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Abstract—Electroencephalography (EEG) signals reflect and
measure activities in certain brain areas. Its zero clinical risk
and easy-to-use features make it a good choice of providing
insights into the cognitive process. However, effective analysis
of time-varying EEG signals remains challenging. First, EEG
signal processing and feature engineering are time-consuming
and highly rely on expert knowledge, and most existing studies
focus on domain-specific classification algorithms, which may not
apply to other domains. Second, EEG signals usually have low
signal-to-noise ratios and are more chaotic than other sensor
signals. In this regard, we propose a generic EEG-based cognitive
activity recognition framework that can adaptively support a
wide range of cognitive applications to address the above issues.
The framework uses a reinforced selective attention model to
choose the characteristic information among raw EEG signals
automatically. It employs a convolutional mapping operation to
dynamically transform the selected information into a feature
space to uncover the implicit spatial dependency of EEG sample
distribution. We demonstrate the effectiveness of the framework
under three representative scenarios: intention recognition with
motor imagery EEG, person identification, and neurological
diagnosis, and further evaluate it on three widely used public
datasets. The experimental results show our framework outper-
forms multiple state-of-the-art baselines and achieves competitive
accuracy on all the datasets while achieving low latency and
high resilience in handling complex EEG signals across various
domains. The results confirm the suitability of the proposed
generic approach for a range of problems in the realm of Brain-
Computer Interface applications.

Index Terms—deep learning, reinforcement learning, attention
mechanism, brain-computer interface

I. INTRODUCTION

Electroencephalography (EEG) is an electrophysiological
monitoring indicator to analyze brain states and activities by
measuring the voltage fluctuations of ionic current within the
neurons of brains [1]. In practice, EEG signals can be collected
by portable and off-the-shelf equipment in a non-invasive and
non-stationary way [2]. EEG signal classification algorithms
have been studied for a range of real-world applications [3].
The accuracy and robustness of EEG classification model
have promising meanings to identify cognitive activities in the
realms of movement intention recognition, person identifica-
tion, and neurological diagnosis. Cognitive activity recognition
systems [4] provide a bridge between the inside cognitive
world and the outside physical world. They are recently used in
assisted living [5], smart homes [6], and entertainment industry
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Fig. 1: EEG topography with continuous samples. The interval
among samples is 0.00625 second.

[7]; EEG-based person identification technique empowers the
security systems deployed in bank or customs [8], [9]; EEG
signal-based neurological diagnosis can be used to detect
the organic brain injury and abnormal synchronous neuronal
activity such as epileptic seizure [10], [11].

The classification of cognitive activity faces several chal-
lenges. First, the EEG data preprocessing and feature extrac-
tion methods (e.g., filtering, Discrete Wavelet Transformation,
and feature selection) which are employed by most existing
EEG classification studies [3], [7] are time-consuming and
highly depend on expertise. Meanwhile, the hand-crafted
features require extensive experiments to generalize well to
diverse settings such as filtering bands and wavelet orders.
Therefore, an effective method which can directly work on
raw EEG data is necessary.

Second, most current EEG classification methods are de-
signed based on domain-specific knowledge and thus may
become ineffective or even fail in different scenarios [2]. For
example, the approach customized for EEG-based neurological
diagnosis may not work well on intention recognition. There-
fore, a general EEG signal classification method is expected to
be both efficient and robust across various domains for better
usability and suitability.

Third, EEG signals have a low signal-to-noise ratio and
more chaotic than other sensor signals such as wearable sen-
sors. Thus, the segment-based classification which is widely
used in sensing signal classification may not fit cognitive
activity recognition. A segment contains some continuous
EEG samples clipped by the sliding window method [12]
while a single EEG sample (also called EEG instance) is
collected at a specific time point. In particular, segment-
based classification has two drawbacks compared with sample-
based classification: 1) in a segment with many samples, the



TABLE I: Time domain and correlation coefficient analysis. n-points denotes the values are measured by the samples with n
sampling points. We compare EEG signals with other sensing data (such as wearable sensor data and smartphone data) over
five different scales and the results constantly show that EEG signals have the highest instability.

Time
Domain

Signals 5-points 50-points 100-points 500-points 1000-points Average
STD Range STD Range STD Range STD Range STD Range STD Range

Phone 0.0025 0.0061 0.0179 0.0494 0.0166 0.0612 0.0253 0.1177 0.0259 0.1281 0.0882 0.3625
Wearable 0.0012 0.0029 0.0107 0.0369 0.0147 0.0519 0.0197 0.1041 0.016 0.1058 0.0623 0.3016
EEG 0.0087 0.0218 0.0199 0.0824 0.0245 0.1195 0.0299 0.1619 0.0308 0.1802 0.1138 0.5658

Correlation
Coefficient

Signals 5-points 50-points 100-points 500-points 1000-points Average
STD Range STD Range STD Range STD Range STD Range STD Range

Phone 0.0015 0.0038 0.0243 0.0832 0.0248 0.0964 0.0244 0.104 0.0247 0.104 0.0997 0.3914
Wearable 0.01 0.0252 0.0155 0.0702 0.0147 0.0866 0.0469 0.2299 0.0729 0.3905 0.16 0.8024
EEG 0.0392 0.0991 0.1077 0.4096 0.0955 0.4849 0.1319 0.7626 0.1533 0.99 0.5276 2.7462

sample diversity may offset by other inverse changed samples
as EEG signals vary rapidly (Section II). 2) segment-based
classification requires more training data and a longer data-
collecting time. For example, suppose each segment has ten
samples without overlapping; for the same training batch size,
segment-based classification requires ten times of the data
size and the data-collecting time than sample-based classifica-
tion. As a result, segment-based classification cannot exploit
the immediate intention of changing and thus achieves low
precision in practical deployment. To this end, sample-based
classification is more attractive.

To address the aforementioned issues, first, we propose a
novel framework which can automatically learn distinctive
features from raw EEG signals by developing a deep convo-
lutional mapping component. Additionally, to grasp the char-
acteristic information from different EEG application circum-
stance adaptively, we design a reinforced selective attention
component that combines the benefits of attention mechanism
[13] and deep reinforcement learning. Moreover, we overstep
the challenge of chaotic information by working on EEG
samples instead of segments. The single EEG sample only
contains spatial information without spatial clue1. The main
contributions of this work are highlighted as follows:
• We propose a general framework for automatic cognitive

activity recognition to facilitate a scope of diverse cogni-
tive application domains including intention recognition,
person identification, and neurological diagnosis.

• We design the reinforced selective attention model, by
combining the deep reinforcement learning and atten-
tion mechanism, to automatically extract the robust and
distinct deep features. Specially, we design a non-linear
reward function to encourage the model to select the
best attention area that leads to the highest classification
accuracy. Besides, we customize the states and actions
based on our cognitive activity recognition environment.

• We develop a convolutional mapping method to explore
the distinguishable spatial dependency and feed it to the
classifier for classification, among selected EEG signals.

• We demonstrate the effectiveness of the proposed frame-
work using four real-world datasets concerning three
representatives and challenging cognitive applications.

1We do not deny the usefulness of temporal information, but this paper
emphasizes on spatial information, which may easier to be captured.

The experiment results demonstrate that the proposed
framework outperforms the state-of-the-art and strong
baselines by consistently achieving the accuracy of more
than 96% and low latency.

Note that all the necessary reusable codes and datasets have
been open-sourced for reproduction, please refer to this link2.

II. ANALYSIS OF EEG SIGNALS

In this section, we demonstrate EEG signals’ unique char-
acteristics (e.g., rapid-varying and chaotic) and that single
samples are more suitable than segments for classification. By
comparing EEG signals with two typical sensor signals col-
lected by smartphone (accelerometers in Samsung Galaxy S2)
and wearable sensors (Colibri wireless IMU). The participants
are walking during the data collection session.

The brain activity is very complex and rapid varying, but
EEG signals can only capture a few information through the
discrete sampling of biological current. Figure 1 demonstrates
the characteristics of rapidly varying and complex of EEG
signals and provides the EEG topography of consecutive 5
samples. The sampling rate is 160 Hz while the sampling inter-
val is 0.00625 second. It can be observed that the topography
changes dramatically within such a tiny time interval.

Furthermore, to illustrate the chaotic of EEG signals, we
compare EEG with smartphone and wearable sensors in two
aspects: the time domain and the inter-samples correlations.

In the time domain, we evaluate the STD and range of
sensor signals on five levels of sample length: 5, 50, 100,
500, 1000 continuous samples. The evaluations on the above
five scales are expected to show the tendency that how the
EEG characteristic varies with the sampling period.

The inter-sample correlation coefficient calculates the av-
erage cosine correlations between the specific sample and its
neighbor samples (5, 50, 100, 500, and 1000 samples). A low
correlation coefficient represents EEG signals dramatically and
rapidly varying all the time.

As a result, Table I present the STD and range values
in the time domain and correlation coefficient. We observe
that EEG signals have the highest STD and range over all
the five sample window scales both on time domain and
correlation coefficient, compared with wearable sensor data
and smartphone signals. This demonstrates that the EEG

2https://github.com/xiangzhang1015/know your mind



sample has more unstable correlations with neighbors and the
instability is very high even in the nearest five samples. More
specifically, EEG signals are very chaotic and rapidly changing
at each single sampling point.

III. PROPOSED METHOD

Based on the above analysis, we propose reinforced attentive
convolutional neural networks (CNNs) to classify raw EEG
signals accurately and efficiently directly. The overall work-
flow is shown in Figure 2.

A. Replicate and Shuffle

To provide as much as possible information, we design
an approach to exploit the spatial relationships among EEG
signals. The signals belonging to different brain activities are
supposed to have different spatial dependent relationships. We
replicate and shuffle the input EEG signals on dimension-wise.
Within this method, all the possible dimension arrangements
have the equiprobable appearance.

Suppose the input raw EEG data are denoted by X =
{(xi, yi), i = 1, 2, · · · I}, where (xi, yi) denotes a single
EEG sample and I denotes the number of samples. In each
sample, the feature xi = {xik, k = 1, 2, · · · ,K},xi ∈ RK

contains K elements corresponding to K EEG channels and
yi ∈ R denotes the corresponding label. xik denotes the k-th
dimension value in the i-th sample.

In real-world collection scenarios, the EEG data are gen-
erally concatenated following the distribution of biomedical
EEG channels. However, the biomedical dimension order
may not present the best spatial dependency. The exhausting
method is too computationally expensive to exhaust all the
possible dimension arrangements. For example, a 64-channel
EEG sample has A64

64 = 1.28 × 1089 combinations, which is
an astronomical figure.

To provide more potential dimension combinations, we
propose a method called Replicate and Shuffle (RS). RS
is a two-step mapping method which maps xi to a higher
dimensional space x′i with complete element combinations:

xi ∈ RK → x′i ∈ RK′
,K ′ > K (1)

In the first step (Replicate), replicating xi for h = K ′/K+1
times. Then, we get a new vector with length as h ∗K which
is not less than K ′; in the second step (Shuffle), we randomly
shuffle the replicated vector in the first step and intercept
the first K ′ elements to generate x′i. Theoretically, compared
with xi, x′i contains more diverse dimension combinations.
Note, this RS operation only be performed once for a specific
input dataset in order to provide a stable environment for the
following reinforcement learning.

B. Reinforced Selective Attention

Inspired by the fact that the optimal spatial relationship only
depends on a subset of feature dimensions, we introduce an
attention zone to focus on a fragment of feature dimensions.
Here, the attention zone is optimized by deep reinforcement

learning, which has been proved to be stable and well-
performed in policy learning.

In particular, we aim to detect the optimal dimension combi-
nation, which includes the most distinctive spatial dependency
among EEG signals. Since K ′, the length of x′i, is too large
and computationally expensive, to balance the length and the
information content, we introduce the attention mechanism
[14] since its effectiveness has been demonstrated in recent
research areas such as speech recognition [15]. We attempt
to emphasize the informative fragment in x′i and denote the
fragment by x̄i, which is called attention zone. Let x̄i ∈ RK̄

and K̄ denote the length of the attention zone which is
automatically learned by the proposed algorithm. We employ
deep reinforcement learning to discover the best attention zone
[16].

As shown in Figure 2, the detection of the best attention
zone includes two key components: the environment (includ-
ing state transition and reward model) and the agent. Three
elements (the state s, the action a, and the reward r) are
exchanged in the interaction between the environment and
the agent. All of the three elements are customized based
on our context in this study. Next, we introduce the design
of the crucial components of our deep reinforcement learning
structure:
• The state S = {st, t = 0, 1, · · · , T}, st ∈ R2 describes

the position of the attention zone, where t denotes the
time stamp. Since the attention zone is a shifting fragment
on 1-D x′i, we design two parameters to define the state:
st = {starttidx, endtidx}, where starttidx and endtidx
denote the start index and the end index of the attention
zone3, separately. In the training, s0 is initialized as

s0 = [(K ′ − K̄)/2, (K ′ + K̄)/2] (2)

• The action A = {at, t = 0, 1, · · · , T} ∈ R4 describes
which action the agent could choose to act on the
environment. Here at time stamp t, the state transition
chooses one action to implement following the agent’s
policy π:

st+1 = π(st, at) (3)

In our case, we define four categories of actions (Fig-
ure 3) for the attention zone: left shifting, right shifting,
extend, and condense. For each action, the attention
zone moves a random distance d ∈ [1, du] where du is
the upper boundary. For left shifting and right shifting
actions, the attention zone shifts light-ward or right-ward
with the step d; for the extend and condense actions, both
starttidx and endtidx are moving d. At last, if the state
start index or end index is beyond the boundary, a clip
operation is conducted. For example, if starttidx = −5
which is lower than the lower boundary 0, we clip the
start index as starttidx = 0.

3For example, for a random x′i = [3, 5, 8, 9, 2, 1, 6, 0], the state
{starttidx = 2, endtidx = 5} is sufficient to determine the attention zone as
[8, 9, 2, 1].



Fig. 2: Flowchart of the proposed approach. The input raw EEG single sample xi (K denotes the Kth element) is replicated and
shuffled to provide more latent spatial combinations of feature dimensions. Then, an attention zone x̄i, which is a fragment in
x′i, with the state st = {starttidx, endtidx} is selected. The selected attention zone is input to the state transition and the reward
model. In each step t, one action is selected by the state transition to update st based on the agent’s feedback. The reward
model evaluates the quality of the attention zone by the reward score rt. The dueling DQN is employed to discover the best
attention zone x̄∗i which will be fed into the convolutional mapping procedure to extract the spatial dependency representation.
The represented features will be used for the classification. FCL denotes a fully connected layer. The reward model is the
combination of the convolutional mapping and the classifier.

Fig. 3: Four actions in the state transition: left shifting, right
shifting, extend, and condense. The dashed line indicates the
position of the attention zone before the action while the solid
line indicates after the action.

• The reward R = {rt, t = 0, 1, · · · , T} ∈ R is calculated
by the reward model, which will be detailed later. The
reward model Φ:

rt = Φ(st) (4)

receives the current state and returns an evaluation as the
reward.

Reward Model. Next, we introduce in detail the design
of the reward model. The purpose of the reward model is to
evaluate how the current state impacts the classification perfor-
mance. Intuitively, the state which leads to better classification

performance should have a higher reward: rt = F(st). We
set the reward modal F as a combination of the convolutional
mapping and classification (Section III-C). Since in the practi-
cal approach optimization, the higher the accuracy is, the more
difficult to increase the classification accuracy. For example,
improving the accuracy on a higher level (e.g., from 90% to
100%) is much harder than on a lower level(e.g., from 50%
to 60%). To encourage accuracy improvement at the higher
level, we design a non-linear reward function:

rt =
eacc

e− 1
− β K̄

K ′
(5)

where acc denotes the classification accuracy. The function
contains two parts; the first part is a normalized exponential
function with the exponent acc ∈ [0, 1], this part encourages
the reinforcement learning algorithm to search the better st
which leads to a higher acc. The motivation of the exponential
function is that: the reward growth rate is increasing with the
accuracy’s increase4. The second part is a penalty factor for

4For example, for the same accuracy increment 10%, acc : 90%→ 100%
can earn a higher reward increment than acc : 50%→ 60%.



the attention zone length to keep the bar shorter and the β is
the penalty coefficient.

In summary, the aim of the deep reinforcement learning
is to learn the optimal attention zone x̄∗i which leads to the
maximum reward. The selective mechanism totally iterates
N = ne ∗ ns times where ne and ns denote the number of
episodes and steps [17], respectively. ε-greedy method [18]
is employed in the state transition, which chooses a random
action with probability 1 − ε or an action according to the
optimal Q function argmaxat∈AQ(st, at) with probability ε.
In formula,

at+1 =

{
argmaxat∈AQ(st, at) ε′ < ε

ā ∈ A otherwise
(6)

where ε′ ∈ [0, 1] is random generated for each iteration while
ā is random selected in A.

For better convergence and quicker training, the ε is grad-
ually increasing with the iterating. The increment ε0 follows:

εt+1 = εt + ε0N (7)

Agent Policy and Optimization. The Dueling DQN (Deep
Q Networks [17]) is employed as the optimization policy
π(st, at), which is enabled to learn the state-value function
efficiently. The primary reason we employ a dueling DQN to
uncover the best attention zone is that it updates all the four
Q values at every step while other policies only update one Q
value at each step. The Q function measures the expected sum
of future rewards when taking that action and following the
optimal policy thereafter. In particular, for the specific step t,
we have:

Q(st, at) = E(rt+1 + γrt+2 + γ2rt+3 . . . )

=

∞∑
n=0

γkrt+k+1
(8)

where γ ∈ [0, 1] is the decay parameter that trade-off the
importance of immediate and future rewards while n denotes
the number of following step. The value function V (st)
estimate the expected reward when the agent is in state s.
The Q function is related to the pair (st, at) while the value
function only associate with st.

Dueling DQN learns the Q function through the value
function V (st) and the advantage function A(st, at) and
combines them by the following formula

Q(st, at) = θV (st) + θ′A(st, at) (9)

where θ, θ′ ∈ Θ are parameters in the dueling DQN network
and are optimized automatically. Equation: 9 is unidentifiable
which can be observed by the fact that we can not recover
V (st) and A(st, at) uniquely with the given Q(st, at). To
address this issue, we can force the advantage function equals
to zero at the chosen action. That is, we let the network
implement the forward mapping:

Q(st, at) = V (st) + [A(st, at)− max
at+1∈A

(A(st, at+1))] (10)

Therefore, for the specific action a∗, if

argmaxat+1∈AQ(st, at+1) = argmaxat+1∈AA(st, at+1)
(11)

then we have
Q(st+1, a∗) = V (st) (12)

Thus, as shown in the Figure 2 (the second last layer of the
agent part), the stream V (st) is forced to learn an estimation
of the value function, while the other stream produces an
estimation of the advantage function.

To assess the Q function, we optimize the following cost
function at the i-th iteration:

Li(Θi) = Est,at,rt,st+1
[(ȳi −Q(st, at))

2]

= Est,at,rt,st+1 [(ȳi − θV (st) + θ′A(st, at))
2]

(13)

with
ȳi = rt + γmax

at+1

Q(st+1, at+1) (14)

The gradient update method is

∇Θi
Li(Θi) = Est,at,rt,st+1

[(ȳi −Q(st, at))∇Θi
Q(st, at)]

= Est,at,rt,st+1
[(ȳi − θV (st)− θ′A(st, at))

∇Θi
(θV (st) + θ′A(st, at))]

(15)

C. Convolutional Mapping

For each attention zone, we further exploit the potential
spatial dependency of selected features x̄∗i . Since we focus on
a single sample, the EEG sample only contains a numerical
vector with very limited information and is easily corrupted
by noise. To amend this drawback, we attempt to mapping
the EEG single sample from the original space O ∈ RK to a
sparsity space T ∈ RM by a CNN structure.

To extract as more potential spatial dependencies as possi-
ble, we employ a convolutional layer [19] with many filters
to scan on the learned attention zone x̄∗i . The convolutional
mapping structure contains five layers (as shown in Figure 2):
the input layer receives the learned attention zone, the convo-
lutional layer followed by one fully connected layer, and the
output layer. The one-hot ground truth is compared with the
output layer to calculate the training loss.

The Relu non-linear activation function is applied to the
convolutional outputs. We describe the convolutional layer as
follows:

xcij = ReLU(

b̄∑
b=1

Wcx̄
∗
ij) (16)

where xcij denotes the outcome of the convolutional layer
while b̄ and Wc denote the length of filter and the filter
weights, respectively. The pooling layer aims to reduce the
redundant information in the convolutional outputs to decrease
the computational cost. In our case, we try to keep as much
information as possible. Therefore, our method does not
employ a pooling layer. Then, in the fully connected layer
and output layer

xfi = ReLU(W fxci + bf ) (17)



ALGORITHM 1: The Proposed Approach
Input: Raw EEG signals X
Output: Predicted cognitive activity label y′i

1: Initialization s0;
2: RS: x̄i ← x′i;
3: Reinforced Selective Attention:
4: if t < N then
5: at = argmaxat∈AQ(st, at)
6: st+1 = π(st, at)
7: rt = F(st)
8: εt+1 = εt + ε0N
9: x̄∗i ← x̄i, at, st, rt

10: end if
11: Convolutional Mapping & Classifier:
12: if iteration < N ′ then
13: y′i ← x̄∗i
14: end if
15: return y′i

y′i = softmax(W oxfi + bo) (18)

where W f ,W o, bf , bo denote the corresponding weights and
biases, respectively. The y′ denotes the predicted label. The
cost function is measured by cross entropy, and the `2-norm
(with parameter λ) is adopted as regularization to prevent
overfitting.:

cost = −
∑
x

y′ilog(yi) + λ`2 (19)

The AdamOptimizer algorithm optimizes the cost function.
The fully connected layer extracts as the represented features
and fed them into a lightweight nearest neighbor classifier. The
convolutional mapping updates for N ′ iterations. The proposed
adaptive cognitive activity recognition with reinforced atten-
tive convolutional neural networks is shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we report our evaluation of the proposed ap-
proach on three datasets corresponding to different application
scenarios, with a focus on accuracy, latency, and resilience.

A. Application Scenarios and Datasets

1) Application Scenarios: We evaluate our approach on
various datasets in three applications of EEG-based Brain-
Computer Interfaces.
Movement Intention Recognition (MIR). EEG signals mea-
sure human brain activities. Intuitively, different human inten-
tion will lead to diverse EEG patterns [5]. Intention recognition
plays a significant role in practical scenarios such as smart
home, assisted living [6], brain typing [5], and entertainment.
For the disabled and elders, intent recognition can help them
to interact with external smart devices such as wheelchairs
or service robots real-time BCI systems. Besides, for people
without vocal ability, they may have the chance to express
their thoughts with the help of certain intention recognition
technologies (e.g., brain typing). Even for the healthy human
being, intent recognition can be used in video game playing
and other daily living applications.

Person Identification (PI). EEG-based biometric identifica-
tion [8] is an emerging person identification approach, which is
highly attack-resilient. It has the unique advantage of avoiding
or alleviating the threat of being deceived which is often
faced by other identification techniques. This technique can be
deployed in identification and authentication scenarios such as
bank security system and customs security check.

Neurological Diagnosis (ND). EEG signals collected in the
unhealthy state differ significantly from the ones collected in
the normal state concerning frequency and pattern of neuronal
firing [2]. Therefore, EEG signals have been used for neuro-
logical diagnosis for decades [39]. For example, the epileptic
seizure is a common brain disorder that affects around 1%
of the population, and an EEG analysis of the patient could
detect its octal state.

2) Datasets: To evaluate how the proposed approach works
in the aforementioned application scenarios, we choose several
EEG datasets with various collection equipment, sampling
rates, and data sources. We utilize motor imagery EEG signals
from a public dataset eegmmidb for intention recognition, the
EEG-S dataset for person identification, and the TUH dataset
for neurological diagnosis.

eegmmidb. EEG motor movement/imagery database (eegm-
midb)5 were collected by the BCI200 EEG system, which
recordsed the brain signals using 64 channels with a sampling
rate of 160Hz. EEG signals were recorded when the subject
was imaging about certain actions (without any physical
action). This dataset includes 560,000 samples collected from
20 subjects. Each sample have one of five different labels:
eye-closed, left hand, right hand, both hands, and both feed.
Each sample is a vector of 64 elements that correspond to 64
channel of EEG data.

EEG-S. EEG-S is a subset of eegmmidb, in which the data
were gathered while the subject kept eyes closed and stayed
relaxed. Eight subjects were involved and each subject gener-
ated 7,000 samples. Labels are the subjects’ IDs, which range
within [0-7].

TUH. TUH [40] is a neurological seizure dataset of clinical
EEG recordings. The EEG recording is associated with 21
channels from a 10/20 configuration and a sampling rate of
250 Hz. We selected 12,000 samples from each of five subjects
(2 males and three females). Half of the samples were labeled
as epileptic seizure state. The remaining samples were labeled
as the normal state.

3) Parameter Settings: We configured the default settings
of our approach as follows. In the selective attention learning:
K̄ = 128, the Dueling DQN had 4 lays and the node number
in each layer were: 2 (input layer), 32 (FCL), 4 (A(st, at))
+ 1 (V (st)), and 4 (output). The decay parameter γ = 0.8,
ne = ns = 50, N = 2, 500, ε = 0.2, ε0 = 0.002, learning
rate= 0.01, memory size = 2000, length penalty coefficient
β = 0.1, and the minimum length of attention zone was set as
10. In the convolutional mapping, the node number in the input

5https://www.physionet.org/pn4/eegmmidb/



TABLE II: Comparison with baselines

Scenarios Datasets Metrics Non-Deep Learning Baselines Deep Learning Baselines
SVM RF KNN AB LDA LSTM GRU CNN Ours

MIR eegmmidb

Accuracy 0.5596 0.6996 0.5814 0.3043 0.5614 0.648 0.6786 0.91 0.9632
Precision 0.5538 0.7311 0.6056 0.2897 0.5617 0.6952 0.8873 0.9104 0.9632
Recall 0.5596 0.6996 0.5814 0.3043 0.5614 0.6446 0.6127 0.9104 0.9632
F1-score 0.5396 0.6738 0.5813 0.2037 0.5526 0.6619 0.7128 0.9103 0.9632

PI EEG-S

Accuracy 0.6604 0.9619 0.9278 0.35 0.6681 0.9571 0.9821 0.998 0.9984
Precision 0.6551 0.9625 0.9336 0.3036 0.6779 0.9706 0.9858 0.998 0.9984
Recall 0.6604 0.962 0.9279 0.35 0.6681 0.9705 0.9857 0.998 0.9984
F1-score 0.6512 0.9621 0.9282 0.2877 0.668 0.9705 0.9857 0.998 0.9984

ND TUH

Accuracy 0.7692 0.92 0.9192 0.5292 0.7675 0.6625 0.6625 0.9592 0.9975
Precision 0.7695 0.9206 0.923 0.7525 0.7675 0.6538 0.6985 0.9593 0.9975
Recall 0.7692 0.92 0.9192 0.5292 0.7675 0.6417 0.6583 0.9592 0.9975
F1-score 0.7692 0.9199 0.9188 0.3742 0.7675 0.6449 0.6685 0.9592 0.9975

TABLE III: Comparison with the state-of-the-art approaches

Scenarios Datasets Metrics State-of-the-art

MIR eegmmidb

Method Rashid [20] Zhang [5] Ma [21] Alomari [22] Sita [23] Alomari [24]
Accuracy 0.9193 0.9561 0.6820 0.8679 0.7584 0.8515
Precision 0.9156 0.9566 0.6971 0.8788 0.7631 0.8469
Recall 0.9231 0.9621 0.7325 0.8786 0.7702 0.8827
F1-score 0.9193 0.9593 0.7144 0.8787 0.7666 0.8644
Method Shenoy [25] Szczuko [26] Stefano [27] Pinheiro [28] Kim [29] Ours
Accuracy 0.8308 0.9301 0.8724 0.8488 0.8115 0.9632
Precision 0.8301 0.9314 0.8874 0.8513 0.8128 0.9632
Recall 0.8425 0.9287 0.8874 0.8569 0.8087 0.9632
F1-score 0.8363 0.9300 0.8874 0.8541 0.8107 0.9632

PI EEG-S

Method Ma [30] Yang [31] Rodrigues [32] Frashini [12] Thomas [33] Ours
Accuracy 0.88 0.99 0.8639 0.956 0.9807 0.9984
Precision 0.8891 0.9637 0.8721 0.9458 0.9799 0.9984
Recall 0.8891 0.9594 0.8876 0.9539 0.9887 0.9984
F1-score 0.8891 0.9615 0.8798 0.9498 0.9843 0.9984

ND TUH

Method Ziyabari [34] Harati [35] Zhang [36] Goodwin [37] Golmohammadi [38] Ours
Accuracy 0.9382 0.9429 0.994 0.924 0.9479 0.9975
Precision 0.9321 0.9503 0.9951 0.9177 0.9438 0.9975
Recall 0.9455 0.9761 0.9951 0.9375 0.9522 0.9975
F1-score 0.9388 0.9630 0.9951 0.9275 0.9480 0.9975

layer equaled to the number of attention zone dimensions. In
the convolutional layer: the stride had the shape [1, 1], the
filter size was set to [1, 2], the depth to 10, and the non-linear
function as ReLU. The padding method was zero-padding. No
pooling layer was adopted. The subsequent fully connected
layer had 100 nodes. The learning rate was 0.001 while the
`2-norm coefficient λ equaled 0.001. The transformation was
trained for 2000 iterations. In addition, we configured the key
parameters of the baselines as follows: Linear SVM (C = 1),
Random Forest (RF, n = 200), KNN (k = 1). In LSTM
(Long Short-Term Memory) and GRU (Gated Recurrent Unit),
nsteps = 5, other settings were the same as [6]. The CNN
had the same structure and hyper-parameters setting with the
convolutional mapping component in the proposed show.

B. Overall Comparison

1) Comparison Baselines: To measure the accuracy of the
proposed method, we compared with a set of baseline methods
including five non-deep learning and three deep learning based
baselines. Furthermore, we chose some competitive state-of-
the-art algorithms for every single task separately.

MIR Baselines:
Rashid et al. [20] use Discrete Wavelet Transform (DWT) to

extract features and feed into Levenberg-Marquardt Algorithm
(LMA) based neural network for motor imagery EEG intention
recognition.

Zhang et al. [5] design a joint convolutional recurrent neural
network to learn robust high-level feature presentations by
low-dimensional dense embeddings from raw MI-EEG signals.

Ma et al. [21] transform the EEG data into a spatial
sequence to learn more valuable information through RNN.

Alomari et al. [22] analyze the EEG characteristics by the
Coiflets wavelets and manually extract features using different
amplitude estimators. The extracted features are inputted into
SVM classifier for EEG data recognition.

Sita et al. [23] employ independent component analysis
(ICA) to extract features which are fed to a quadratic dis-
criminant analysis (QDA) classifier.

Alomari et al. [24] use wavelet transformation to filter and
process EEG signals. Then calculate the Root Mean Square
and Mean Absolute Value features for EEG recognition.

Shenoy et al. [25] propose a regularization approach based
on shrinkage estimation to handle small sample problem and
retain subject-specific discriminative features.

Szczuko [26] design a rough set based classifier for the aim
of EEG data classification.

Stefano et al. [27] extract the mu (7 ∼ 13Hz) and beta
(13 ∼ 30Hz) bands’ power spectral density (PSD) as manual
features to discriminate different motor imagery intentions.

Pinheiro et al. [28] adopt a C4.5 decision tree as the
classifier to distinguish the manually extracted EEG features
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Fig. 4: Confusion matrix and ROC curves with AUC scores of each dataset. CM denotes confusion matrix.

such as arithmetic mean and maximum value of the Fourier
transform.

Kim et al. [29] use a multivariate empirical mode decom-
position to obtain the mu and beta rhythms from the nonlinear
EEG signals.

PI Baselines:
Ma et al. [30] adopt a CNN structure to automatically extract

an individual’s best, unique neural features with the aim of
person identification.

Yang et al. [31] present an approach for biometric identifi-
cation using EEG signals based on features extracted with the
Hilbert-Huang Transform (HHT).

Rodrigues et al. [32] propose the Flower Pollination Algo-
rithm under different transfer functions to select the best subset
of channels that maximizes the accuracy, which is measured
using the Optimum-Path Forest classifier.

Frashini et al. [12] decompose EEG signals into standard
frequency bands by a band-pass filter and estimate the func-
tional connectivity between the sensors using the Phase Lag
Index. The resulting connectivity matrix was used to construct
a weighted network for person identification.

Thomas et al. [33] extract sample entropy features from the
delta, theta, alpha, beta and gamma bands of 64 channel EEG
data, which are evaluated for subject-identification.

ND Baselines:
Ziyabari et al. [34] adopt a hybrid deep learning architec-

ture, including LSTM and stacked denoising Autoencoder, that
integrates temporal and spatial context to detect the seizure.

Harati et al. [35] demonstrate that a variant of the filter
bank-based approach and provides a substantial reduction in

the overall error rate.
Zhang et al. [36] extract a list of 24 feature types from the

scalp EEG signals and found 170 out of the 2794 features to
classify epileptic seizures accurately.

Goodwin et al. [37] combine recent advances in RNN with
access to textual data in EEG reports to automatically extract-
ing word- and report-level features and infer underspecified
information from EHRs (electronic health records).

Golmohammadi et al. [38] propose a seizure detection
method by using hidden Markov models (HMM) for sequential
decoding and deep learning networks.

2) Results: Tables II presents the classification metrics
comparison between our approach and well-known baselines
(including Non-DL and DL baselines), where DL, AdaB,
LDA represent deep learning, Adaptive Boosting, and Linear
Discriminant Analysis, respectively. The results show that our
approach achieved the highest accuracy on all the datasets.
Specifically, the proposed approach achieved the highest accu-
racy of 0.9632, 0.9984, and 0.9975 on eegmmidb, EEG-S, and
TUH dataset, respectively. Further, we conducted an ablation
study by comparing our method, which mainly combined
selective attention mechanism and CNN, with the solo CNN.
It turned out that our approach outperformed CNN, demon-
strating the proposed selective attention mechanism improved
the distinctive feature learning.We show the confusion matrix
and ROC curves (including the AUC scores) of each dataset
in Figure 4. In Figure 4a, ‘L’, ‘R’, and ‘B’ denote left, right,
and both, respectively.

Besides, to further evaluate the performance of our model,
we compared our framework with 21 state-of-the-art methods
which using the same dataset. In particular, we compared with
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11 competitive state-of-the-art methods over motor imagery
classification and five cutting edges separately over person
identification and neurological diagnosis scenarios. Table III
shows the comparison results.

We could observed that our proposed framework consis-
tently outperformed a set of widely used baseline methods
and strong competitors on three different datasets. The perfor-
mance shows a significant improvement compared with other
baselines. These datasets were collected using different EEG
hardware, ranging from high-precision medical equipment to
off-the-shelf EEG headset with a different number of EEG
channels. Regarding the seizure diagnosis in ND, by setting the
normal state as impostor while the seizure state as genuine, our
approach gained a False Acceptance Rate (FAR) of 0.0033 and
a False Rejective Rate (FRR) of 0.0017. This outperformed the
existing methods by a large margin [11], [35], [37], [38].

C. Resilience Evaluation

In this section, we focus on evaluating the resilience of
proposed method in coping with various number of EEG signal
channels, and incomplete EEG signals.

In practice, the number of EEG channels of EEG devices are
diverse due to two reasons. First, different off-the-shelf or on-
the-shelf devices have various channels numbers. Intuitively,
the quality of signals and the contained information is directly
associated with the number of channels. In the meantime,
the devices with more channels usually are more expensive
and less portable. Second, incomplete EEG signals cause the
degradation of BCI applications. It could happen when some
electrical nodes are loosened because of weak maintenance of
EEG devices. To investigate the robustness of incomplete EEG
signals with missing channels, we also conduct experiments
by randomly selecting part of a proportion of signal channels
over three datasets. For example, by selecting 20% of channels
on the eegmmidb dataset, the selected channel number is
12 = round(64 ∗ 0.2). Figure 6 shows the experiments
results (0.4 denotes the accuracy and 20% denotes the channel
percentage used for training). The radar chart demonstrates
that eegmmidb and EEG-S, both with 64 channels, can achieve
competitive accuracy even with only 20% signal channels.
In contrast, TUH (21 channels) is highly dependent on the
channel numbers. The reason is that TUH only remains five
channels for 20% channel percentage, respectively. According
to our experience, the proposed framework requires at least
eight EEG channels to achieve high accuracy.

D. Latency Analysis

Except for the high accuracy of EEG signal classification,
the low latency is another critical requirement for the success
of real-world BCI applications.

In this section, we take the eegmmidb dataset as an example
to compare the latency of the proposed framework with
several state-of-the-art algorithms. The results are presented
in Figure 5. We observed that our approach had competitive
latency compared with other methods. The overall latency was
less than 1 second. The deep learning based techniques in this
work do not explicitly lead to extra latency. One of the main
reasons may lie in that the reinforced selective attention has
filtered out unnecessary information. To be more specific, the
classification latency of the proposed framework was about
0.7∼0.8 seconds, which mainly resulted from the classifying
procedure and convolutional mapping. The latency caused
by the classifier was around 0.7 seconds. The convolutional
mapping only took 0.05 sec on testing although it took more
than ten minutes on training.

E. Reward Model Demonstration

We briefly report the empirical demonstration of the pro-
posed exponential reward model (Section III-B). We compared
the proposed reward model in Eq. 5 with the traditional reward
rt = eacc over three benchmark datasets (eegmmidb, EEG-S,
and TUH). The experiment results show that the novel reward
model achieved higher accuracy (0.9632, 0.9984, and 0.9975)
than the traditional model (0.9231, 0.9901, and 0.9762).

V. DISCUSSIONS

In this paper, we propose a robust, universal, adaptive
classification framework to deal with cognitive EEG signals
effectively and efficiently. However, there are several remain-
ing challenges.

First, the single EEG sample-based classification can only
reflect the instantaneous intention of the subject instead of a
long-term stable intention. One possible modification method
is post-processing like voting. For instance, we can classify
100 EEG samples and count the mode of the 100 outcomes
as the final classification result.

In addition, the reinforcement learning policy only works
well in the environment in which the model is trained, meaning
the dimension index should be consistent in the training and
testing stages. Various policies should be trained according to
different sensor combinations. Also, the replicate and shuffle
process cannot always provide the best spatial dependency.
Therefore, when the classification accuracy is not satisfied,
repeating the replicate and shuffle procedure help to enhance
the additional performance.

VI. CONCLUSION

This paper proposes a generic and effective framework for
raw EEG signal classification to support the development of
BCI applications. The framework works directly on raw EEG
data without requiring any preprocessing or feature engineer-
ing. Besides, it can automatically select distinguishable feature



dimensions for different EEG data, thus achieving high usabil-
ity. We conduct extensive experiments on three well-known
public datasets and one local dataset. The experimental results
demonstrate that our approach not only outperforms several
state-of-the-art baselines by a large margin but also shows low
latency and high resilience in coping with multiple EEG signal
channels and incomplete EEG signals. Our approach applies
to wider application scenarios such as intention recognition,
person identification, and neurological diagnosis.
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