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Comprehending the dynamical behavior of quantum systems driven by time-varying Hamiltonians is partic-
ularly difficult. Systems with as little as two energy levels are not yet fully understood as the usual methods
including diagonalization of the Hamiltonian do not work in this setting. In fact, since the inception of Magnus’
expansion [Commun. Pure Appl. Math. 7, 649 (1954)], no fundamentally novel mathematical approach capable
of solving the quantum equations of motion with a time-varying Hamiltonian has been devised. We report here
on an entirely different nonperturbative approach, termed path sum, which is always guaranteed to converge,
yields the exact analytical solution in a finite number of steps for finite systems, and is invariant under scale
transformations of the quantum state space. Path sum can be combined with any state-space reduction technique
and can exactly reconstruct the dynamics of a many-body quantum system from the separate, isolated, evolutions
of any chosen collection of its subsystems. As examples of application, we solve analytically for the dynamics
of all two-level systems as well as of a many-body Hamiltonian with a particular emphasis on nuclear magnetic
resonance applications: Bloch-Siegert effect, coherent destruction of tunneling, and N-spin systems involving
the dipolar Hamiltonian and spin diffusion.

DOI: 10.1103/PhysRevResearch.2.023081

I. INTRODUCTION

The unitary evolution operator U(t ′, t ) describing the time
dynamics of quantum systems is defined as the unique solu-
tion of Schrödinger’s equation with quantum Hamiltonian H,
i.e., (h̄ = 1)

−i H(t ′) U(t ′, t ) = d

dt ′ U(t ′, t ), (1)

and such that U(t ′ = t, t ) = Id is the identity matrix at all
times. Evidently, this operator plays a crucial role at the
heart of quantum mechanics, including for spin dynamics in
nuclear magnetic resonance (NMR) [1–3]. As is typically the
case in NMR, the Hamiltonian may be time dependent and
might furthermore not commute with itself at various times,
H(t )H(t ′) − H(t ′)H(t ) �= 0 for t ′ �= t . In this situation, the
evolution operator no longer has a simple calculable form in
terms of the Hamiltonian, e.g., it cannot even be evaluated via
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direct diagonalization of H. Rather, U is formally described
by the action of a time-ordering operator on the Dyson series
representation of the quantum evolution [4], a formulation
which does not permit concrete calculations to be carried out.

As a consequence, only approximate expressions of
U(t ′, t ) are obtained and these are only accurate for short
times. A major breakthrough in the description and under-
standing of solid-state NMR was the inception of average
Hamiltonian theory [5]. This relies exclusively on the Magnus
expansion [6] of U(t ′, t ). However, higher-order terms of
the series remain highly cumbersome to write explicitly so
that practically, only low orders of the expansion are usable.
Most importantly, Magnus expansion suffers from severe and
incurable divergences as already mentioned by Magnus [6]
and Fel’dman [7]. In the more specific case of periodically
time-dependent Hamiltonian, such as those encountered in
magic angle spinning (MAS) experiments, it is well known
that Magnus expansion suffers from a further two limitations,
i.e., the stroboscopic detection of the NMR events, and the
impossibility to take into account more than one characteristic
period.

In the case of periodic Hamiltonian, Floquet theory dic-
tates that the evolution operator takes on the form U(t, 0) =
P(t ) exp(Ft ), with P(t ) a periodic time-dependent matrix
and F a constant matrix, both of which are determined
perturbatively when working analytically [8], or otherwise
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via numerical procedures [9,10]. Floquet formalism was
first used by Shirley [11], who applied it to the case of a
linearly polarized excitation in magnetic resonance and to
give low orders analytical expressions for the Bloch-Siegert
effect [12].

We also mention numerical methods: (i) Fer and Magnus-
Floquet hybrids proposed recently as potential expansions for
the evolution operator [13,14], (ii) Zassenhaus and Suzuki-
Trotter propagator approximations [15–17]. The expansions
presented above all suffer from various drawbacks including
the divergence of the series at long times; the perturbative
nature of the numerical or theoretical approach; the nonavoid-
able propagation of errors at long time; the failure to find exact
solutions even for small, one spin- 1

2 , 2 × 2 Hamiltonians. See
also Appendix A for more literature background.

In this contribution, the path-sum method is applied to
NMR Hamiltonians to determine the corresponding evolu-
tion operators U(t ′, t ). The rigorous underpinnings of this
approach were laid out in [18,19] within the general mathe-
matical framework of systems of coupled linear differential
equations with nonconstant coefficients. So far, no physical
applications of these works have been presented. Conse-
quently, they remained unnoticed outside of a specialized
mathematical community, and their applicability to long-
standing questions pertaining to quantum systems driven by
time-dependent Hamiltonians went completely unrecognized.
It thus appears important to introduce path sum to the physics
community via illustrative examples bearing directly on cur-
rently open problems. Overall, it appears that this work is a
different approach to the problem of simulating quantum dy-
namics induced by time-varying Hamiltonians since Magnus’
1954 seminal results.

Path sum is firmly established on three fundamentally
novel concepts, insofar never applied within the quantum
physics framework: (i) the representation of U(t ′, t ) as the
inverse of an operator with respect to certain ∗ product; (ii)
a mapping between this inverse, and sums of weighted walks
on a graph; and (iii) fundamental results on the algebraic
structure of sets of walks which exactly transform any infinite
sum of weighted walks on any graph into a single branched
continued fraction of finite depth and breadth with finitely
many terms. Taken together, these three results imply that,
for finite-dimensional Hamiltonians, any entry or block of
entries of U(t ′, t ) has an exact, unconditionally convergent
analytical expression that always involves a finite number of
terms. We emphasize that throughout this work, the time t is
and remains a continuous variable, in particular path sum does
not rely on time discretization. As a corollary, path sum yields
a nonperturbative formulation of U(t ′, t ), as will be illustrated
below with the Bloch-Siegert effect. Further properties of
path sums ensure its scalability to multispin systems, for
example, allowing it to recover the exact dynamics of an entire
system from the separate, isolated, evolutions of any chosen
collection of its subsystems. In its general form, path sum
is best understood as a method to exactly and analytically
solve systems of coupled linear differential equations with
nonconstant coefficients.

This paper is structured as follows. We first present the
mathematical background of [18] culminating in the path-sum
formulation of quantum dynamics. In a second part, we detail

applications in connection with general quantum theory and
then more specifically with NMR. The first one provides the
general solution of Schrödinger’s equation to all 2 × 2 time-
dependent Hamiltonians, a problem of current and central
importance to quantum computing. As an example of appli-
cation, we solve for the celebrated Bloch-Siegert dynamics
of a linearly polarized radio-frequency (rf) excitation with no
approximation at all. The validity of the path-sum analytical
solution is demonstrated over the entire driving range, and
physical interpretations for the various terms of the solution
are provided.

We then show that path sum is invariant against scale
transformations in the quantum state space, making it scalable
to large quantum systems. Thanks to this, we consider N
like spins coupled by the homonuclear dipolar coupling and
spin diffusion under MAS. The effects of MAS frequency
and chemical shift offsets are illustrated analytically on an
organometallic molecule exhibiting 42 protons.

II. QUANTUM EVOLUTION AND WALKS ON GRAPHS

Quantum systems with discrete degrees of freedom such
as spin systems obey a discrete analog to Feynman’s path
integrals. To illustrate this, define one history of a quantum
system as a temporal succession of orthogonal quantum states
h : |s1〉 �→ |s2〉 �→ |s3〉 · · · , each transition |si〉 �→ |si+1〉 hap-
pening at a specified time ti. Overall, the history h acquires
a complex weight which is the product of the weights of all
the transitions in the history. The weight of an individual
transition |si〉 �→ |si+1〉 is dictated by the Hamiltonian as
〈si+1|H(ti)|si〉.

A natural representation of such discrete histories is as
walks on a graph. To see this, let Gt be the graph such that each
vertex vi corresponds to one member |si〉 of an orthonormal
basis for the entire state space and give the directed edge
vi �→ v j the time-dependent weight 〈s j |H(t )|si〉. In this pic-
ture, a system history as defined earlier is a walk on Gt and
H(t ) is the adjacency matrix of Gt . Because the Hamiltonian
is time dependent, the graph itself is dynamical [see Figs. 1(a)
and 1(b) for an example].

Now, just as for Feynman’s path integrals, the exact evo-
lution of the system is obtained from the superposition of all
its possible histories. Equivalently, every element 〈s j |U(t )|si〉
of the evolution operator U(t ) is given by the sum over all
walks from vi to v j on Gt , including all possible jumping
times for each transition between vertices. While individual
walks are the discrete counterpart of Feynman diagrams, their
algebraic structure is much better understood. Indeed, walks
essentially behave as the natural integers [19], in particular
they can be uniquely factored into products of prime walks:
the simple cycles (C) and paths (P) of the graph which do
not visit any vertex more than once. Since, by nesting simple
cycles and paths into one another there is a unique way of
reconstructing any walk, summing over all walks is achieved
upon summing over all possible nestings of simple cycles and
paths. For example, in a graph with a single simple cycle c1,
all closed walks from a vertex α to itself are of the form cn

1,
i.e., c1 repeated n times. Therefore, the sum of all such walks
is formally

∑
n cn

1 = 1/(1 − c1) (Fig. 2). In case another cycle
c2 is accessible to a walker while walking along c1, then the
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FIG. 1. The path-sum continued fraction for the exact calculation of the entries of U(t ′, t ) is always of finite depth and breadth.
(a) Illustrative example of a 2 × 2 time-dependent Hamiltonian H(t ), involved for instance in spin dynamics. (b) Dynamical graph Gt = K2

with adjacency matrix H(t ). Circles correspond to self-loops [diagonal terms of H(t )] and directed edges to off-diagonal terms. The associated
weights are the entries of H(t ). (c) Evolution operator U(t ′, t ) as seen by path sum, with integrals of the GK2,ii quantities. (d) Step-by-step
evaluation of GK2,11(t ′, t ) (dashed rectangle) showing the finite character of the continued fraction. The sum is performed on the simple cycles
(C) of lengths 1 and 2 (these are indicated in red and other edges are indicated in dashed gray lines). At each step of the continued fraction,
a vertex is removed (gray cross) and we work on subgraphs of less and less complexity. The calculation of entry U21 from GK2,11 is also
illustrated; it includes a single term with two ∗ products as the graph has a single simple path (P) from 2 to 1 (red arrow). (e) A pictorial
representation of the “descending ladder principle.” The calculation starts at the top of the ladder with each ∗ inverse leading to the step below
and ending in all cases on the ground. For 2 × 2 Hamiltonians there are only two steps on the ladder, i.e., all continued fractions stop at depth
2. For all 3 × 3 and 4 × 4 Hamiltonians, the continued fractions stop at depth 3 and 4, respectively.

sum of all walks will take on the form 1/[1 − c1/(1 − c2)].
If, instead, both c1 and c2 are immediately accessible from the
starting point α, the sum of all walks will be 1/(1 − c1 − c2).
Finally, if two cycles c2 and c3 with different starting points
are both accessible while walking along c1, then the sum of
all walks will be 1/[1 − c1/(1 − c2) × 1/(1 − c3)]. There is
a unique way to combine these constructions to describe the
sum of all walks with chosen starting and ending points on any
graph. For example, the walks from α to itself on the graph of
Fig. 2 formally sum up to∑

w walk: α→α

w = 1

1 − c1
1

1−c2

1
1−c3

1
1−c4

.

This procedure yields any 〈s j |U(t )|si〉 as branched continued
fractions comprising only the weights of the simple cycles and
paths of the graph. See Figs. 1(c)–1(e). Because the graph
is finite, there are finitely many such cycles and paths and
the fraction is finite in both depth and breadth. It is thus

c
c2

c3

c4

α
1

FIG. 2. Graph illustrating the use of path sum.

unconditionally convergent when calculated numerically. The
same principles apply regardless of whether the Hamiltonian
depends on time or not, in the former case, however, the
theory relies on two-times functions f (t ′, t ) that multiply via
a noncommutative convolutionlike product

( f ∗ g)(t ′, t ) :=
∫ t ′

t
f (t ′, τ )g(τ, t ) dτ. (2)

This means that for general time-dependent Hamiltonians
the continued fraction formulation for U(t ) involves products
and resolvent with respect to the ∗ multiplication and that
the order of traversal of the edges along the cycles must be
respected. The ∗ resolvents such as (1∗ − f )∗−1 with 1∗ ≡
δ(t ′ − t ) the Dirac delta distribution are solutions to linear
Volterra equations of the second kind. They concentrate most
of the analytical complexity of the problem, rarely having a
closed-form expression in terms of algebraic mathematical
functions. Yet, such ∗ resolvent can be always represented
analytically by the superexponentially convergent Neumann
expansion [18] 1∗ + ∑

n>0 f ∗n.

III. TWO-LEVEL SYSTEMS WITH TIME-DEPENDENT
HAMILTONIANS

A. General solution

Determining the dynamics of two-level systems driven by
time-dependent Hamiltonians is still an open problem, which
continues to be a very active area of research [8,20–29]. This
is because of the experimental relevance of such systems, their
role as theoretical models, and the need to master the internal
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evolution of qubits undergoing quantum gates [27,30]. The
most general two-level Hamiltonian is

H(t ) =
(

h↑(t ) h↑↓(t )

h↓↑(t ) h↓(t )

)
. (3)

In this expression we only require that h↓↑(t ), h↑↓(t ), h↑(t ),
and h↓(t ) be bounded functions of time over the interval [t, t ′]
of interest. So far, no analytical expression has been found
for the corresponding evolution operator U(t ) defined as the
unique solution of Eq. (1) with the Hamiltonian of Eq. (3).
It is known that particular choices for H(t ) lead to evolution
operators that involve higher transcendental functions [21,31].
Thus, the best possible result for the general U(t ) is that each
of its entries be described as solving a defining equation,
and that an analytical mean of generating this solution be
presented.

This is exactly what path sum achieves for all time-
dependent two-level systems. Following the process of Fig. 1
we get

U(t ′, t )↑↑ =
∫ t ′

t
G↑(τ, t )dτ, U(t ′, t )↓↓ =

∫ t ′

t
G↓(τ, t )dτ,

U(t ′, t )↓↑ = −i
∫ t ′

t

∫ τ0

t

∫ τ0

τ1

(
δ(τ0 − τ2) − ih↓(τ0) e−i

∫ τ0
τ2

h↓(τ3 )dτ3
)

× h↓↑(τ2)G↑(τ1, t ) dτ2 dτ1 dτ0,

U(t ′, t )↑↓ = −i
∫ t ′

t

∫ τ0

t

∫ τ0

τ1

(
δ(τ0 − τ2) − ih↑(τ0) e−i

∫ τ0
τ2

h↑(τ3 )dτ3
)

× h↑↓(τ2)G↓(τ1, t ) dτ2 dτ1 dτ0, (4)

while the “usual” U(t ) is actually U(t, 0). The two-times
Green’s functions G↑ := (1∗ − K↑)∗−1 and G↓ := (1∗ −
K↓)∗−1 solve linear Volterra equations of the second kind, e.g.,
for G↑,

G↑(t ′, t ) = δ(t ′, t ) +
∫ t ′

t
K↑(t ′, τ ) G↑(τ, t ) dτ, (5)

and similarly for G↓. The kernel K↑ of the above equation is

K↑(t ′, t ) = −ih↑(t ′)

−
∫ t ′

t

∫ t ′

τ1

h↑↓(t ′)
(
δ(τ2 − τ1)−ih↓(τ2) e−i

∫ τ2
τ1

h↓(τ3 )dτ3
)

× h↓↑(τ1)dτ2dτ1, (6)

while kernel K↓ entering G↓ is obtained upon replacing up
arrows by down arrows and vice versa in Eq. (6).

Should a closed-form expression for the solution of the
Volterra equation be out of reach, e.g., because it is a tran-
scendental function as is typically the case [21], the solution
is at least analytically available from its Neumann expansion;
in the case Eq. (5) it is G↑ = 1∗ + ∑

n>0 K∗n
↑ . If every entry

of the Hamiltonian is a bounded function of time, this series
representation converges superexponentially and uniformly
[18]. Alternatively, Volterra equations can also be solved
numerically [32].

B. Bloch-Siegert dynamics

1. Background

The Bloch-Siegert Hamiltonian, here denoted HBS(t ), is
possibly the simplest model to exhibit nontrivial physical ef-
fects due to time dependencies in the driving radio-frequency
fields. The detailed study of these effects is of paramount
importance in the broad field of quantum computing, as they
have a deleterious impact on qubit driving and stored quantum
information [33]. The Hamiltonian reads as

HBS(t ) =
(

ω0/2 2β cos(ωt )

2β cos(ωt ) −ω0/2

)
. (7)

In these expressions, the coupling parameter β is the ampli-
tude of the radio-frequency field.

Continuing research over the last decades has produced
perturbative expressions for the Bloch-Siegert shifts and evo-
lution operator, starting from Shirley’s seminal work [11].
Beyond the rotating-wave approximation, which omits the
field’s counter-rotating terms and is limited to near-resonant
ω ∼ ω0 ultraweak couplings β/ω 
 1, one of the most suc-
cessful approaches used a combination of Floquet formalism
and almost degenerate perturbation theory [34]. Still, this
could only approximate the temporal dynamics in the vicinity
of resonance in the weak-coupling regime β/ω � 0.6.

In the case of quantum systems driven by large-amplitude
fields β/ω > 1 to β/ω � 1 [23], these approaches are no
longer sufficient. Yet, such systems are of current fundamental
interest, as short associated electromagnetic pulses can manip-
ulate qubits on a large bandwidth. Recently, several methods
have thus been designed to overcome the limitations of the
theoretical treatment [28,35–37]. These are based on vari-
ous unitary transformations leading to approximate analytical
expressions over an extended driving range. Although these
methods are clearly beyond perturbation theory and what
Floquet formalism can realistically achieve, they still neglect
terms corresponding to multiphoton transitions. Although
not dominant, these terms lead to real features in the true
Bloch-Siegert dynamics that are as yet unaccounted for [35].
These are visible in qubit driving and time-optimal quantum
control experiments, for which determining the Bloch-Siegert
dynamics exactly is thus still full of promises [38]. In spite
of the theoretical efforts, a nonperturbative truly analytical
solution at all orders over the entire coupling range, on and
off resonance, is ultimately lacking.

2. Path-sum solution

Although this is not required by the path-sum method,
we pass in the interaction picture to alleviate the notation,
yielding the Bloch-Siegert Hamiltonian as

HBS(t ) = 2β cos(ωt ) cos(ω0t )σx − 2β cos(ωt ) sin(ω0t )σy.

(8)

Since in the rotating frame, h↑(t ) = h↓(t ) = 0, the graph
K2 of Fig. 1 has no self-loops and Eqs. (4) and (5) thus
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give

U(t )↑↑ =
∫ t

0
G↑(τ, 0)dτ, U(t )↓↓ =

∫ t

0
G↓(τ, 0)dτ,

U(t )↓↑ = −2iβ
∫ t

0

∫ τ1

0
cos(ωτ1)eiω0τ1 G↑(τ0, 0)dτ0dτ1,

U(t )↑↓ = −2iβ
∫ t

0

∫ τ1

0
cos(ωτ1)e−iω0τ1 G↓(τ0, 0)dτ0dτ1,

(9)

while G↑(t ′, t ) = (1∗ − K↑)∗−1, G↓ = (1∗ − K↓)∗−1 with

K↑(t ′, t ) = 4β2

ω2 − ω2
0

cos(ωt ′)(k↑(t )e−iω0(t ′−t ) − k↑(t ′)),

K↓(t ′, t ) = iβ2

ω2 − ω2
0

(1 + e−2iωt ′
)(k↓(t ′) − k↓(t )ei(ω+ω0 )(t ′−t ) ),

where k↑(t ) = iω0 cos(ωt ) + ω sin(ωt ) and k↓(t ) =
e2iωt (ω + ω0) − (ω − ω0). In spite of the apparent
divergences in the resonant case ω0 → ω, the kernels K↑
and K↓ are actually well defined in this limit where they
simplify to

K↑(t ′, t ) = β2

ω
(ie2iωt ′ − ie2iωt − 2ω(t ′ − t ))e−iωt ′

cos(ωt ′)

and

K↓(t ′, t ) = β2

ω
(−i + ie2i(t ′−t )ω + 2ω(t − t ′)e2iωt ′

)

× e−iωt ′
cos(ωt ′).

The peculiar mathematical nature of the resonant limit ω0→ω

is responsible for the appearance of the term 2ω(t ′ − t ) which
is proportional to time in the kernel.

The quantity G↑ as obtained from K↑ has no closed
form, rather it is a hitherto unknown higher special function.
It is nonetheless analytically available thanks to the Neu-
mann expansion G↑ = δ + ∑

k K∗k
↑ = δ + K↑ + K↑ ∗ K↑ +

· · · , which is unconditionally convergent [18]. This observa-
tion holds for all N × N time-dependent Hamiltonians treated
by path sum.

The Neumann expansion is well suited to analytical com-
putations: observe that at order n of this series, G(n)

↑ = δ +∑n
k=1 K∗k is simply given as

G(n)
↑ (t, 0) =

∫ t

0
K↑(t, τ )G(n−1)

↑ (τ, 0)dτ.

Equivalently, it is sufficient to integrate the last term of the
series at order n − 1, namely, K∗n−1

↑ , to get G(n)
↑ :

G(n)
↑ (t, 0) =

∫ t

0
K↑(t, τ )K∗n−1

↑ (τ, 0)dτ + G(n−1)(t, 0).

These integrals are all analytically available and easily acces-
sible: we reached order 13 in a minute on an ordinary laptop
treating all parameters as formal variables [39]. Vastly faster
computations are achieved upon assigning parameter values
before performing the integrals. These calculations give (here

displaying the first two orders on resonance ω0 = ω)

G↑(t, 0) = δ(t ) − β2

ω
e−iωt cos(ωt )(−ie2iωt + 2ωt + i)

+ β4

24ω3
e−3iωt cos(ωt )

× (3ie6iωt + 6e4iωt (−2iω2t2 + 2ωt + i)

+ e2iωt (8ω3t3 + 12iω2t2 + 12ωt − 15i)

− 12ωt + 6i) + · · · .

Of particular interest for qubit-driving experiments is the
evolution of the transition probability P↑�→↓(t ) := |U↓↑(t )|2
between the two levels [30,35,40]. This quantity is usually
found perturbatively using Floquet theory [11] as Magnus
series again suffer from divergences [41]. It is here easily
accessible, U↓↑ being given by Eq. (9). We find that P↑→↓(t )
takes on the form of a Fourier-type series

P↑→↓(t ) =
∞∑

k=0

sin(2kωt )S2k (β, t ) + cos(2kωt )C2k (β, t ),

(10)

with S2k and C2k functions of β and t , a representation of
which is analytically available (see Appendix B). This form
of P↑→↓(t ) is due to the path-sum integral of Eq. (9), which
resembles a Fourier transform. We emphasize that this is not
a general feature of path sum nor of 2 × 2 Hamiltonians,
but solely of the present Hamiltonian with linearly polarized
driving.

3. Visualizing the solution

Calculating G↑ up to a finite order n as indicated earlier
G↑ ≡ G(n)

↑ yields an expression P(n)
↑→↓(t ) which includes all

terms of Eq. (10) up to sin[(4n + 2)ωt] and cos[(4n + 2)ωt],
while S(n)

2k�4n+2 and C(n)
2k�4n+2 are polynomials in β and t

including up to β4n+2 and t4n+3−2k and t4n+2−2k , respec-
tively. Finally, we found analytically that at all orders n � 0,
P(n)

↑→↓(0) = 0 as expected, although this is nontrivial to check.

For t large enough, P(n)
↑→↓(t ) may diverge: truncated path sums

are not necessarily unitary.
We plot on Fig. 3 the transition probabilities P(3)

↑→↓(t ),

P(7)
↑→↓(t ), and P(13)

↑→↓(t ) as calculated analytically from the
third, seventh, and thirteenth orders of the Neumann ex-
pansion of the exact path-sum solution from the weak- to
the ultrastrong-coupling regimes and always in the resonant
case ω0 = ω. Here this situation was chosen because (i) it is
mathematically the most difficult to approach exactly owing
to the peculiar form of K↑ which slows down convergence;
and (ii) it yields “compact” expressions more suitable for a
“concise” presentation (Appendix B). Higher-order terms of
the Neumann expansion are readily and analytically available,
enabling precise evaluation of P↑�→↓(t ) up to any desired target
time. Recall that, as discussed above, P(13)

↑→↓(t ) is actually a
single analytical formula involving all even frequencies’ sines
and cosines up to sin(54ωt ) and cos(54ωt ) with coefficients
up to β54. We stress here that the Neumann expansion of
the path-sum solution is profoundly different from a Taylor
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FIG. 3. Bloch-Siegert dynamics: resonant ω0 = ω transition probability P↑�→↓(t ) as a function of time in the weak- to ultrastrong-coupling
regimes, with (a) β/ω = 0.5, (b) β/ω = 0.7, (c) β/ω = 0.9, (d) β/ω = 1.2, (e) β/ω = 1.6, (f) β/ω = 2, (g) β/ω = 3.5, (h) β/ω = 5, and
(i) β/ω = 15. Shown here are the numerical solution (dashed black line) and the fully analytical formulas for the Neumann expansions of the
exact path-sum solution P(3)

↑→↓(t ) (dotted red line), P(7)
↑→↓(t ) (dotted blue line), and P(13)

↑→↓(t ) (solid blue line) (see Appendix B). As seen here,
each of these formulas are equally valid throughout the coupling regimes, from weak to ultrastrong. Whenever longer times are desired, higher
orders of the path-sum solution are readily available analytically. Also shown in (a) and (b) are the second-order Floquet theory [11] (solid
green line and green points). The Floquet result is not shown in subsequent figures, where it is wildly inaccurate. Parameters: two-level system
driven by the Bloch-Siegert Hamiltonian of Eq. (8) [11,12] starting in the |↑〉 state at t = 0.

series representation, as is, e.g., manifest even at order 0 [see
Eq. (12) below and Appendix B].

The fact that the same expression for P(n)
↑�→↓(t ) is an equally

good approximation to the exact transition probability in all
parameter regimes, i.e., from β/ω0 
 1 to β/ω0 � 1 is a
signature that the path-sum approach is nonperturbative. For
the same reason, we observe that P(n)

↑�→↓(t ) captures roughly the
same number of spin flips in time regardless of β: empirically
order 3 reproduces 1–2 flips, order 7 gets 2–3 flips, order
13 captures 4–5. At the opposite, Floquet theory, which is
inherently perturbative, only works for β/ω 
 1 [11], while
the diverging Magnus series is limited to very short times.

In Fig. 4 we show the off-resonance ω0 �= ω dynamics of
the analytical transition probability P(4)

↑→↓(t ) obtained from
the fourth-order Neumann expansion. Irrespectively of the
coupling strength, at any fixed finite order n, P(n)

↑→↓(t ) is
reliable for longer times as we get farther from resonance,
for which convergence of the Neumann expansion is slowed
by the presence of a linear term in K↑. Once again, this is
purely a feature of the Bloch-Siegert Hamiltonian and not of
the path-sum approach.

4. Physical insights

Now that we have analytical formulas for the transition
probability without the rotating-wave approximation, we may
gain insights into the Bloch-Siegert dynamics. For example,
we can calculate the spin-flip duration ts f , i.e., the time at
which P↑→↓(t ) first peaks close to 1 when on resonance ω0 =
ω. Analysis of Eq. (10) with, e.g., the analytic expressions of
Appendix B show that C0(β, t ) is the dominant contribution
to ts f in the weak-coupling regimes β/ω � 1

2 , while the C2k>0

and S2k functions describe further oscillations smaller by a
factor of at least β2. Extracting ts f from C0 leads to

ts f = 1

2
√

2

√
12

β2
− 15

ω2
+

√
3

β4ω2

√
91β8 − 88β6ω2 + 16β4ω4

= 1

β

√
1

2
(3 +

√
3) − β

8ω2

√
1

2
(129 + 67

√
3)

− β3

128ω4

√
1

2
(16131 + 5545

√
3) + O(β4). (11)

023081-6



DYNAMICS OF QUANTUM SYSTEMS DRIVEN BY TIME- … PHYSICAL REVIEW RESEARCH 2, 023081 (2020)

FIG. 4. Bloch-Siegert dynamics: off-resonance ω0 �= ω transition probability P↑�→↓(t ) as a function of time in the weak- to strong-coupling
regimes, with (a) ω0 = 2ω, β/ω = 0.7, (b) ω0 = 2ω, β/ω = 1.6, (c) ω0 = 2ω, β/ω = 3.5, (d) ω0 = 8ω, β/ω = 0.7, (e) ω0 = 8ω, β/ω = 1.6,
and (f) ω0 = 8ω, β/ω = 3.5. Shown here are the numerical solution (dashed black line) and the fully analytical formula for the Neumann
expansion of the exact path-sum solution at the fourth order P(4)

↑→↓(t ) (solid blue line). Parameters: two-level system driven by the Bloch-Siegert
Hamiltonian of Eq. (8) [11,12] starting in the |↑〉 state at t = 0.

This is remarkably close to the results obtain from nu-
merical calculations (see Fig. 5). Mathematically, Eq. (11)
assumes β/ω < 2

√
1

91 (11 − √
30) � 0.49. Beyond this point,

the above estimate yields a complex number as the real
solution switches to another root of the derivative of C0.

Even better analytical formulas for ts f with domains of va-
lidity that go much further into the stronger-coupling regimes

FIG. 5. Bloch-Siegert dynamics: resonant ω0 = ω spin-flip dura-
tion ts f , at which P↑→↓(t ) first peaks at or close to 1, as a function
of the coupling strength β. Shown here are the exact formula of
Eq. (11) (solid red line) and fully numerical results (blue dots).
Discontinuities in the numerical results are due to small oscillations
of P↑→↓(t ), which make ts f undergo discrete jumps as one wins over
the others. These are well captured analytically by a more advanced
analysis including the S2k and C2k>0 functions. Insets: two examples
of time evolution of P↑→↓(t ), the straight red lines are the predictions
of Eq. (11).

and accurately reflect its discrete jumps are immediately avail-
able, however, they cannot be expressed in terms of radicals
anymore and are not reproduced here owing to length con-
cerns. Also of interest are the changes affecting the dynamics
of the transition probability P↑→↓(t ) as β/ω is increased from
the weak to strong regimes. For example, in the ultraweak-
coupling regime β/ω 
 1, the path-sum solution reproduces
small oscillations around the Floquet calculations which are
present in the numerical solution (see Fig. 6). In fact, these
small oscillations are already captured by the order 0 of the
Neumann expansion of the path-sum solution (!), for which

FIG. 6. Bloch-Siegert dynamics: resonant ω0 = ω transition
probability P↑→↓(t ) in the ultraweak-coupling regime β/ω = 0.05
for short times. Shown here are the order-0 formula P(0)

↑→↓(t ) of
Eq. (12) (solid blue line), second-order Floquet theory [11] (solid
green line and green points), and the numerical solution (dashed
black line).
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G(0)
↑ = δ(t ′, t ) and

P(0)
↑→↓(t ) = β2t

ω
sin(2ωt ) + β2

2ω2
+ β2t2 − β2

2ω2
cos(2ωt ).

(12)

This shows that the oscillations missed by earlier treatments
have a linearly growing amplitude at short times on the order
of β2t , originate purely from the counter-rotating terms, and
never truly vanish as long as β �= 0. The diverging parabola
in β2t2 reflects the humble beginning of the Rabi oscillation,
unsurprisingly missed by order 0. As β is increased, the small
oscillations compete with the background Rabi oscillations,
thereby giving rise to intricate intermediary effects seen in
Fig. 3. This competition also explains why P↑→↓(t ) does not
always peak at 1, as it results from a complicated superposi-
tion of oscillatory terms, in agreement with Eq. (10).

We conclude the discussion on physical insights into the
Bloch-Siegert dynamics by studying coherent destruction of
tunneling (CDT) [10] in the strong coupling β/ω0 � 1. This
situation is well suited to the use of a general property of
Neumann series that allows for arbitrary accelerations of their
convergence in the presence of dominant terms [42]. Note
that this procedure is always available when expanding path-
sum solutions, and is thus not specific to the Bloch-Siegert
Hamiltonian.

Concretely, we get a closed-form expression for the evo-
lution operator U(t ) at the zeroth order of the accelerated
Neumann expansion of the path-sum solution that leads to
perfect or near-perfect fits for any physical quantity of interest
both on and off CDT resonances. See Appendix C for details
of the calculations. For example, the return probability to the
|↑〉 state is found to be

P(acc,0)
↑→↑ (t ) =

∣∣∣∣cos

(
2β

ω
sin(ωt )

)
+e− 1

2 itω0 −1+
∫ t

0
iω0e− 1

2 iτω0

× sin2

(
β

ω
[sin(ωτ ) − sin(ωt )]

)
dτ

∣∣∣∣
2

. (13)

This formula becomes exact when either ω0 → 0 or β → 0,
as expected from the acceleration procedure. In general, it
provides excellent approximations when β/ω0 is large [see
Figs. 7(a)–7(c)]. The remaining integral in P(acc,0)

↑→↑ (t ) has no
closed form but can be evaluated explicitly via an infinite
series of sines and cosines with Bessel coefficients (Appendix
C). This expansion also indicates that the time average of the
return probability is

〈P(acc,0)
↑→↑ (t )〉t = 1

2

[
1 + J0

(
4β

ω

)]
, (14)

which is exactly 1
2 on CDT resonances where J0(4β/ω) = 0,

consistent with the current understanding of CDT. To be more
precise, let us study CDT directly by considering the states
|ψ±〉 = 1√

2
(|↑〉 ± |↓〉). The probability of transition between

these states, denoted Pψ−→ψ+(t ), is found in the situation

where ω0 
 (β/ω)1/2, as (Appendix C)

P(acc,0)
ψ−→ψ+ (t ) = ω2

0

4

[∫ t

0
sin

(
4β

ω
[sin(ωt ) − sin(ωτ )]

)
dτ

]2

+ ω2
0

4

[∫ t

0
cos

(
4β

ω
[sin(ωt ) − sin(ωτ )]

)
dτ

]2

.

(15)

This expression flawlessly reproduces the numerical solution
in its finest details, details which had hitherto not been cap-
tured with such accuracy [35]. Minimizing the time average
of this formula confirms that the CDT condition is exactly
J0(4β/ω) = 0, i.e., this is not changed by the nonperturbative
corrections. Mathematically, the reason for this is simple: the
J0 function is quadratically dominant over the other terms of
the Bessel-series expansion of Eq. (15) because it stems from
the sole term of that expansion which does not depend on τ in
both integrals.

While these results are as expected from the standard
theory of CDT, it not so for all physical quantities. Consider,
for example, the expectation value of σx for a system initially
prepared in the |↑〉 state. As observed by [43], 〈σx〉 presents
anomalous fluctuations on CDT resonances, a fact that was
interpreted as a hallmark of and resulting from a crossing Flo-
quet state. This interpretation is in fact not correct. Indeed, at
order 0 of the accelerated expansion of the path-sum solution
we get (Appendix C) when ω0 
 (β/ω)1/2,

〈σx〉(acc,0) = ω0

∫ t

0
sin

(
4β

ω
sin(ωτ )

)
dτ. (16)

This simple expression fits once again absolutely flaw-
lessly with the numerically computed expectation 〈σx〉 [see
Figs. 7(d)–7(f)]. Now evaluating the integral remaining in
Eq. (16) via Bessel functions shows that the time average of
〈σx〉 is

〈〈σx〉(acc,0)〉t = 2ω0

ω

∞∑
n=0

J2n+1

(
4β

ω

)
1

2n + 1
,

whose extrema are reached whenever

1 − π

2
H1

(
4β

ω

)
= 0, (17)

with H1(. . .) the first Struve function. Remarkably, the dif-
ference 
n between the location of the nth zero of J0(. . .)
and of the nth zero of Eq. (17) tends asymptotically to 0 as

n ∼ 1/(2πn) for n � 1. This asymptotics develops quite
quickly: while 
1 � 0.4, already 
2 � 0.03. The fact that the
anomalous fluctuations in the expectation value of σx peak at
the zeros of Eq. (17) rather than on CDT resonances is con-
firmed by the numerical simulations. This analysis indicates
that while 〈σx〉 does indeed seem to fluctuate the most on CDT
resonances, it is in fact not true and the phenomenon driving
these fluctuations is subtly different from that behind CDT.

These results demonstrate the power of various expansions
of the path-sum solution, enabling very precise and hith-
erto unequaled analytical analysis of subtle phenomena, e.g.,
Pψ−→ψ+ (t ) is on the order of 10−5 on CDT resonances and is
fitted to within machine precision by the formulas provided.
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FIG. 7. Coherent destruction of tunneling. Top line: return probability P↑→↑(t ) in the ultrastrong-coupling regime β/ω0 = 30 for (a) ω =
4ω0; (b) ω = 20ω0; and (c) ω = 100ω0. Shown here are P(acc,0)

↑→↑ (t ) as given by Eq. (13) (solid blue line), the numerical solution (dashed black
line), and its predicted time-average equation (14) (solid red straight line, indistinguishable from the numerically computed time average).
Middle line: transition probability Pψ−→ψ+ (t ) for a system starting in the |ψ−〉 state at t = 0 with (d) 4β/ω = 2.404 . . ., first zero of J0(4β/ω);
(e) 4β/ = 11.79 . . ., fourth zero of J0(4β/ω); and (f) 4β/ω = 27.49 . . ., ninth zero of J0(4β/ω). Note the changes of scales. Shown here are
the formula of Eq. (15) (solid blue line) and the numerical solution (dashed black line), these two being completely indistinguishable. Bottom
line: far off-resonance ω = 100ω0 expectation value of σx for a system starting in the |↑〉 state at t = 0 with (g) 4β/ω = 2.404 . . ., first zero
of J0(4β/ω); (h) 4β/ω = 11.79 . . ., fourth zero of J0(4β/ω); and (i) 4β/ω = 27.49 . . ., ninth zero of J0(4β/ω). Note the changes of scales in
〈σx〉. Shown here are the formula of Eq. (16) (solid blue line) and the numerical solution (dashed black line), these two being indistinguishable.

This is not because of special features of the Bloch-Siegert
Hamiltonian. Rather, the path-sum approach is generally valid
for any driving field, as showed by the general solution pro-
vided in Sec. III A. This same solution is valid for dissipative
non-Hermitian operators [44], and will always be amenable
to analytic Neumann and accelerated Neumann expansions,
should it lack a closed form.

IV. FEW- TO MANY-BODY HAMILTONIANS

A. Few-body, (N>2 )-level Hamiltonians

The path-sum approach is by no means limited to two-level
systems: e.g., solutions to all time-dependent 3 × 3 and 4 × 4
Hamiltonians are readily available and will be presented in
a future work. The number of steps in the exact solution is
always finite and the terms involved get progressively simpler
because of the “descending ladder principle” [see Fig. 1(e)].

For many-body systems N � 1, a further problem appears,
namely, the exponential growth in the size of the Hamiltonian.

While path sum does not, in itself, solve the challenges posed
by this well-known scaling, it offers tools to manage it via its
scale-invariance properties, which we now briefly present as
we will use it to treat a many-body molecular system from
NMR.

B. Scale invariance

Path sums stem from formal resummations of families of
walks. This principle does not depend on what those walks
represent. In particular, it remains unchanged by the nature
of the evolving system. To exploit this observation, consider
a more general type of system histories made of tempo-
ral successions of orthogonal vector spaces h̃ : V1 �→ V2 �→
V3 . . . . Physically, such histories can describe an evolving
subsystem, such as a group of protons in a large molecule.
Mathematically, they correspond to walks on a coarse-grained
representation of the quantum state space, a subgraph G̃t of
Gt . To see this, take a complete family of orthogonal spaces,
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FIG. 8. Analytical spin diffusion on a cationic tin oxo cluster with N = 42 protons (shown in inset) submitted to the time-dependent
high-field dipolar Hamiltonian under MAS (rotor angular velocity ωr = 2π × 10 kHz). The figure shows the time evolution of the probability
|〈ψ (t )| ↑z,i〉|2 of finding a spin up along z on proton i for three protons: a hydroxyl proton H1 (solid red line), on which the excitation starts; a
nearby hydroxyl proton H2 (dashed blue line); and a methyl proton H3 (dotted-dashed black line).

i.e.,
⊕

i=1 Vi = V , where V is the entire quantum state space.
To each Vi associate a vertex vi and give the edge vi �→ v j

the time-dependent weight PVj · H(t ) · PVi . Here, PVk is the
projector onto Vk . Observe then that these edge weights are
generally non-Abelian. Yet, because path sums fundamentally
retain the order and time of the transitions in histories when
performing resummations of walks, this setup poses no fur-
ther difficulty. It follows that the submatrix PVj · U(t ′, t ) · PVi

of the evolution operator is again given as a matrix-valued
branched continued fraction of finite depth and breadth. While
the shape of this fraction depends on the particular choice of
vector spaces, its existence and convergence properties do not.
If the vector spaces are chosen so that the shape of the fraction
itself is unchanged, and such a choice is always possible,
then the path-sum formulation is truly invariant under scale
changes in the quantum state space.

An immediate consequence of scale invariance is that there
is always a path-sum calculation rigorously relating the global
evolution of a system to that of any ensemble of its subsys-
tems, such as clusters of spins in a large molecule (see below).
In this scheme, we can evolve each subsystem separately from
one another using any preferred method (Magnus, Floquet,
path sum, Zassenhaus for short times, etc.), only to then
combine these isolated evolutions exactly via a path sum to
generate the true system evolution.

While thorough exploitation of the scale-invariance prop-
erty is beyond the scope of this work, we demonstrate below
how it can be used to tackle many-body Hamiltonians, with an
emphasis on examples from NMR, i.e., 42 spins coupled by
the homonuclear dipolar interaction and spin diffusion under
MAS.

V. LARGE MOLECULE IN NMR

We now turn to the general problem of determining the
temporal dynamics of spin diffusion as effected by the time-

dependent high-field dipolar Hamiltonian for N homonuclear
spins:

HII =
∑
i, j

1

2
ωi j (t )(3IizI jz − Ii · I j ), (18)

where the interaction amplitude ωi j (t ) is time dependent due
to the MAS rotation (see Appendix D for more details). We
consider a cationic tin oxo cluster [(MeSn)12O14(OH)6]2+

[45] exhibiting N = 42 protons belonging to hydroxyl and
methyl groups (see Fig. 8). This structure is idealized and
exhibits the main characteristics of already synthesized clus-
ters (distances, angles, crystal packing). The methyl groups
are supposed fixed as is the case at low temperature, although
this is no requirement of the path-sum method and methyl
rotations can be tackled. A single orientation of the molecule
toward the principal magnetic field B0 is considered. Path sum
yields analytical expressions for the entries of the evolution
operator because the computational complexity of the cal-
culations can be made to be only linear in the system size
N depending on the initial state. We stress that this is due
primarily to the peculiar structure of the high-field dipolar
Hamiltonian, which allows for a particularly efficient usage
of the scale invariance and graphical nature of path sums.
In particular, we do not claim to have solved the general
many-body problem: there will be Hamiltonians for which
this procedure cannot circumvent the exponential explosion
of the state space. The methodology we employed is presented
below, after the results.

In Fig. 8 and in the Supplemental Material, Movie 2, [46],
ωr is fixed at 2π × 10 kHz and the initial up spin is located
on a hydroxyl proton, denoted H1. During the first 0.15 ms
time period (or 1.5 rotor period), an oscillation is observed
between two close hydroxyl protons H1 and H2, followed by
a partial transfer to the closest methyl group (t � 0.15 ms), in
particular proton H3. Inside the methyl entity, the frequency of
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FIG. 9. Return probability for the spin excitation on the initial hydroxyl proton H1 as a function of ωR (one plot point every 20 Hz): (a) after
a fixed time of t = 0.05 ms, a situation exhibiting numerous peaks for small ωR values that are not all resolved on this picture; and (b) after
two rotor periods t = 2 × (2π/ωR). (c) Probability of finding the spin excitation on hydroxyl protons H1 (solid red line) or H2 (dashed blue
line) as a function of time for ωR = 10 kHz and with a very strong offset of roughly 30 ppm at 1.5 GHz on all protons except H1 and H2. The
total probability of being either on H1 or H2 (dotted black line) never goes below �0.94 over three rotor periods.

exchange is much faster as the three protons are subjected to
much stronger dipolar couplings. In Figs. 9(a) and 9(b) and the
Supplemental Material (Movies 1, 3, 4, 5, and 6 for ωr/2π =
5, 20, 40, 60, and 120 kHz [46], the return probability to
spin 1 is expressed as a function of ωr and can be described
analytically. These results provide an exact justification to
recently proposed approximations in the context of the 1H line
dependence under ultrafast MAS [47]. Finally, in Fig. 9(c),
strong offsets (roughly 30 ppm at 1.5 GHz, currently the
highest magnetic field available for high-resolution solid-state
NMR purposes) were added to all protons Hi, except the two
hydroxyl protons H1,2 (see inset of Fig. 8 for identification).
As the chemical shift offset corresponds simply to Iz,i op-
erators, the solution of the spin-diffusion problem remains
analytical by using path sum. For strong offsets, spin diffusion
is quenched. All of these results are in perfect agreement with
experimental observations related to spin diffusion in NMR.

A. Setting up the path sum: Methodology

1. State-space reduction techniques

Simulating many-body quantum systems on classical com-
puters is doomed to be an impossible task, barring the use
of approximations. A general class of such approximations,
called state-space reduction techniques, bypass the expo-
nential computational hurdle by considering only the most
relevant corners of the quantum state space that the system
is likely to explore. But, path sum is, first and foremost, a
mathematical technique for analytically solving systems of
coupled linear differential equations with nonconstant coef-
ficients. This holds regardless of what this system means
and how it came about. Therefore, path sum can be used in
conjunction with all state-space reduction techniques, as these
intervene earlier in selecting the system to be considered.

In this work, which focuses on path sum, we achieve the
desired reduction by choosing the initial density matrix ρ(0)
to be a pure state with a small number k of up or down
spins. Indeed, since the high-field Hamiltonian of Eq. (18)
conserves this number at all times, the discrete graph structure
Gt encoding the quantum state space for path sum consists of
exactly N disconnected components, of sizes

(N
k

) ∼ Nk when
k 
 N . Hence, the computational cost of finding the evolution
operator using a path sum here is O(Nk ), i.e., linear in N for a

single initial up spin. This procedure is different from approxi-
mate state-space truncations approaches [15,16,48] since here
the Hamiltonian rigorously enforces the state-space partition.
As a result, our calculations retain quantum correlations of up
to N spins. More general initial density matrices ρ(0) may
be approximated with polynomial cost on expanding them
over pure states with k 
 N . In the sector of the quantum
space with a single up spin, the difficulty is thus solely due to
the time-dependent nature of the Hamiltonian. The evolution
operator is then strictly analytical for static experiments and
analytically soluble using path sums for MAS experiments.
Physically, the time-dependent high-field dipolar Hamiltonian
of Eq. (18) implements a continuous-time quantum random
walk of the spin on the molecule. This interpretation remains
true in the presence of more than one initial up spin, with the
caveat that further interactions happen when quantum walkers
meet.

2. Dynamics at the molecular scale

As stated above, the sector of the quantum state space
that needs to be considered for an initial pure state with a
single up spin is of dimension N . This reduces the problem
of calculating the evolution operator to (analytically) solving
an N × N system of coupled linear differential equations
with nonconstant coefficients. Since, in principle, all pairs of
spins interact directly, this system is full. Consequently, if no
further partition of the Hamiltonian is used, the graph Gt on
which path sum is to be implemented is the complete graph
on N vertices, which entails a huge (yet finite) number of
terms in the path-sum continued fraction. The vast majority
of these give negligible contributions to the overall dynamics,
however, because of the scales of the interactions involved,
one may therefore build up the path-sum continued fraction
by brute force, progressively including longer cycles until
convergence of the solution is obtained.

An alternative, physically motivated approach appealing
once more to scale invariance nonetheless appears preferable
as it yields further insights in the temporal dynamics. First,
remark that at least one further nontrivial partition of the
Hamiltonian is quite natural in the case of the cationic tin
oxo cluster, that which puts together all spins belonging
to the same methyl or 3 hydroxyls groups. Mathematically,
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FIG. 10. Building the path sum on the cationic tin oxo cluster. (a) Probability of return of the spin excitation on a hydroxyl proton H1
shown on Fig. 8 as a function of time for ωr = 2π × 60 kHz over three rotor periods: (i) solution with no cutoff (solid black line, identical
with � > 100), (ii) analytical approximation with low interaction cutoff � = 40 (dashed red line), and (iii) further approximation obtained
upon setting 
5 to zero (red points). (b) Discrete structure G̃t of the quantum state space as seen by path sum when � = 40 and corresponding
to the equations given in the text for U(OH)3 . Edges and self-loops correspond to intergroup and intragroup interactions, respectively. The
adjacency matrix of this graph is the 14 × 14 Hamiltonian with 3 × 3 matrix-valued entries evoked in the text. Thus, the shape of the graph
is essentially that of the molecule at the methyl and group of 3 hydroxyls level. It comprises two disconnected pathways for spin diffusion
corresponding to the opposite sides of the cationic tin oxo cluster which become connected for higher cutoff values � > 42.

this is equivalent to seeing the Hamiltonian as a 14 × 14
matrix with matrix-valued entries, each of size 3 × 3. Then,
there is a path-sum continued fraction expressing any 3 ×
3 block of the global evolution operator U(t ′, t ) in terms
of the “small” Hamiltonians of the corresponding proton
groups.

At this point, the path-sum continued fraction is already
quite manageable without further approximations, but we
can gain additional (analytical) insights into the spin dy-
namics by removing intergroup interactions weaker than a
chosen cutoff value IB,B′/�, with IB,B′ the maximum inter-

group interaction. Here, B indices mean “block.” The value
of � is itself controlled by convergence of the overall so-
lution. This procedure sends some off-diagonals blocks of
the Hamiltonian to 0, giving G̃t a nontrivial topology which
reveals the molecular structure at the methyl and 3 hydroxyls
scale, as experienced by the spin excitation during diffusion.
See Fig. 10 for an illustrative example, with ωr = 2π ×
60 kHz and � = 40. The corresponding path-sum continued
fraction takes on the topology of the molecule and estab-
lishes mathematically the main pathways taken by the spin
excitation:

U(OH)3
=

∫ t ′

t
(Id∗ + iH(OH)3

+ H(OH)3Me1 ∗ �1 ∗ HMe1(OH)3
+ H(OH)3Me2 ∗ 
2 ∗ HMe2(OH)3

+ H(OH)3Me3 ∗ 
3 ∗ HMe3(OH)3

− i H(OH)3Me2 ∗ �2 ∗ HMe2Me3 ∗ 
3 ∗ HMe3(OH)3
− i H(OH)3Me3 ∗ 
3 ∗ HMe3Me2 ∗ 
2 ∗ HMe2(OH)3

)∗−1(τ, t )dτ,

where, e.g., H(OH)3Me3 ∗ 
3 ∗ HMe3Me2 ∗ 
2 ∗ HMe2(OH)3
is the

weight of the triangle (OH)3 �→ Me2 �→ Me3 �→ (OH)3 on G̃t

[Fig. 10(b)]. In these expressions, Id∗ = 1∗Id3×3, the 
 j are
given by


2 = 1

Id∗ + iHMe2 + HMe2Me3 ∗ 
3 ∗ HMe3Me2

,


3 = 1

Id∗ + iHMe3 + HMe3Me4 ∗ 
4 ∗ HMe4Me3

,


4 = 1

Id∗ + iHMe4 + HMe4Me5 ∗ 
5 ∗ HMe5Me4

,


5 = 1

Id∗ + iHMe5 + HMe5Me6 ∗ �6 ∗ HMe6Me5

,

and � j designates the isolated evolution of the jth methyl
group, i.e.,

� j = 1

Id∗ + iHMe j

.

These results illustrate again the “descending ladder princi-
ple” evoked in Fig. 1. Here, all inverses are ∗ inverses and
U(OH)3

is the 3 × 3 block of the global evolution operator
giving the probability amplitudes over a group of 3 hydroxyls.
HMex and H(OH)3

are the Hamiltonians of isolated methyl and
of a group of 3 hydroxyls, respectively. Similarly, HMeiMe j is
the interaction between neighboring methyls and HMei(OH)3

the
interaction between a methyl and a group of 3 hydroxyls.

The reader may notice that the shape taken by the con-
tinued fraction for U(OH)3

is immediately related to that of
the graph G̃t [Fig. 10(b)], with each term of the fraction
being the weight of a fundamental cycle of the graph. This
close, transparent, association between the mathematical form
of the solution and the physical problem allows for phys-
ically motivated and better controlled approximations. For
example, setting 
5 to zero so that 
4 ≡ �4 in the above
solution is immediately understood to mean that one re-
moves the possibility for the spin to diffuse to the remote
methyl groups Me5 and Me6 before coming back to the
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initial group of 3 hydroxyls, an excellent approximation [see
Fig. 10(a), red points to be compared to the red dashed
line].

Finally, we remark that our choice of partition is not
mathematically necessary. For example, larger blocks may be
employed equally well or one may form blocks with protons
scattered throughout the molecule. In principle, path sum’s
scale invariance guarantees that any choice, if properly imple-
mented, leads to the same solution. In practice, however, there
is a tradeoff between the size of the manipulated blocks and
the complexity of the path-sum continued fraction. We do not
know in general how to choose the best partition according to
this tradeof,f but it seems that physically motivated partitions
are a good starting point.

VI. CONCLUSION

In this contribution, we have demonstrated an approach
to the problem of finding compact and exact expressions
for the evolution operators of quantum dynamical systems
driven by time-varying Hamiltonians. As illustrated in Fig. 1,
path-sum calculations always involve a “descending ladder”
of progressively simpler quantities yielding the exact solution
after a finite number of steps. This is in strong contrast
with traditional perturbation techniques (Magnus expansion,
Floquet theory) which, when carrying out analytically, in-
variably lead to infinite series and an “ascending ladder”
of increasingly intricate quantities, such as Magnus series’
nested commutators. Most importantly, the solutions provided
by path sums are always analytically accessible, e.g., through
Neumann expansions.

As a fundamental and illustrative example, we used path
sum to solve the Bloch-Siegert problem, related to the action
of the counter-rotating component of the radio-frequency
field, at any order. We analytically studied the spin diffusion
effected by the homonuclear dipolar coupling Hamiltonian of
NMR acting on a large molecule, starting from a pure-state
initial density matrix. In general, on many-body systems, we
are facing two kinds of “explosive” computational problems:
(i) one, quantum in nature, related to the exponential size of
the quantum state space; and (ii) one, graph theoretical in
nature, related to the time required to construct the path-sum
continued fraction, in particular if Gt is large and not sparse.
Issue (ii) can be managed with partitions and path sum’s scale
invariance and is further tackled with the implementation of
a Lanczos path-sum algorithm [49]. This algorithm naturally
exploits matrix sparsity, benefits from path sum’s “descending
ladder” principle, and was designed with a numerical outlook.
It can, in principle, get excellent approximations after only a
few iterations, equivalent to truncating a path-sum continued
fraction in sufficient depth to reach the desired accuracy. This
algorithm is best understood as an extension to time-ordered
exponentials of modern numerical procedures for the compu-
tation of ordinary matrix exponentials. The first issue (i) is
fundamental to quantum mechanics and its management in-
herently depends on the problem at hand. Here, path sum has
the advantage that it works in conjunction with any state-space
reduction technique. For the homonuclear dipolar coupling
Hamiltonian, we bypassed the problem upon choosing certain

initial pure states. The scale invariance of path sum offers
further flexibility, as it allows to separately evolve chosen
subsystems only to then combine all such evolutions in a
globally exact way.

These results call for a discussion on the nature of the
solutions sought after by physicists and mathematicians alike.
A general assumption seems to be that an acceptable and
interesting analytical solution to a problem has been found
if and only if it can be presented with a finite number of
symbols and preexisting functions. We think this is a re-
strictive if misleading expectation. For example, a Bessel or
a Heun function solution would be considered “satifactory”
when both are actually algebraically transcendant, known and
understood from the equations they solve and from explicit
series expansions involving simpler objects. It seems that at
least in some cases our perception of mathematical objects
may be biased by facts as simple as their having a name, yet
the sine integral function Si(x) = ∫

sin(x)/x dx is no more
undisputedly analytical than

∫
exp[sin(x)/x)]dx. We think

that one cannot and should not ask a general purpose analyt-
ical method for solving systems of coupled linear differential
equations with variable coefficients any more than what there
is to be found: (i) finding, in a finite number of steps, an
explicit differential or integral equation involving only one
unknown function to be determined; and (ii) providing an
unconditionally convergent means of expanding the solution
as a series of some kind, be it Taylor, Neumann, accelerated
Neumann, or other. We may add the requirement that (iii)
all calculations should be feasible analytically, i.e., without
giving numerical values to all parameters involved. Should
one of these criteria fail to be met, a purely numerical strategy
would surely be more interesting. But, if all of these demands
are indeed satisfied, we may analyze the situation in greater
depth and details than possible with numerical computations.
This is exemplified by the CDT analysis provided here, the
analytical formula for 〈σx〉 revealing slight deviations from
the expected zeros of the Bessel J0 function.

With these understandings in place, we think that path sum
opens an entire new field of research and is now open for the
NMR and wider physics communities.

Note added. Recently, it was suggested to us that path sum
may be related to Haydock’s recursion method for calculating
electronic states [51]. While both approaches share the same
outlook of recursively resumming Feynman diagrams via path
resummations, Haydock’s method relies on fundamentally
commutative mathematics, in particular determinants, which
do not extend to the general setting required by ordered expo-
nentials and scale invariance. Instead, it is possible that lifting
Haydock’s approach to noncommutativity using Gelfand’s
quasideterminants [52] would lead to path sum.
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APPENDIX A: REMARKS ON THE STATE OF THE ART

While reviewing the state of the art in the course of this
work, it appeared to us that a very vast corpus of research had
accumulated on quantum dynamics driven by time-varying
Hamiltonians. A host of special solutions have been found
and numerous betterments of existing techniques have been
developed. Some of these are recent enough that we could
not cover them in our introduction, such as the flow-equation
approach to periodic Hamiltonians [50]. It seems that a proper
review article on the subject is urgently needed to gather all
results and remedy the pitfalls of our modest introduction.

APPENDIX B: BLOCH-SIEGERT DYNAMICS

In this Appendix, we detail the calculation process for the
transition probability P↑→↓ at order 3 of the Neumann expan-

sion of the exact path-sum solution. We work on resonance
ω0 = ω as this yields more compact expressions and also
because this situation is the most challenging mathematically.
Indeed, precisely when ω = ω0 the kernel K↑ has terms that
are linear in time and which slow down convergence of
P(n)

↑→↓(t ) to P↑→↓(t ) (see Sec. III B 2).
As explained in the main text, at order 3 we have

P(3)
↑→↓(t ) = |U (3)(t )↓↑|2 with

U (3)(t )↓↑ = −2iβ
∫ t

0

∫ τ1

0
cos(ωτ1)eiω0τ1 G(3)

↑ (τ0, 0)dτ0dτ1

[see Eq. (9) of the main text]. Here, G(3)
↑ is the third-order

Neumann expansion of the path-sum solution, i.e.,

G(3)
↑ (t, 0) = δ(t ) + K↑(t, 0) +

∫ t

0
K↑(t, τ1)K↑(τ1, 0)dτ1 +

∫ t

0

∫ t

τ1

K↑(t, τ2)K↑(τ2, τ1)K↑(τ2, 0)dτ2dτ1

= δ(t ) − β2

ω
e−iωt cos(ωt )(−ie2iωt + 2ωt + i) + β4

24ω3
e−3iωt cos(ωt )(3ie6iωt + 6e4iωt (−2iω2t2 + 2ωt + i)

+ e2iωt (8ω3t3 + 12iω2t2 + 12ωt − 15i) − 12ωt + 6i) + β6

960ω5
e−5iωt cos(ωt )(e10iωt 5i

+ e8iωt (−60iω2t2 + 150ωt + 150i) + e6iωt (40iω4t4 − 80ω3t3 + 420ωt + 150i)

+ e4iωt (−16ω5t5 − 40iω4t4 − 160ω3t3 + 180iω2t2 + 360ωt − 380i)

+ e2iωt (80ω3t3 − 120iω2t2 − 180ωt + 45i) − 30ωt + 30i).

Taken together, these calculations give the transition probability at the third Neumann order as

P(3)
↑→↓(t ) =

7∑
k=0

sin(2kωt )S(3)
2k (β, t ) + cos(2kωt )C(3)

2k (β, t ),

in accordance with Eq. (10) of the main text. Here, we have

S(3)
0 (β, t ) = 0,

S(3)
2 (β, t ) = β14t13

3628800ω
+ β14t11

53760ω3
− β12t11

50400ω
− β14t9

129024ω5
− 209β12t9

241920ω3
+ 41β10t9

60480ω
− 229β14t7

645120ω7
+ 11β12t7

3840ω5
+ 17β10t7

960ω3

− 4β8t7

315ω
− 4219β14t5

6635520ω9
− 125β12t5

9216ω7
− 13β10t5

192ω5
− β8t5

6ω3
+ 2β6t5

15ω
+ 1615β14t3

73728ω11
+ 22873β12t3

331776ω9
+ 265β10t3

1152ω7

+ 7β8t3

16ω5
+ 2β6t3

3ω3
− 2β4t3

3ω
− 1249411β14t

21233664ω13
− 17357β12t

110592ω11
− 9419β10t

27648ω9
− 211β8t

384ω7
− 21β6t

32ω5
− 3β4t

4ω3
+ β2t

ω
,

S(3)
4 (β, t ) = − 19β14t11

4838400ω3
− 73β14t9

1935360ω5
+ 97β12t9

483840ω3
+ 799β14t7

1161216ω7
+ 47β12t7

80640ω5
− 61β10t7

13440ω3
− 27401β14t5

6635520ω9
− 629β12t5

46080ω7

+ β10t5

384ω5
+ β8t5

20ω3
+ 82439β14t3

3538944ω11
+ 18683β12t3

331776ω9
+ 1061β10t3

13824ω7
− β8t3

12ω5
− β6t3

4ω3
− 1125889β14t

21233664ω13

− 213157β12t

1769472ω11
− 8675β10t

55296ω9
+ 7β8t

288ω7
+ 7β6t

32ω5
+ 3β4t

8ω3
,

S(3)
6 (β, t ) = 29β14t9

1935360ω5
− 493β14t7

1658880ω7
− 121β12t7

241920ω5
+ 5039β14t5

4423680ω9
+ 385β12t5

55296ω7
+ 19β10t5

2880ω5
+ 4643β14t3

1769472ω11
− 5065β12t3

221184ω9

− 27β10t3

512ω7
− 5β8t3

144ω5
− 480511β14t

31850496ω13
+ 6845β12t

884736ω11
+ 1513β10t

18432ω9
+ 229β8t

2304ω7
+ 5β6t

96ω5
,
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S(3)
8 (β, t ) = − 911β14t7

46448640ω7
+ 6877β14t5

13271040ω9
+ 47β12t5

122880ω7
− 1187β14t3

442368ω11
− 1721β12t3

331776ω9
− 133β10t3

55296ω7
+ 14657β14t

5308416ω13

+ 2153β12t

221184ω11
+ 1237β10t

110592ω9
+ 35β8t

9216ω7
,

S(3)
10 (β, t ) = 41β14t5

4423680ω9
− 103β14t3

589824ω11
− 19β12t3

221184ω9
+ 1339β14t

3538944ω13
+ 53β12t

98304ω11
+ β10t

6144ω9
,

S(3)
12 (β, t ) = − 5β14t3

3538944ω11
+ 703β14t

63700992ω13
+ 7β12t

1769472ω11
,

S(3)
14 (β, t ) = β14t

21233664ω13
.

Now on to the C(3)
2k functions:

C(3)
0 (β, t ) = 5809339β14

509607936ω14
+ 1327β12

73728ω12
+ 25787β10

442368ω10
+ 10315β8

55296ω8
+ 157β6

384ω6
+ 7β4

16ω4
+ β2

2ω2
+ β14t14

25401600
+ β14t12

290304ω2

− β12t12

302400
+ 11β14t10

358400ω4
− 59β12t10

302400ω2
+ 41β10t10

302400
− 1007β14t8

1548288ω6
− 137β12t8

322560ω4
+ 23β10t8

4480ω2
− β8t8

315

+ 48229β14t6

7962624ω8
+ 1441β12t6

138240ω6
− 31β10t6

3840ω4
− β8t6

15ω2
+ 2β6t6

45
− 302327β14t4

10616832ω10
− 93581β12t4

1327104ω8
− 55β10t4

4608ω6
+ 7β8t4

48ω4

+ 5β6t4

12ω2
− β4t4

3
+ 660727β14t2

10616832ω12
+ 41143β12t2

294912ω10
+ 21131β10t2

110592ω8
− 133β8t2

384ω6
− β6t2

2ω4
− β4t2

ω2
+ β2t2,

C(3)
2 (β, t ) = 22781β14

7077888ω14
+ 6671β12

196608ω12
+ 727β10

27648ω10
− 541β8

55296ω8
− 139β6

384ω6
− β4

2ω4
− β2

2ω2
− β14t12

1036800ω2
− β14t10

120960ω4

+ β12t10

17280ω2
− 421β14t8

1935360ω6
+ β12t8

4480ω4
− β10t8

640ω2
+ 221941β14t6

39813120ω8
+ 383β12t6

138240ω6
− β10t6

320ω4
+ β8t6

45ω2

− 95713β14t4

2654208ω10
− 82045β12t4

1327104ω8
+ 43β10t4

3072ω6
− β6t4

6ω2
+ 111757β14t2

1179648ω12
+ 22853β12t2

147456ω10
+ 19945β10t2

110592ω8
− 7β8t2

64ω6

+ β6t2

8ω4
+ β4t2

2ω2
,

C(3)
4 (β, t ) = − 1146415β14

254803968ω14
− 27865β12

589824ω12
− 2849β10

27648ω10
− 1439β8

6912ω8
− 29β6

384ω6
+ β4

16ω4
− 53β14t10

3225600ω4
− 37β14t8

368640ω6

+ 5β12t8

7168ω4
+ 4567β14t6

2488320ω8
+ 47β12t6

69120ω6
− 49β10t6

3840ω4
− 15503β14t4

1327104ω10
− 3773β12t4

165888ω8
+ 73β10t4

4608ω6
+ 5β8t4

48ω4

+ 128387β14t2

3538944ω12
+ 2639β12t2

36864ω10
+ 37β10t2

432ω8
− 31β8t2

192ω6
− 5β6t2

16ω4
,

C(3)
6 (β, t ) = − 521561β14

47775744ω14
− 92075β12

10616832ω12
+ 2915β10

221184ω10
+ 1565β8

55296ω8
+ 11β6

384ω6
+ 199β14t8

1935360ω6
− 33029β14t6

39813120ω8

− 373β12t6

138240ω6
+ 3919β14t4

5308416ω10
+ 22013β12t4

1327104ω8
+ 239β10t4

9216ω6
+ 165683β14t2

21233664ω12
− 1741β12t2

73728ω10
− 9593β10t2

110592ω8
− β8t2

12ω6
,

C(3)
8 (β, t ) = 315173β14

509607936ω14
+ 407β12

110592ω12
+ 2261β10

442368ω10
+ 173β8

55296ω8
− 5681β14t6

39813120ω8
+ 5029β14t4

3538944ω10
+ 2645β12t4

1327104ω8

− 12631β14t2

3538944ω12
− 8077β12t2

884736ω10
− 851β10t2

110592ω8
,

C(3)
10 (β, t ) = 10979β14

63700992ω14
+ 1067β12

3538944ω12
+ 37β10

221184ω10
+ 307β14t4

5308416ω10
− 2351β14t2

7077888ω12
− 145β12t2

442368ω10
,

C(3)
12 (β, t ) = 5309β14

764411904ω14
+ 25β12

5308416ω12
− 65β14t2

10616832ω12
,

C(3)
14 (β, t ) = β14

15925248ω14
.
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All calculations were performed analytically on Mathemat-
ica. The notebook generating these results, as well as any
desired higher order of the Neumann expansion of the exact
path-sum solution is available for download [39]. Every time
the order is increased by one, e.g., from P(3)

↑→↓(t ) to P(4)
↑→↓(t ),

each expression above gains new high-order terms while
four new functions also appear, e.g., S(4)

16 (β, t ), S(4)
18 (β, t ),

C(4)
16 (β, t ), and C(4)

18 (β, t ) all enter P(4)
↑→↓(t ).

APPENDIX C: ACCELERATED NEUMANN SERIES

Suppose that we are given a function or matrix of two
times K (t ′, t ) = K1(t ′, t ) + K2(t ′, t ) such that in some sense
K1 is much larger than K2. Suppose further that we are
interested in the solution of the linear Volterra integral equa-
tion of the second kind G(t ′, t ) = δ + K ∗ G = δ(t ′ − t ) +∫ t ′

t K (t ′, τ )G(τ, t )dτ , as will always be the case when ex-
panding the exact path-sum solution to quantum dynamical
problems at any scale.

Instead of expanding G as usual, G(t ′, t ) = δ + ∑
n K∗n,

one can exploit the fact that K1 is dominant over K2 to accel-
erate convergence of the Neumann expansion by expressing
G in terms of the solutions Gi of the “individual” Volterra
equations Gi = δ + Ki ∗ Gi. More specifically, one gets

G =
(∑

n

T ∗n

)
∗ G1 ∗ G2 = G1 ∗ G2 + T ∗ G1 ∗ G2 + · · · ,

where T = δ(t ′ − t ) − G1 ∗ G2 + G1 ∗ G2 ∗ (K1 + K2) (see
[42] for details). Since T ∗0 = δ(t ′ − t ), the zeroth-order term
of the accelerated expansion is then simply the ∗ product of

the solutions of the individual Volterra equations:

G(acc,0)(t ′, t ) = T ∗0 ∗ G1 ∗ G2 =
∫ t ′

t
G1(t ′, τ )G2(τ, t )dτ.

This is particularly well suited to physical situations where a
certain parameter dominates over the others: not only because
the so-obtained expression for G is greatly improved, but
also because in general the individual Gi are known exactly.
Furthermore, this acceleration procedure continues to hold for
any number of kernels Ki [42].

Taking the Bloch-Siegert Hamiltonian of Eq. (7) as an
example, let us use path sum’s scale invariance to work in the
trivial situation where we have a single subsystem, namely,
the entire system itself. Then, we get that

U(t ) =
∫ t

0
G(τ, 0)dτ,

with G the solution of the matrix-valued linear integral
Volterra equation of the second kind with matrix kernel K =
K1 + K2, where

K1(t ) = −2iβ

(
0 cos(ωt )

cos(ωt ) 0

)
,

K2(t ) = −iω0

(
1/2 0

0 −1/2

)
.

The ultrastrong-coupling regime β/ω0 � 1 thus corresponds
to the situation described above as K1 dominates K2. Since
furthermore both Gi are immediately accessible as

Gi(t
′, t ) = δ(t ′ − t )Id + Ki(t

′) exp

(∫ t ′

t
Ki(τ )dτ

)
,

we get G(acc,0) easily and integrating it with respect to t yields

U(acc,0)(t ) =
(

cos
( 2β

ω
sin(ωt )

) + e− 1
2 iω0t − 1 −i sin

( 2β

ω
sin(ωt )

)
−i sin

( 2β

ω
sin(ωt )

)
cos

( 2β

ω
sin(ωt )

) + e
1
2 iω0t − 1

)

+
∫ t

0

(
iω0e− 1

2 iω0τ sin2
( 2β

ω
[sin(ωτ ) − sin(ωt )]

) − 1
2ω0e

1
2 iω0τ sin

( 4β

ω
[sin(ωτ ) − sin(ωt )]

)
1
2ω0e− 1

2 iω0τ sin
( 4β

ω
[sin(ωτ ) − sin(ωt )]

) −iω0e
1
2 iω0τ sin2

( 2β

ω
[sin(ωτ ) − sin(ωt )]

)
)

dτ.

Higher orders of the accelerated expansion of the path-sum solution are also available although they are not necessary given the
machine-precision accuracy with respect to numerical solutions already reached by order 0. The integrals in U(acc,0)(t ) have no
closed form but can be determined exactly via standard expansions over Bessel functions since, e.g.,

sin[α + z sin(φ)] = sin(α)

(
J0(z) + 2

∞∑
n=1

J2n(z) cos(2nφ)

)
+ 2 cos(α)

∞∑
n=0

J2m+1(z) sin[(2n + 1)φ].

The modulus squared of U(acc,0)(t )11 gives Eq. (13) of the main text, while calculating other quantities such as Pψ−→ψ+ (t ) and
〈σx〉 from U(acc,0)(t ) is now a simple task, giving, e.g.,

〈σx〉(acc,0) = ω0

∫ t

0
cos

(
1

2
ω0τ

)
sin

(
2β

ω
sin(ωτ )

)
dτ + 2ω0 sin

(
1

4
ω0t

) ∫ t

0
sin

(
1

4
ω0(t − 2τ )

)

× sin

(
2β

ω
[sin(ωt ) − sin(ωτ )]

)
dτ.

In the regime ω0 
 ω, both cos(ω0t/2) and sin(ω0t/4) are essentially equal to their initial t = 0 values, leading to Eq. (16).
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APPENDIX D: INTERACTION TERMS IN THE HIGH-FIELD DIPOLAR HAMILTONIAN

We consider the time-dependent high-field dipolar Hamiltonian of Eq. (18) presented in the main text, with interaction terms
under MAS:

ωi j (t ) := μ0γ
2h̄

4πr3
i j

× 1

2
ξi j (t ),

where ri j is the distance between protons i and j and [1]

ξi j (t ) := 2
√

2 sin(ψi j ) cos(ψi j ) sin(φi j + ωrt ) + sin(ψi j )
2 cos(2φi j + 2ωrt ).

In this expression, ψi j is the angle between �i j and the z axis and φi j is the angle between �i j and the x axis for a coordinate
system fixed to the sample. Finally, ωr is the angular velocity of the rotor. The raw molecular data pertaining to the cationic tin
oxo cluster is available online [39] and included here as a data set.
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