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Abstract

Convolutional neural networks (CNNs) are deep learning frameworks which are
well-known for their notable performance in classification tasks. Hence, many
skeleton-based action recognition and segmentation (SBARS) algorithms bene-
fit from them in their designs. However, a shortcoming of such applications is
the general lack of spatial relationships between the input features in such data
types. Besides, non-uniform temporal scalings is a common issue in skeleton-
based data streams which leads to having different input sizes even within one
specific action category. In this work, we propose a novel deep-aligned convolu-
tional neural network (DACNN) to tackle the above challenges for the particular
problem of SBARS. Our network is designed by introducing a new type of filters
in the context of CNNs which are trained based on their alignments to the local
subsequences in the inputs. These filters result in efficient predictions as well as
learning interpretable patterns in the data. We empirically evaluate our framework
on real-world benchmarks showing that the proposed DACNN algorithm obtains
a competitive performance compared to the state-of-the-art while benefiting from
a less complicated yet more interpretable model.

1 Introduction

Action recognition is still a challenging problem in the area of computer vision despite its numerous
applications in sports analysis, video surveillance, and human-machine interaction [2, 3]. A popular
way to represent action data is through its description based on 3D skeleton sequences, which are the
3D positions of body joints through time. This representation medium can efficiently describe the
underlying dynamics of the actions [4]. Recently, the development of motion capture technologies
such as the Microsoft Kinect [5] along with the existing robust pose estimation methods [6] has
considerably facilitated the collection of skeleton-based datasets. These technological advancements
have motivated considerable research efforts being put into this area [7, 8].

In particular, skeleton-based action recognition has become an interesting problem for many deep
learning algorithms such as convolutional neural networks (CNNs) [9, 10, 11] and recurrent neural
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Figure 1: General overview of DACNN framework. Alignment kernels preprocess the input streams.
1D-CNN performs temporal prediction based on the derived alignment map. The fine-prediction unit
improves the resolution of output prediction.

networks (RNN) [8, 12, 13]. RNN methods can learn the temporal dynamics of the sequential data;
nevertheless, they have practical shortcomings in the training of their stacked structures [14, 15].

Compared to RNN architectures, CNN-based methods provide more effective solutions by extract-
ing local features from their input and finding discriminative patterns in the data [16, 10]. How-
ever, regardless of the promising feature extraction capability of CNN, its specific convolutional
structure is designed originally for image-based input data and primarily relies on spatial depen-
dencies between the neighboring points. In contrast, such a direct relationship does not generally
exist in skeleton-based action datasets. Although some works tried to solve this problem by using
1-dimensional filters (only for the temporal dimension), it is still not an efficient solution to this
specific shortcoming of CNN-based frameworks [17].

A crucial step before analyzing any motion data is the temporal segmentation phase, in which we
predict the action to which each time-frame belongs. Although there exist unsupervised algorithms
for temporal segmentation of motion data [18, 19], they usually oversegment actions into smaller
sub-actions or segment also the blank parts of the stream.

Motivations: An essential group of techniques for classification of the sequential data is time-series
alignment methods [20]. It is shown that via comparing each data sequence to some predefined or
learned sequences, we can discriminate or segment the data samples with high accuracy [21, 22].
Also, in algorithms similar to [23], finding a small distinct subsequence in the input data can reveal
its classification label. Therefore, it is logical to design filters in CNN architecture based on the
alignment concept to extract essential features in sequential data.

Contributions: In this work, we propose a novel framework named deep-aligned convolutional neu-
ral network (DACNN) as an efficient skeleton-based action recognition and segmentation (SBARS)
algorithm. As depicted in Fig. 1, DACNN is constructed upon the activation maps of the alignment
kernels in its first layer following by a CNN with 1-dimensional convolutional filters (1D-CNN).
This architecture makes DACNN flexible to the input size.

To be more specific, We introduce the alignment kernels (Al-filters) in the context of CNN, which
are more efficient than the convolutional filters regarding the temporal feature extraction and classifi-
cation of skeleton-based action data. DACNN learns temporal subsequences in the data as essential
local patterns which make the outcome of the network semantically interpretable and leads to more
accurate predictions.

In the next section, we summarize the most relevant work in the literature. In Sec. 3, we introduce the
alignment filters while we explain the architecture of DACNN in Sec. 4. The empirical evaluation
of DACNN is provided in Sec. 5, and we conclude the paper in the last section.
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2 Related Work

Generally, it is possible to split the skeleton-based action recognition methods into two general
categories:

The first group includes methods with a pre-processing step to extract features (usually hand-coded)
which best represent the skeleton information. For instance, in [24] the local occupancy pattern was
proposed based on the depth appearance of the joints along with an ensemble action recognition
model. In [25], they proposed a discriminator based on the covariance matrix of joints locations,
while in [26], the algorithm was designed based on the 3D geometric relationships between different
regions of the body.

The second category contains deep learning feature extraction methods which are generally designed
based on CNN and RNN models. Among RNN frameworks, a regularized LSTM architecture is pro-
posed in [27] for co-occurrence feature extraction. A spatiotemporal attention-based model is uti-
lized in [12] to assign different weights to different frames, and a trust-gate technique was proposed
in [13] to deal with the noise in skeleton-based data.

Regarding the approaches based on CNN models, Tang et al. [28] combined CNN with a reinforce-
ment learning module to learn the most efficient video frames. In [10], cylindrical coordinates were
utilized to present a new skeleton representation. The skeleton data was transformed into images
in [14] to be more appropriate for CNN architecture, and Li et al. [15] combined two CNN models
assigned to the joint position and velocity information individually.

3 Alignment Kernels for CNN

Principally, the input layer of a CNN consists of nf different channels {~xj}nf

j=1 ∈ R
T each of

which contains the temporal skeleton data related to one dimension of X. Based on the discussed
rationale in the previous section, we propose the following distance-based non-linear kernel as the
fundamental feature extraction unit of our DACNN architecture (Alignment layer in Fig. 1):

g(~xj |tt0 , ~f
1
i ) = e−‖~f1

i −~xj |
t
t0

‖2

2 , ∀i = 1, . . . , d1, (1)

where {~f1
i }d1

i=1 ∈ R
t are the alignment filters with the receptive field of t, and ~xj |tt0 denotes any

temporal window of length t starting from the t0-th frame of a ~xj channel. After scanning each

channel of X by these filters with a stride s (Fig. 2), we obtain a tensor V ∈ R
T×nf×d1 as the

activation map. Each entry vjik fromV represents the similarity between the j-th window in channel

~xi and the filter ~fk and summing V over its second dimension results in the more summarized
activation map V

1 ∈ R
d1×T (Fig. 2).

To make an analogy to a regular CNN structure, we reformulate the introduced alignments as an l2-
norm comparison layer followed by an activation-layer of f(x) = e−x units. This reformulation is
conceptually similar to the convolution and RELU layers of a regular CNN architecture. Therefore,
a proper classification-based training scenario leads to finding discriminative patterns in V

1 with

high activation values (near 1). In other words, we learn filters ~fi which can distinguish the data
classes based on their similarities to the local parts in the data channels {~xj}nf

j=1.

3.1 Vanishing Gradient and Saturated Activation

Updating the values of an Al-filters ~f in a gradient-based optimization routine, the activation func-

tion of (1) and its gradient obtain infinitesimal values if ‖~f − ~xj |tt0‖22 becomes large. This condition

leads to zero updates of ~fi in the optimization process which may occur when a filter ~fi has a large
distance to all subsequences in X (e.g., lousy initialization) or the learning rate is too high.

As a systematic workaround, we compute the activation map V
1 using the function

g(~x, ~f) = (1 + a)e−‖~x−~f‖2

2 − a (2)

instead of (1) by choosing a small a (in implementations we use a = 0.1). The value of g(~x, ~f)

becomes −a when |~x− ~f | is large, we preserve the sparseness effect of the activation function when
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Figure 2: The alignment layer of the network. Each Al-filter ~f1
i is applied to all nf channels in the

input to form the i-th row in the alignment map V
1. Adding V

1 to the alignment maps of other
Abs-filters derives the augmented map V̄.

computing V
1 and leads to faster convergence. In addition, in the backward phase of the training,

we employ the conditional gradient

∇~fg =

{

−2(1 + a)e−‖~∆‖2

2 ~∆ ‖~∆‖22 ≤ 0.5

−2[(1 + a)e−‖~∆‖2

2 + 1]~∆+ 2
√
0.5sign(~∆) ‖~∆‖22 > 0.5

(3)

where ~∆ = ~x − ~f , and
√
0.5 is the point from which the gradient of (1) starts to decrease toward

zero. In such case, the gradient becomes −2(~xj |tt0 − ~f) when ‖~f − ~xj |tt0‖22 has a relatively large
value and prevents the filter weights from becoming saturated. More detail explanation of the above
is provided in the Appendix section.

3.2 Abstract Filters

Although the proper training of the Al-filters can fit them to the small local patterns in X which are
essential to the classification task, we are also interested in finding longer patterns in the action data.
The benefits of finding these patterns are two folds:
1. Applying longer filters on the data leads to sparser activation maps (Fig. 3: {v4, v3} vs. {v1, v2}).
2. Long patterns are semantically more interpretable than the short ones (Fig. 3: v4 represents a
complete action).

To that aim, we define the abstract filters (Abs-filter) {~fp
i }

dp

i=1 with the receptive field of pt, where

p ∈ N. Each ~f
p
i is a temporal concatenation of p smaller Al-filter of size t as ~f

p
i = ⊕

j∈I

~f1
j , where ⊕

j∈I

concatenates the Al-filters ~f1
j with the index order given by the set I . To find ~f

p
i filters systematically,

we select the potential candidates among the Al-filters as the first step.

Figure 3: Abstract filters {~f4, ~f3} result in sparse alignment maps {v4, v3}, and ~f4 can be interpreted
as the representative of a complete arm movement in the raise action.
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Definition 1 Two Al-filters {~f1
i ,

~f1
j } of size t are candidates to form an Abs-filter if we can find a

window of size t starting at the time-frame t0 of a data channel ~xk such that

ρ(~f1
i ,

~f1
j , ~xk|tt0) = g(~xk|tt0 , ~f

1
i )g(~xk|2tt0+t,

~f1
j ) ≥ r, (4)

where r is a scaler with a value sufficiently close to 1.

Based on the definition 1, when ρ(~f1
i ,

~f1
j , ~xk|tt0) has a value close to 1, there exists a temporal

pattern in a channel of X which fits the concatenation of (~f1
i ,

~f1
j ). Accordingly, by using a moderate

threshold in (4) (e.g., r = 0.8), we collect all the candidate Al-filters ~f1
i in the forward pass (Fig. 1)

and form a binary-weighted graph G. In this graph, the filters {~f1
i }d1

i=1 are the nodes, those of which
correspond to the definition 1 have undirected links of weight −1 between them. Now, we find the
existing Abs-filters of different sizes via finding shortest paths between connected nodes of G, which
is efficiently solved by the Floyd Warshall algorithm [29]. So, those Abs-filters which are subsets of
the longer ones are detected and eliminated.

After finding M Abs-filter, for each p ≤ M, we apply the created filters {~fp
i }

dp

i=1 on the channels of

X (analogous to Al-filters). Then, the generated activation maps {Vp}Mp=2 are added to V
1 to result

in the augmented map V̄ (Fig. 2). An immediate benefit of these long filters is the sparse alignments

we obtain in each row of Ṽ (Fig. 2), which enriched the feature extraction part of our framework
(Fig. 1) and increases the interpretability of the outcome (Fig. 3).

4 Deep-Aligned CNN

In Sec. 3, we introduced the alignment kernels as the important feature extraction layer of our
skeleton-based action recognition algorithm (Fig. 1). Now, we discuss the role and rationale of
the remaining parts in the DACNN architecture.

For each real-life skeleton-based motion data X, different data channel (dimension) contain streams
of continues changes in the values of different joint orientations. These values particularly lay in the
range of [0 2π] throughout normalization (or in [θ0 2π] due to physical limitations). Therefore, it
is highly expected to find short subsequences in different dimensions and temporal locations in X

(or long patterns in symmetrical joints), which have similar shapes or curvatures (Fig. 4). A similar
characteristic can also be observed in the quaternion representation of the X.

Based on this observation, we can extract the important patterns in dimension of X by applying each

filter ~f
p
i to all the channels. As a direct benefit, this structure notably reduces down the network’s

number of parameters and avoids an unnecessary model complexity.

After deriving the augmented activation map V̄ (Fig. 2), we feed it to a regular CNN which contains
1-dimensional convolution filters (1D-conv) as in Fig. 5. Each deep layer q of the network contains

Figure 4: Examples of similar subsequences (red curves) which are found among different body
joints and in different temporal locations related to a skeleton-based action.
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Figure 5: The architecture of the 1D-CNN unit in the DACNN framework. It maps the augmented
alignment map V̄ (input) to the prediction map O (output ).

two 1D-conv layers following a max-pooling layer with the stride of 2. This combination results in a

feature map lq for each deep layer q with the temporal size of RT/2q . Hence, the data representation
becomes more abstract as we go through these layers.

As a complementary choice to Sec. 3.1, we apply the ELU operator [30] to the input of each max-
pooling layer as

ω(x) =
1

2
[x+ ex − 1 + sign(x)(x− ex + 1)], (5)

while dω
dx |x=0 = 1 lets the gradients flow through the layers of 1D-CNN even if they belong to any

saturated filter.

4.1 Prediction Layer

We want our network structure to take inputs of different sizes and also to fit both the segmentation
and classification problems. To that aim, we design a convolutional prediction layer (inspired by
[31]) to obtain a prediction map O ∈ R

T×C as the output of 1D-CNN (last layer in Fig. 5). Each
entry oct represents the confidence of the network in assigning the t-th time-frame of X to the class
c.

We apply a convolution layer of size 1 × C (score-conv) to the last activation map (lq in Fig. 5)

to map the abstract features to a score-map of size C × T
2q followed by a ×2q upsampling. The

upsampling is performed using the transposed convolution of size 2q (A.K.A deconvolution) [32].
We compare the obtained prediction map O to the target label matrix H using a cross-entropies loss
function LOSS to calculate the prediction error (cost) of the network

LOSS = −
C
∑

c=1

T
∑

t=1

hctlog(oct). (6)

Therefore, after DACNN is converged to an optimal point, we can predict the label of each individ-
ual time-frame t in X as c = argmax

c
‖1 − oct‖22. However, in a classification setting where the

whole X sequence belongs to one class, we identify its class label as c = argmin
c

‖~11×T − ~oc,:‖22,
in which ~oc,: denotes the c-th row of O. Nevertheless, the training phase of DACNN is the same
for both segmentation and classification tasks using the defined cost term LOSS in (6). The com-
plete scheme of the DACNN framework while putting all units together is presented in the online
supplementary material2.

4.2 Fine-Prediction Module

According to the structure of 1D-CNN, each pooling layer downsamples the feature maps by a factor
of 2. Hence, for a network with q deep layers, the prediction map O has the resolution of 2q time-

2https://github.com/bab-git/DACNN
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Figure 6: Fine-prediction module of DACNN. The skip-connections from score-maps of specific
Abs-filters result in fine-grained segmentations compared to Figure 5.

frames, which reduces the accuracy of the network, especially in the segment borders. Therefore, to
have a fine-grained prediction map, we employ a specific skip-connection structure throughout the
fine-prediction module in our DACNN framework (Fig. 1).

As illustrated in Fig. 6, we add the score maps obtained from the Abs-filters (from the align-
ment layer) to the upsampling process of 1D-CNN. More precisely, for the Abs-filters of size
p = 2q̃t, ∀q̃ ≥ 2, we downsample their alignment map V

p by a max-pooling of size p and feed

it to a score-conv layer. This operation results in a score map S̃2 ∈ R
C× T

2q̃ that we add to the
upsampled score map of a q-layer 1D-CNN (Fig. 6).

As the rationale, each V
p has a sparse activation-map with gap intervals of pt between the extracted

matching patterns especially when p ≥ 2 (e.g., Fig. 3). Hence, p-factor downsampling preserves the

essential information existing in V
p while it still increases the resolution of O by order of 2(q−q̃)

when q̃ < q. Additionally, this skip-connection module intensifies the role of the Al-filters in the
prediction task due to the weight-sharing between them and the Abs-filter, which increases their
discriminative quality.

5 Experiments

In this section, we implement our DACNN framework on 3 well-known action recognition datasets
in order to obtain empirical evaluation of its performance.3.

5.1 Datasets

CMU Mocap [33]: This human motion capture dataset is a an extensive collection of different
human activities which are recorded by the Vicon system. The data is collected from 144 subjects
each of which performs a sequence of different actions in separate sessions. The segmentation
is performed on each session and is evaluated based on the Jaccard index measure. We collect the
sessions which contain actions from 15 highly observed categories in the data including walk, punch,
wave, run, jump, and raise, and consider the rest of actions as the blank spaces (gaps). The training
set contains 75% of the sessions, while the rest is left for testing.

Montalbano V2 dataset [34] This dataset is related to the "ChaLearn Looking at People" challenge
which is recorded with Kinect technology as described by [34]. It includes 13,858 samples of 20
different Italian sign gestures which are recorded in continues sequences. The task of this challenge
is to perform SBARS for sign gestures based on the given test and training streams. Following [34],
we employ the Jaccard index for performance evaluations.

SYSU-3D Human-Object Interaction dataset (SYSU) [35]: This dataset contains 12 different
action classes recorded in 480 video sequences. SYSU dataset is captured from 40 human subjects,

3More implementation detail, additional experiments, and the code of DACNN framework are available
from https://github.com/bab-git/DACNN
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and in each time-frame, it represents the 3D coordinates of 20 body joints. We create the test and
train batches by splitting the number of subjects in half over 10 randomized splits.

NTU-RGB+D Dataset (NTU) [36]: This action recognition dataset consists of 60 classes of actions
captured from 40 human subjects. It has 56,000 sequences with 4 million frames in total, and the
recorded data of 25 main body joints are used for the action recognition task. There are two typical
evaluation protocols for this benchmark: The Cross-Subject (CS) recognition task which uses data of
20 subjects for training and the rest for testing, and the Cross-View (CV) task in which the recorded
samples from camera 2 and 3 constitute the training set and the rest is preserved for the test set.

5.2 Implementation Details

In the implementation of DACNN, we choose the kernel size of t = 3 for Al-filters and 1 × 3 for
the conv-filters. This choice of t for Al-filters provides them enough angular freedom to learn any
local curvature in the data. We also apply the dropout [37] of rate 0.65 to prevent DACNN from
overfitting. We train DACNN using the Adam approach [38], and the skeleton data is normalized
per dimension which allows the filters to be aligned to local parts of different joints. Regarding the
implementation of the baseline algorithms, either we use their publicly available codes and tune their
parameters with cross-validation on training set, or we refer to their reported results in the relevant
publications. For each dataset, we use its typical evaluation setting reported in the literature.

5.3 Action Segmentation Results

CMU Mocap: The segmentation performance of DACNN on CMU Mocap dataset is evaluated by
its comparison to SSSM [18] and HACA [19] as unsupervised temporal segmentation approaches,
and to ConvS2S [16], End2End [39], LSTM-CRF [40], and RNN-CRF [41] as the deep sequence
labeling frameworks. In the latter group, we replace the word-embedding parts with the quaternion
values of the time-frames. As reported in Table 1, the performances of deep learning algorithms have
substantial distances from the unsupervised methods. Compared to them, DACNN outperforms the
best method (End2End) with a notable margin of 4.1%. This result supports the effectiveness of
the DACNN architecture regarding the supervised segmentation of skeleton-based action data. In
Fig. 7, the segmentation results of some baselines are visually evaluated on one of the challenging
sequences from the CMU dataset (Subject 86, trial 03). In comparison to the unsupervised method
SSSM, the supervised algorithms better identify the gaps (insignificant actions) because they are
optimized by the relevant label information in the training phase. Additionally, SSSM finds sub-
clusters in some of the segments (e.g., walk and kick) which is not the desired outcome in supervised
temporal segmentation.

The algorithms DACNN and DACNN-nf (without fine-prediction unit) have fewer mistakes in the
results, especially in the gap areas. Besides, DACNN obtains less overlapping between the segments
and better predictions in the gap areas compared to DACNN-nf, which emphasizes the positive effect
of the fine-prediction module in DACNN. In comparison, End2End has lower performance than
DACNN and DACNN-nf regarding the gap areas and segments.

Montalbano V2 dataset: For this dataset, we compare DACNN to the following baselines regard-
ing the temporal segmentation accuracy: YNL [34], Terrier [34], Quads [34], Ismar [34], Gesture

Montalbano CMU Mocap

Method JI Method JI

YNL [34] (2015) 27.1 HACA [19] (2013) 71.4
Terrier [34] (2015) 53.9 SSSM [18] (2017) 75.7
Quads [34] (2015) 74.6 LSTM-CRF [40](2016) 85.9
Ismar [34] (2015) 74.7 End2End [39] (2016) 88.4
Gesture Labeling [42] (2014) 78.4 RNN-CRF [41] (2016) 88.1
CNN+LSTM2 [43] (2018) 79.5 ConvS2S [16] (2017) 86.4
Moddrop [44] (2016) 83.3

DACNN (Proposed) 87.2 DACNN (Proposed) 92.5

Table 1: Segmentation accuracy for Montalbano V2 and CMU Mocap based on Jaccard Index (JI).
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Figure 7: The segmentation results on the CMU dataset (Subject 86, trial 03). GT: ground truth
segments. DACNN-nf: the DACNN framework without the fine-prediction unit (colored figure).

Labeling [42], Moddrop [44], and CNN+LSTM2 [43]. The majority of these algorithms need to
perform a separate segmentation on the data prior to the training phase, but the DACNN’s training
is independent of that preprocessing phase. According to Table 1, our proposed method obtained
higher performance than the baselines (2.9% margin in the Jaccard index), while the best alternative
approach (Moddrop) has a relevantly complex network architecture and uses 3 different modalities
(video, Mocap, and audio).

5.4 Action Recognition Results

SYSU dataset: For the empirical evaluations, we compare our DACNN algorithm to other baselines
including CNN+DPRL [28], ST-LSTM+Trust Gate [13], Dynamic Skeletons [35], LAFF(SKL) [45],
SR-TSL [46], VA-LSTM [47], and GCA-LSTM [48], which includes the most recent deep learning
applications (CNN, LSTM, etc.) on this dataset. In Table 2, our proposed DACNN framework
outperforms the state-of-the-art with a 2.3% margin.

NTU dataset: For the NTU dataset, we evaluate DACNN in comparison to the state-of-the-
art methods from the literature: HBRNN-L [8], Dynamic Skeletons [35], LieNet-3Blocks [49],
Part-aware LSTM [36], ST-LSTM+Trust Gate[13], CNN+LSTM2 [43], Two-Stream RNN [15],
STA-LSTM [12], GCA-LSTM (stepwise) [48], Clips+CNN+MTLN [10], View invariant [14],
CNN+DPRL [28], VA-LSTM [47], ST-GCN [11], CNN+LSTM [50], Two-Stream CNN [9], and SR-
TSL [46]. As we can see in Table 3, DACNN did not beat SR-TSL and CNN+LSTM in recognition
accuracy. Nevertheless, It still achieves a competitive result compared to other recent state-of-the-art
algorithms, such as ST-CGN, CNN+DRPL, and VA-LSTM, and even outperforms CNN+LSTM in
the CS settings.

It is important to notify that, the NTU dataset is recorded in a very constrained experimental setting,
which is an advantage for the methods which considerably rely on the spatial processing of human
poses (such as SR-TSL and CNN+LSTM).

5.5 Interpreting the Abs-filters

Apart from the action recognition and segmentation performance, it is interesting to visualize the
learned Abs-filters of DACNN in order to investigate any semantic pattern among them. Relevantly,
another strength of DACNN compared to other deep neural networks is its simplicity in visualization

Method Acc. Method Acc.

LAFF(SKL) [45] (2016) 55.2 CNN+DPRL [28] (2018) 76.7
Dynamic Sk. [35] (2015) 75.2 GCA-LSTM [48] (2017) 78.6
ST-LSTM+TG [13] (2016) 76.7 VA-LSTM [47] (2017) 77.8
SR-TSL [46] (2018) 82.0 DACNN (Proposed) 84.3

Table 2: Recognition accuracy (%) for SYSU-3D dataset.
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Method CS CV Method CS CV

HBRNN-L [8] 59.1 64.0 Clips+CNN [10] 79.6 84.8
Dynamic Sk. [35] 60.2 65.2 View invariant [14] 80.0 87.2
LieNet-3Blocks [49] 63.1 68.4 CNN+DPRL [28] 82.3 87.7
Part-aware LSTM [36] 62.9 70.3 VA-LSTM [47] 79.5 87.9
CNN+LSTM2 [43] 67.5 76.2 ST-GCN [11] 81.5 88.3
ST-LSTM+TG [13] 69.2 78.7 Two-Stream CNN [9] 83.1 89.1
Two-Stream RNN [15] 72.1 79.7 CNN+LSTM [50] 82.9 91.0
STA-LSTM [12] 74.1 81.8 SR-TSL [46] 84.8 92.4
GCA-LSTM [48] 76.3 84.5 DACNN (Proposed) 83.8 90.7

Table 3: Recognition accuracy (%) for NTU dataset regarding Cross-View (CV) and Cross-Subject
(CS).

and interpretation of its trained filters (Abs-filters). Specifically, we associate filter ~f
p
i to class c if

c = argmax
c

∑

X∈class c

‖~vp(i, :)|X‖22, (7)

in which ~vp(i, :)|X denotes the i-th row of the alignment map V
p after applying ~f

p
i on the dimen-

sions of X. In Fig. 8, we visualize some of the Abs-filters learned by DACNN after being trained
on the NTU dataset. These filters are mostly related to the action classes walking, waving, sitting,
jumping, and throwing. It is clear that each filter has learned a semantic subsequence from one joint
of the whole action. For instance, one Abs-filter is aligned with the movement of the left foot in the
jumping action before the subject leaves the ground, or another filter has learned half of a walking
cycle on the right foot. Considering other Abs-filters which are illustrated in Fig. 8, each of them
has recognized a specific temporal pattern which facilitates the separation of that class from others.

5.6 Ablation Study

To study individual roles of the different modules in DACNN (Fig. 1), we perform an ablation study
by repeating the recognition experiments (Sec. 5.4) for the variants of DACNN framework (Table 4).
In DACNN-nf, we remove the fine-prediction module, and we do not employ any Abs-filter in
DACNN-Al. The DACNN-1D network is similar to DACNN-Al, but it uses 1D-conv filters instead
of the Al-filters. According to the results in Table 4, the lower performance of DACNN-nf compared
to DACNN shows the positive effect of the Abs-filter skip-connections (Fig. 6) in improving the
accuracy of the final prediction in 1D-CNN.

Nevertheless, the accuracy of DACNN-nf is still close to DACNN and is even higher than the state-
of-the-art for SYS-3D and Montalbano. Removing the Abs-filters from DACNN causes a notable
decrease in the performance of DACNN-Al, which justifies the significant role of these filters in ex-
tracting the key patterns in the data. However, DACNN-Al obtains higher accuracies than DACNN-
1D which proves how effective the alignment filters are regarding the SBARS problems.

Figure 8: Visualization of the Abs-filters learned by DACNN on the NTU dataset and the classes to
which they are mostly related. Red links indicate the body parts in which the Abs-filters have high
alignment values.
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Method SYS-3D NTU CS NTU CV Mont.

DACNN-1D 71.8 70.5 75.5 70.54
DACNN-Al 78.4 77.4 85.3 82.53
DACNN-nf 82.5 81.8 88.9 84.15

DACNN (Fig. 1) 84.3 83.0 90.7 85.2

Table 4: Prediction accuracies (%) for partial implementations of DACNN on three selected datasets.

6 Conclusions

In this work, we proposed a deep-aligned convolutional neural network for skeleton-based action
recognition and temporal segmentation. This network is constructed upon introducing the novel
concept of temporal alignment filters for CNNs. These filters are efficient choices for classification
of skeleton-based motion data compared to regular convolution filters. They extract crucial local
patterns in the temporal dimensions of the data to better discriminate the action classes. Besides the
competitive performance of our DACNN framework compared to the state-of-the-art, its extracted
features (learned Abs-filters) are easily interpretable regarding their semantic contents. Our empiri-
cal evaluation of DCANN on different SBARS benchmarks support our claims regarding the perfor-
mance and benefits of our network. We believe that the idea of incorporating alignments in CNNs
can be further studied in other relevant areas such as relevance analysis and generative adversarial
networks.
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