” highlight
how authors blend health and life updates in their journaling.
This makes sense, a patient’s condition is often known by
readers or has been previously publicized on the author’s
homepage, and thus the focus of journals is instead on the
patient’s current health state. Moreover, health updates tend
to focus on procedures (like medical tests and tools), or more
general health descriptions like side-effects, infection, pain, or
specific body-parts.

Finally, in Figure 4 we share qualitative results from DAP-
PER on the SM-blogs when trained with full batch gradients,
50 topics, and 15 personas — which was found to perform
best during compared to other hyperparameter settings. Figure
4 shows the top three weighted topics for selected personas,
highlighting how DAPPER discovers groups of authors whose
writing blends unique topics over time. For instance, authors in
Persona 12 tend to talk predominantly about the law and police
in additional to reports and public records. Like a number
of other personas, Persona 12 often references social media,
which is associated with discussing something the author
discovered through social media or the author encouraging
readers to share and comment on their blog.

VII. CONCLUSION

While the structure of DAPPER mimics its predecessor,
we derive a fundamentally new inference algorithm based on
CVI. DAPPER surpasses its predecessor in terms of speed
(35x faster), memory (constant requirements for mini-batch
training), and significantly better likelihoods. DAPPER scales
to massive datasets on commodity hardware, which in turn
allows for deeper insights into topics, and common narratives
hidden in the data. Additionally, we show that Regularized
Variational Inference, which is applied to the DAPPER model
to encourage distrinct personas, integrates with CVI cleanly
because CVI preserves closed form updates. The success of
DAPPER demonstrates that CVI can be applied to complex,
temporal graphical models — eliminating the need to run mul-
tiple optimization procedures on each document, and instead
replace all parameter updates with fast, closed form updates
and stochastic mini-batch training.

While the work presented here demonstrates the DAPPER
topic model’s readiness for industrial-sized problems, there ex-
ist opportunities for further research. For one, our results show
that too noisy of updates resulting from small mini-batches
lead to poor performance. However, as briefly mentioned in
the results, simple attempts to reduce variance through gradient
averaging did not yield performance improvements. Further
research is needed to find gradient updates that improve model
performance in early iterations (as with small to medium batch
sizes), but converge to better PWLLs (as with the larger batch



Fig. 2. Per-word Log-Likelihood performance on the CB training and test sets (larger is better). Each point represents the performance evaluated at the end
of an epoch. Each model was trained for a maximum of 48 hours. DAPPER, which incorporates stochastic CVI updates, achieves better likelihoods and
converges faster than the DAP model trained with variational EM. Performance of the DAPPER model varies by mini-batch size.

Fig. 3. Selected personas learned by the DAPPER model on the full CaringBridge collection of journals. Each plot shows a different persona, and the three
topics most strongly associated with that persona. For clarity, topic labels are hand-defined based on the top words in the topic and journals most associated
with that topic (see Table V). Personas show a variety of health journeys. An appeal to a higher power and prayer are common in many journals, and appear in
personas 0, 29, and 42. Similarly, a deep reflection on life and death, possibly with respect to one’s child appear in 0 and 29. Persona 22 captures a common
experience of caring for an aging parent, beginning with intensive care and possibly ending with a hospice or nursing home. Persona 26 shows alternating
periods of medical tests and intensive care with times of celebration. Personas 42 and 48 are both associated with cancer, but display very different narratives.
Persona 48 includes the pair of topics “Insurance” and “URL Donation” which often appear together, indicating an author struggling with insurance and
medical bills and seeking financial support from friends and family.



TABLE IV
COMPARISON OF DAPPER’S PERFORMANCE ON THE SM-BLOGS TEST CORPUS FOR VARYING NUMBER OF TOPICS, PERSONAS, AND BATCH SIZES. IN

GENERAL, WE FIND THE FULL BATCH TRAINING ULTIMATELY LEADS TO HIGHER PER-WORD LOG-LIKELIHOODS. FOR ADDITIONAL HYPERPARAMETERS,
PERSONAS HAS THE SMALLEST IMPACT ON PERFORMANCE, AND THE NUMBER OF TOPICS HAS NOTICABLE IMPACT. THE BEST THREE MODELS, IN

TERMS OF HIGHEST TEST SET PWLL, ARE HIGHLIGHTED IN BOLD.

Number of Topics Personas Batch Size: 256 512 1024 2048 Full Batch

25 15 -6.46 -6.26 -6.17 -6.16 -5.65
25 25 -6.47 -6.26 -6.21 -6.23 -5.68
25 50 -6.55 -6.35 -6.34 -6.35 -5.71
50 15 -6.47 -6.30 -6.11 -6.16 -4.97
50 25 -6.50 -6.31 -6.30 -6.39 -5.07
50 50 -6.61 -6.38 -6.38 -6.52 -5.47
75 15 -6.87 -6.59 -6.46 -6.53 -5.08
75 25 -6.85 -6.61 -6.55 -6.61 -5.42
75 50 -6.96 -6.80 -6.79 -6.95 -6.00
100 15 -7.14 -6.93 -6.90 -6.98 -5.67
100 25 -7.07 -6.90 -6.91 -7.02 -5.99
100 50 -7.33 -7.17 -7.16 -7.31 -6.72

TABLE V
TOP EIGHT WORDS ASSOCIATED WITH THE MOST PREVALENT TOPICS FOUND BY THE DAPPER MODEL TRAINED ON THE FULL CARINGBRIDGE

DATASET. TOPIC LABELS ARE SELECTED MANUALLY IN ORDER TO AID REFERENCE WITH FIGURE 3. THE WORDS DOLLARS , NAME , AND URL
REFER TO THE RESULT OF TEXT PRE-PROCESSING STEPS FOR CAPTURING COMMON PATTERNS LIKE THE DOLLAR AMOUNTS, ANONYMIZED NAMES, AND

WEBSITE URLS, RESPECTIVELY.

Infection Life & Death Dear God Pain Meds Friend, Memories Feeding Tube Party Medical Test

infection life god cause beautiful tube school dr
fluid live lord pain friend feed birthday test
lung child praise medication celebrate breathe fun scan
remove world peace brain name weight name result
procedure others pray dose card oxygen party drug
chest moment trust increase memory gain aunt mri
pressure fear father level flower rate game ct
antibiotic choose joy steroid dance ventilator kid liver

Therapy, Physical Blood Tranfusion Child Hospice Cancer Treatment URL Donate ICU Insurance

therapy blood play mom cancer url icu provide
physical count daddy dad radiation dollars brain medical
leg cell mommy visit tumor donate monitor information
therapist low girl visitor oncologist money stable disease
arm bone boy hospice surgeon benefit wound insurance
rehab transplant name nursing chemotherapy en neck condition
foot white little facility breast donation doctor regard
pt marrow cute phone biopsy ha unit decision

sizes). Additionally, the DAPPER model requires time to be
discretized in the data, and while the variational Kalman Filter
keeps results from being too sensitive to the window size
chosen, new methods exist capable of discretizing time based
on shifts in topics [24].
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