
An Arm-Wise Randomization Approach to
Combinatorial Linear Semi-Bandits

Kei Takemura∗ and Shinji Ito∗†
∗NEC Corporation, Japan, {k-takemura@az, s-ito@me}.jp.nec.com

†The University of Tokyo, Japan

Abstract—Combinatorial linear semi-bandits (CLS) are widely
applicable frameworks of sequential decision-making, in which
a learner chooses a subset of arms from a given set of arms
associated with feature vectors. Existing algorithms work poorly
for the clustered case, in which the feature vectors form several
large clusters. This shortcoming is critical in practice because
it can be found in many applications, including recommender
systems. In this paper, we clarify why such a shortcoming occurs,
and we introduce a key technique of arm-wise randomization to
overcome it. We propose two algorithms with this technique:
the perturbed C2UCB (PC2UCB) and the Thompson sampling
(TS). Our empirical evaluation with artificial and real-world
datasets demonstrates that the proposed algorithms with the arm-
wise randomization technique outperform the existing algorithms
without this technique, especially for the clustered case. Our
contributions also include theoretical analyses that provide high
probability asymptotic regret bounds for our algorithms.

Keywords-multi-armed bandit, combinatorial semi-bandit, con-
textual bandit, recommender system

I. INTRODUCTION

The multi-armed bandit (MAB) problem is a classic
decision-making problem in statistics and machine learning.
In MAB, a leaner chooses an arm from a given set of arms
that correspond to a set of actions and gets feedback on the
chosen arm, iteratively. MAB models the trade-off between
exploration and exploitation, a fundamental issue in many
sequential decision-making problems.

Over the last decade, the linear bandit (LB) problem,
a generalization of (stochastic) MAB, has been extensively
studied both theoretically and practically because many real-
world applications can be formulated as LBs [1]–[6]. LB
utilizes side information of given arms for choosing an arm.
When recommending news articles, for example, the side
information represents contents that may frequently change
[6]. An alternative line of generalization is the combinatorial
semi-bandit (CS) problem [7], [8]. While MAB and LB only
cover cases in which one arm can be selected in each round,
CS covers cases in which multiple arms can be selected
simultaneously.

More recently, the combinatorial linear semi-bandit (CLS)
problem has been studied as a generalization of both LB
and CS for more complex and realistic applications [9], [10].
For example, the semi-bandit setting allows CLS to optimize
recommender systems that display a set of items in each time
window. Algorithms for MAB and LB can be directly applied

to CS and CLS, respectively, but the resulting algorithms are
not applicable because the arms exponentially increase.

Existing algorithms for CLS are theoretically guaranteed to
enjoy a sublinear regret bound, which implies that the arms
chosen by the algorithms converge to optimal ones as the
rounds of decision-making progress. However, we show that
the rewards obtained by such algorithms grow particularly
slowly in early rounds when the feature vectors of arms
form many large clusters, which we call the clustered case.
Intuitively, when the set of arms forms many large clusters of
similar arms, existing algorithms typically choose arms from
only one cluster in each round. As a result, the algorithms
fail to balance the trade-off if the majority of the clusters are
sub-optimal. This issue is crucial in practice because clustered
cases can be found in applications such as recommender
systems [11]–[13]. In this paper, we aim to overcome this
issue for clustered cases and to propose practically effective
algorithms.

Our contributions are two-fold: One, we clarify why ex-
isting algorithms are largely ineffective for clustered cases.
Moreover, we show that a natural extension of the Thompson
sampling (TS) algorithm for LB is ineffective for the same
reason. We cover more quantitative analyses in Section IV and
Section VII. Two, we introduce the arm-wise randomization
technique of overcoming this disadvantage for the clustered
case, which draws individual random parameters for each
arm. Conversely, the standard TS algorithm uses round-wise
randomization, which shares random parameters among all
arms.1 Using the arm-wise randomization technique, we pro-
pose the perturbed C2UCB (PC2UCB) and the TS algorithm
with arm-wise randomization for CLS. Unlike existing algo-
rithms, which choose arms from a single cluster, the proposed
algorithms choose arms from diverse clusters thanks to the
arm-wise randomization. Consequently, our algorithms can
find an optimal cluster and get larger rewards in early rounds.

We show not only the proposed algorithms’ practical ad-
vantage through numerical experiments but also their high
probability regret bound. In the numerical experiments, we
demonstrate on both artificial and real-world datasets that the
proposed algorithms resolve the issue for clustered cases. To
the best of our knowledge, the TS algorithms with round-wise
randomization and arm-wise randomization are the first TS

1 Round-wise randomization and arm-wise randomization are indistin-
guishable in the context of standard (non-contextual) MAB problems. The
difference appears when side information of given arms is considered.

ar
X

iv
:1

90
9.

02
25

1v
2

 [
st

at
.M

L
]

 1
0

Se
p

20
19

algorithms for CLS with a high probability regret bound.

II. RELATED WORK

UCB algorithms with theoretical guarantees have been de-
veloped for many applications [4], [6], [9], [10]. Li et al. [6]
studied personalized news article recommendations formulated
as LB and proposed LinUCB. Using techniques proposed by
Auer [3], Chu et al. [4] showed that a variant of LinUCB
has a high probability regret bound. Qin, Chen, and Zhu [9]
studied a more realistic setting in which the recommender
system chooses a set of items simultaneously as diversified
recommendations maximize user interest. They formulated the
problem as a nonlinear extension of CLS and showed that
C2UCB has a high probability regret bound for the problem.

The TS algorithm was originally proposed for MAB as
a heuristic [14]. Several previous studies proposed TS algo-
rithms for generalized problems and empirically demonstrated
TS algorithms are comparable or superior to UCB algorithms
and others using synthetic and real-world datasets [15]–[18].
Chapelle and Li [15] focused on MAB and the contextual
bandit problem for display advertising and news article recom-
mendations. Note that the contextual bandit problem includes
LB as a special case. Wang et al. [18] proposed the ordered
combinatorial semi-bandit problem (a nonlinear extension of
CLS) for the whole-page recommendation.

TS algorithms have been theoretically analyzed for sev-
eral problems [2], [10], [16], [19]–[24]. For MAB and LB,
Agrawal and Goyal [2] proved a high probability regret bound.
Abeille and Lazaric [19] showed the same regret bound in an
alternative way and revealed conditions for variants of the TS
algorithm to have such regret bounds. For the combinatorial
semi-bandit problem and generalized problems including CLS,
Wen et al. [10] proved a regret bound regarding the Bayes
cumulative regret proposed by Russo and Van Roy [23].

III. COMBINATORIAL LINEAR SEMI-BANDIT

A. Problem Setting

In this section, we present a formal definition of the CLS
problem. Let T denote the number of rounds in which the
learner chooses arms and receives feedback. Let N denote
the number of arms from which the learner can choose. Let
k denote a given parameter standing for the upper bound for
the number of arms that can be chosen in each round. For an
arbitrary integer N , let [N] stand for the set of all positive
integers at most N ; i.e., [N] = {1, . . . , N}. Let St ⊆ {I ⊆
[N] | |I| ≤ k} be the set of all available subsets of arms
in each round t ∈ [T]. We call I ∈ St a super arm. At the
beginning of round t, the learner observes feature vectors xt(i)
that correspond to each arm i ∈ [N] and observes the set
St of available super arms. Note that feature vectors xt(i)
and available super arms St can change in every round. The
learner chooses a super arm It ∈ St and then observes rewards
rt(i) for chosen arms i ∈ It at the end of round t based on
{xt(i)}i∈[N], St, and observations before the current round.

We assume that the expected reward for each arm i for all
t ∈ [T] and i ∈ [N] can be expressed as the inner product

of the corresponding feature vector xt(i) and a constant true
parameter θ∗ that is unknown to the learner, i.e., we have

E [rt(i) | Ht−1] = E [rt(i) | xt(i)]
= θ∗>xt(i),

where Ht stands for the history
{{xτ+1(i)}i∈[N], Iτ+1, {rτ (i)}i∈Iτ | τ ≤ t} of all the
events before the learner observes rewards in round t. The
performance of the learner is measured by the regret defined
by the following:

R(T) =
∑
t∈[T]

∑
i∈I∗t

θ∗>xt(i)− E

∑
t∈[T]

∑
i∈It

rt(i)

 ,
where we define I∗t = arg maxI∈St

∑
i∈I θ

∗>xt(i). The
learner aims to maximize the cumulative reward over T rounds∑
t∈[T]

∑
i∈It rt(i), which is equivalent to minimizing the

regret.

B. Assumptions on rewards and features

We present a few standard assumptions in literature on LB
(e.g., [2], [4]). We assume that for any t ∈ [T] and i ∈ [N], the
noise ηt(i) = rt(i)−θ∗>xt(i) is conditionally R-sub-Gaussian
for some constant R ≥ 0; i.e., ∀λ ∈ R,E

[
eληt(i) | Ht−1

]
≤

exp
(
λ2R2/2

)
. This assumption holds if rewards rt(i) lie in

an interval with a maximum length of 2R. We also assume
that ‖θ∗‖2 ≤ S and ‖xt(i)‖2 ≤ 1 for all t ∈ [T] and i ∈ [N].

IV. MOTIVATING EXAMPLES

A. Stagnation of C2UCB Algorithms in Clustered Cases

The state-of-the-art C2UCB algorithm [9] solves the CLS
problem while theoretically guaranteeing a sublinear regret
bound. Its procedure is described in Algorithm 1.2 In each
round, this algorithm assigns the estimated rewards r̂t(i) =

θ̂>t xt(i) +αt

√
xt(i)>V

−1
t−1xt(i) to each arm i (line 7), where

r̂t(i) corresponds to the upper confidence bound for θ∗>xt(i).
Then, the algorithm chooses a super arm It from St so that the
sum of estimated rewards r̂t(i) for i ∈ It is maximized (line
12). Let us stress that estimated rewards r̂t(i) are calculated
from xt(i) deterministically in the C2UCB algorithm; i.e.,
xt(i) = xt(j) means that r̂t(i) = r̂t(j).

Despite having theoretical advantages, C2UCB sometimes
produces poor results, especially in clustered cases. In a
clustered case, feature vectors {xt(i)}Ni=1 form clusters; for
example, the situation in which there are 3 clusters {xt(i)}Ci=1,
{xt(i)}2Ci=C+1, and {xt(i)}3Ci=2C+1 of size C, centered at c1,
c2, and c3, respectively; i.e., xt(i) ≈ c1 for 1 ≤ i ≤ C,
xt(i) ≈ c2 for C + 1 ≤ i ≤ 2C, and xt(i) ≈ c3 for
2C + 1 ≤ i ≤ 3C. Moreover, we suppose that the numbers
of clusters and feature vectors belonging to a cluster are
sufficiently larger than T and k, respectively, in clustered
cases. For simplicity, we assume St = {I ⊆ [N] | |I| = k}

2 C2UCB can be applied to a class of problems more general than our
problem setting in Section III-A. The description of Algorithm 1 is simplified
to adjust to our setting.

Algorithm 1 C2UCB [9] and Perturbed C2UCB

Input: λ > 0 and αt > 0 λ > 0, αt > 0 and c > 0 .
1: V0 ← λI .
2: b0 ← 0.
3: for t = 1, 2, . . . , T do
4: Observe feature vectors {xt(i)}i∈[N] and a set of super

arms St.
5: θ̂t ← V −1t−1bt−1.
6: for i ∈ [N] do

7: r̂t(i)← θ̂>t xt(i) + αt

√
xt(i)>V

−1
t−1xt(i).

8: Sample c̃t(i) from U([0, c])

9: α̃t ← (1 + c̃t(i))αt

10: r̂t(i)← θ̂>t xt(i) + α̃t

√
xt(i)>V

−1
t−1xt(i).

11: end for
12: Play a super arm It = arg maxI∈St

∑
i∈I r̂t(i).

13: Observe rewards {rt(i)}i∈It .
14: Vt ← Vt−1 +

∑
i∈It xt(i)xt(i)

>.
15: bt ← bt−1 +

∑
i∈It rt(i)xt(i).

16: end for

1 2 3
Cluster of similar arms

0.4

0.5

0.6

0.7

Es
tim

at
ed

 re
wa

rd

C2UCB

1 2 3
Cluster of similar arms

0.0

0.5

1.0

Es
tim

at
ed

 re
wa

rd

Proposed algorithms

Selected arm Unselected arm

Fig. 1. Estimated rewards of two algorithms in clustered cases.

for all t ∈ [T]. Under this constraint, C2UCB chooses the top
k arms concerning the estimated reward.

In such clustered cases, C2UCB stagnates from choosing
arms from a cluster in each round. From the property of
the clustered cases, in each round, the algorithm chooses a
super arm as such that all arms in the super arm belong to
the same cluster, as shown in Figure 1. Hence, the algorithm
often chooses a sub-optimal cluster. Moreover, the algorithm
may stop before finding an optimal cluster because there are
fewer rounds than clusters for clustered cases. We can apply
the above discussion to other algorithms with this property
because this phenomenon is caused by choosing arms from
one cluster; for example, CombLinUCB and CombLinTS [10].

B. Clustered Cases in Real-World Applications

Clustered cases must be considered because they frequently
arise in real-world applications, though theoretical regret
bounds mainly focus on asymptotic order for the increasing

number of rounds. For example, we can often find clustered
cases such as the two applications below.

The first application is when a marketer regularly gives
sale promotions to customers to maximize their benefit while
meeting cost constraints. This application can be formulated
as CLS by representing the arms as customers and rewards
as customers’ promotion responses. In this application, the
customers may form clusters based on their preferences, and
the number of times the same promotion is sent far fewer than
the number of customers. In contrast to existing literature that
considers clusters of customers [11]–[13] (in which parameters
of customers are unknown), in this setting, parameters of
customers are known as feature vectors.

The second application is a recommender system with
batched feedback [15].3 In a real-world setting, recommender
systems periodically update their model using batched feed-
back. Compared to the LB, this problem has less opportunity
to update the internal model.

V. PROPOSED ALGORITHMS

In this section, we propose two algorithms for CLS to
overcome the difficulties discussed in Section IV.

Our first algorithm is perturbed C2UCB (PC2UCB), which
adds arm-wise noises to the estimated rewards, as described in
Algorithm 1. For each i ∈ [N] and t ∈ [T], PC2UCB obtains a
positive noise c̃t(i) from the uniform distribution and increases
the estimated reward based on the noise.

The second one is a TS algorithm. In Algorithm 2, we
present two versions of TS algorithms: standard round-wise
randomization and our arm-wise randomization. Round-wise
randomization is a natural extension of the TS algorithm for
LB [2]. In this version, we pick an estimator θ̃t from the pos-
terior in each round and construct the estimated reward r̂t(i)
from this estimator θ̃t for all arm i ∈ [N]. Conversely, arm-
wise randomization picks estimators θ̃t(i) from the posterior
for each arm i ∈ [N] in any round and defines the estimated
reward r̂t(i) from θ̃t(i), as shown in Algorithm 2.

Our arm-wise randomization produces a remarkable ad-
vantage compared to C2UCB and the TS algorithm with
round-wise randomization, especially in clustered cases. In
our procedure, the estimated rewards are randomized arm-
wisely, as shown in Figure 1. Consequently, our procedure
can choose a super arm containing arms from different clusters
even if the feature vectors form clusters, thereby discovering
an optimal cluster in earlier rounds. Round-wise randomization
does not reduce the difficulty discussed in Section IV because
it produces estimated rewards similar to the left side of
Figure 1.

VI. REGRET ANALYSIS

In this section, we obtain regret bounds for our algorithms
with arm-wise randomization and the TS algorithm with

3 Although LB with delayed feedback is slightly more restrictive than CLS,
the algorithms in this paper could be applied to the problem because the
estimated reward of each arm does not depend on other feature vectors.

Algorithm 2 Thompson sampling algorithm for CLS with
round-wise randomization and arm-wise randomization

Input: λ > 0 and vt > 0.
1: V0 ← λI .
2: b0 ← 0.
3: for t = 1, 2, . . . , T do
4: Observe feature vectors {xt(i)}i∈[N] and a set of super

arms St.
5: θ̂t ← V −1t−1bt−1.

6: Sample θ̃t from N (θ̂t, v
2
t V
−1
t−1).

7: for i ∈ [N] do

8: Sample θ̃t(i) from N (θ̂t, v
2
t V
−1
t−1).

9: r̂t(i)← θ̃>t xt(i).

10: r̂t(i)← θ̃t(i)
>xt(i).

11: end for
12: Play a super arm It = arg maxI∈St

∑
i∈I r̂t(i).

13: Observe rewards {rt(i)}i∈It .
14: Vt ← Vt−1 +

∑
i∈It xt(i)xt(i)

>.
15: bt ← bt−1 +

∑
i∈It rt(i)xt(i).

16: end for

round-wise randomization.4 We define βt(δ), which plays an
important role in our regret analysis, as follows:

βt(δ) = R

√
d log

(1 + kt/λ)

δ
+
√
λS.

For the TS algorithm with arm-wise and round-wise ran-
domization, we can obtain the following regret bounds.

Theorem 1 (Regret bound for the TS algorithm with arm-wise
randomization). When we set parameters λ and {vt}Tt=1 so
that λ ≥ 1 and vt = βt(δ/(4NT)) for t ∈ [T], with probability
at least 1 − δ, the regret for TS algorithm with arm-wise
randomization is bounded as

R(T) =

Õ
(

max
(
d,
√
dλ
)√

dk2T/λ
)

(λ ≤ k)

Õ
(

max
(
d,
√
dλ
)√

dkT
)

(λ ≥ k),

where Õ(·) ignores logarithmic factors with respect to d, T ,
N , k, and 1/δ.

Theorem 2 (Regret bound for the TS algorithm with round–
wise randomization). When we set parameters λ and {vt}Tt=1

so that λ ≥ 1 and vt = βt(δ/(4T)) for t ∈ [T], with
probability at least 1 − δ, the regret for TS algorithm with
round-wise randomization is bounded as

R(T) =

Õ
(

max
(
d,
√
dλ
)√

dk2T/λ
)

(λ ≤ k)

Õ
(

max
(
d,
√
dλ
)√

dkT
)

(λ ≥ k).

4 We omit our proofs of the regret bounds due to the page limit. The full
version is available at https://arxiv.org/abs/1909.02251.

For the PC2UCB and the C2UCB, we can obtain the
following regret bounds.5

Theorem 3 (Regret bound for PC2UCB). For c = O(1), λ ≥
1 and αt = βt(δ), with probability at least 1 − δ, the regret
for the PC2UCB is bounded as

R(T) =

Õ
(

max
(√

d,
√
λ
)√

dk2T/λ
)

(λ ≤ k)

Õ
(

max
(√

d,
√
λ
)√

dkT
)

(λ ≥ k).

Theorem 4 (Theorem 4.1 in Qin, Chen, and Zhu [9]). For the
same parameters in Theorem 3, with probability at least 1−δ,
the regret for the C2UCB is bounded as

R(T) =

Õ
(

max
(√

d,
√
λ
)√

dk2T/λ
)

(λ ≤ k)

Õ
(

max
(√

d,
√
λ
)√

dkT
)

(λ ≥ k).

The regret bound in Theorem 3 matches the regret bound
in Theorem 4, which is the best theoretical guarantee among
known regret bounds for CLB. On the other hand, the regret
bounds in Theorem 1 and Theorem 2 have a gap from that in
Theorem 4. This gap is well known as the gap between UCB
and TS in LB [2], [19].

VII. NUMERICAL EXPERIMENTS

A. Setup

In these numerical experiments, we consider two types of
the CLS problem.

1) Artificial Clustered Cases: To show the impact of clus-
tered cases, we consider artificial clustered cases. In this
setting, we handle d − 1 types (clusters) of feature vectors
parameterized by 0 < θ ≤ π/2. Each feature vector has two
non-zero elements: One is the first element, and its value is
cos θ; the other is the i-th element, and its value is sin θ, where
2 ≤ i ≤ d. The large θ implies that choosing the feature
vectors of a cluster gives little information about the rewards
when choosing the feature vectors of other clusters. Thus, we
expect choosing the feature vectors from one cluster to lead
to poor performance in such cases.

In this experiment, we fix θ∗ determined randomly so that
‖θ∗‖2 = 1. The reward r is either 1 or −1 and satisfies E[r |
x] = θ∗>x, where x is a feature vector. We set d = 11,
N = 2000, k = 100, and T = 10.

2) Sending Promotion Problem: We consider the sending
promotion problem discussed in Section IV-B. Let M be the
number of types of promotions. In round t ∈ [T], a learner
observes feature vectors {xt(i)}i∈[N] such that xt(i) ∈ Rd
for all i ∈ [N]. Then, the learner chooses k pairs of a
feature vector and a promotion j ∈ [M] and observes re-
wards {rt(i, j)}i∈It(j) associated with chosen feature vectors
{xt(i)}i∈It(j), where It(j) is the set of chosen indices with
the promotion j. The feature vectors represent customers to

5Compared to Theorem 4.1 in Qin, Chen, and Zhu [9], the theorem is
slightly extended, but one can obtain the regret bound by setting c = 0 in the
proof of Theorem 3.

be sent a promotion. Note that if the learner chooses a feature
vector with a promotion j ∈ [M] once, the learner cannot
choose the same feature vector for a different promotion
j′ ∈ [M]. In this experiment, we use T = 20, N = 100k,
M = 10, and d = 51.

This model can be regarded as CLS. We can construct
feature vectors as follows:

x̃t(jN + i) = (0>, . . . , 0>, xt(i)
>, 0>, . . . , 0>)> ∈ RdM

for all i ∈ [N] and j ∈ [M], where the non-zero part of
x̃t(jN + i) is from (j − 1)d+ 1-th to jd-th entry. Similarly,
we can define possible super arms S = {∪j∈[M]I(j) | I(j) ∈
S(j)}, where S(j) = {I ⊆ {(j−1)N+1, . . . , jN} | |I| = k}
for all j ∈ [M]. We define St = S for all t ∈ [T].

For this problem, we use the MovieLens 20M dataset,
which is a public dataset of ratings for movies by users of
a movie recommendation service [25]. The dataset contains
tuples of userID, movieID, and rating of the movie by the
user. Using this data, we construct feature vectors of users
in a way similar to Qin, Chen, and Zhu [9]. We divide the
dataset into training and test data as follows: We randomly
choose M movies with ratings as the test data from movies
rated by between 1,400–2,800 users. The remaining data is the
training data. Then, we construct feature vectors of all users
using low-rank approximation by SVD from the training data.
We use users’ feature vectors with a constant factor as feature
vectors for the problem. To represent a changing environment,
in each round, the feature vectors in the problem are chosen
uniformly at random from all users. If a user rated a movie,
the corresponding reward is the rating on a 5-star scale with
half-star increments; otherwise, the corresponding reward is 0.

B. Algorithms

We compare 5 algorithms as baselines and our algorithms.
To tune parameters in the algorithms, we try 5 geometrically
spaced values from 10−2 to 102.

1) Greedy Algorithm: This algorithm can be viewed as a
special case of C2UCB with αt = 0 except for the first round.
In the first round, the estimated rewards are determined by
sampling from a standard normal distribution independently.
We tune the parameter λ for this algorithm.

2) CombLinUCB and CombLinTS [10]: We tune λ2, σ2,
and c for CombLinUCB, and also tune λ2 and σ2 for
CombLinTS. Note that these two algorithms and the C2UCB
have the same weakness, which is discussed in Section IV-A.

3) C2UCB and PC2UCB: For these two algorithms (Algo-
rithm 1), we set αt = α for all t ∈ [T] and tune λ and α. We
also set c = 1 for PC2UCB.

4) Round-wise and Arm-wise TS algorithms: For these two
algorithms (Algorithm 2), we set vt = v for all t ∈ [T] and
tune λ and v.

C. Results

Figure 2 and Table I summarize the experimental results
for the artificial and the MovieLens dataset, respectively. In
that table, the cumulative rewards of the algorithms, which

/10 /8 /6 /4 /2
250

300

350

400

450

500

Cu
m

ul
at

iv
e

re
wa

rd

Impact of the angle between clusters
Algorithm
Greedy
CombLinUCB
CombLinTS
C2UCB
PC2UCB
Round-wise TS
Arm-wise TS

Fig. 2. Cumulative rewards for the artificial dataset.

are averaged over the trials are described. We evaluate each
algorithm by the best average reward among tuning param-
eter values across the 5 times trials. In summary, PC2UCB
outperforms other algorithms in several cases. The detailed
observations are discussed below.

Figure 2 shows that the inner product of the feature vectors
is a crucial property to the performance of the algorithms. If
two feature vectors in different clusters are almost orthogonal,
choosing feature vectors from a cluster gives almost no infor-
mation on the rewards of feature vectors in other clusters.
Thus, as discussed in Section IV, the proposed algorithms
outperform the existing algorithms. Note that the reason why
the greedy algorithm performs well is that the algorithm
chooses various feature vectors in the first round.

We can find the orthogonality of the feature vectors in the
MovieLens dataset. In Figure 3, we show the distribution of the
cosine similarity of feature vectors excluding the bias element.
From the figure, we can see that many feature vectors are
almost orthogonal. Thus, the users in the MovieLens dataset
have the clustered structure which affects the performances in
early rounds.

In the experiments with the MovieLens dataset, the cumula-
tive reward of our algorithms is almost 10 % higher than that of
among baseline algorithms (Table I). In contrast to the greedy
algorithm in the experiments with the artificial dataset, the
greedy algorithm performs poorly in the experiments with the
MovieLens dataset. This result implies the difficulty of finding
a good cluster of users in the MovieLens dataset. Figure 4
shows that our algorithms outperform the existing algorithms
in early rounds. From these results, we can conclude that
our arm-wise randomization technique enables us to find a
good cluster efficiently and balance the trade-off between
exploration and exploitation.

ACKNOWLEDGMENTS

We would like to thank Naoto Ohsaka, Tomoya Sakai, and
Keigo Kimura for helpful discussions. Shinji Ito was supported
by JST, ACT-I, Grant Number JPMJPR18U5, Japan.

TABLE I
CUMULATIVE REWARDS FOR THE MOVIELENS DATASET.

Problem Greedy CombLinUCB CombLinTS C2UCB PC2UCB Round-wise TS Arm-wise TS

k = 50 1588.6 2090.5 1749.2 2183.0 2304.5 2121.9 2304.3
k = 100 3765.1 5032.0 3850.3 4879.5 5359.8 4744.4 5298.0
k = 150 5471.6 7653.0 6212.0 7276.0 8210.6 7243.8 7945.0
k = 200 7939.6 10092.5 8918.4 9708.5 11147.2 9724.1 10928.2

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

1000000

2000000

3000000

4000000

5000000
Distribution of the cosine similarity

Fig. 3. Distribution of the cosine similarity of feature vectors in the
MovieLens dataset. We chose 10,000 users and compared every two vectors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of rounds

0

50

100

150

200

250

Av
er

ag
e

re
wa

rd

MovieLens dataset: k = 100

Algorithm
Greedy
CombLinUCB
CombLinTS
C2UCB
PC2UCB
Round-wise TS
Arm-wise TS

Fig. 4. Average rewards for the MovieLens dataset, where the average reward
in round t is

∑
τ∈[t]

∑
i∈Iτ rτ (i)/t.

REFERENCES

[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for
linear stochastic bandits,” in Advances in Neural Information Processing
Systems 24, 2011, pp. 2312–2320.

[2] S. Agrawal and N. Goyal, “Thompson sampling for contextual bandits
with linear payoffs,” in Proceedings of the 30th International Conference
on Machine Learning, 2013, pp. 127–135.

[3] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” Journal of Machine Learning Research, vol. 3, no. Nov, pp. 397–
422, 2002.

[4] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with
linear payoff functions,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, 2011, pp. 208–214.

[5] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization
under bandit feedback,” in Proceedings of the 21st Annual Conference
on Learning Theory, 2008, pp. 355–366.

[6] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th International Conference on World Wide Web, 2010, pp.
661–670.

[7] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network op-
timization with unknown variables: Multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Transactions on Net-
working, vol. 20, no. 5, pp. 1466–1478, 2012.

[8] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in Proceedings of the 30th Inter-
national Conference on Machine Learning, 2013, pp. 151–159.

[9] L. Qin, S. Chen, and X. Zhu, “Contextual combinatorial bandit and its
application on diversified online recommendation,” in Proceedings of
the 2014 SIAM International Conference on Data Mining, 2014, pp.
461–469.

[10] Z. Wen, B. Kveton, and A. Ashkan, “Efficient learning in large-scale
combinatorial semi-bandits,” in Proceedings of the 32nd International
Conference on Machine Learning, 2015, pp. 1113–1122.

[11] C. Gentile, S. Li, and G. Zappella, “Online clustering of bandits,” in
Proceedings of the 31st International Conference on Machine Learning,
2014, pp. 757–765.

[12] S. Li, A. Karatzoglou, and C. Gentile, “Collaborative filtering bandits,”
in Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2016, pp. 539–
548.

[13] C. Gentile, S. Li, P. Kar, A. Karatzoglou, G. Zappella, and E. Etrue,
“On context-dependent clustering of bandits,” in Proceedings of the 34th
International Conference on Machine Learning, 2017, pp. 1253–1262.

[14] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3–4, pp. 285–294, 1933.

[15] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”
in Advances in neural information processing systems 24, 2011, pp.
2249–2257.

[16] B. C. May, N. Korda, A. Lee, and D. S. Leslie, “Optimistic bayesian
sampling in contextual-bandit problems,” Journal of Machine Learning
Research, vol. 13, no. Jun, pp. 2069–2106, 2012.

[17] S. L. Scott, “A modern bayesian look at the multi-armed bandit,” Applied
Stochastic Models in Business and Industry, vol. 26, no. 6, pp. 639–658,
2010.

[18] Y. Wang, H. Ouyang, C. Wang, J. Chen, T. Asamov, and Y. Chang,
“Efficient ordered combinatorial semi-bandits for whole-page recom-
mendation,” in Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, 2017, pp. 2746–2753.

[19] M. Abeille, A. Lazaric et al., “Linear thompson sampling revisited,”
Electronic Journal of Statistics, vol. 11, no. 2, pp. 5165–5197, 2017.

[20] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-
armed bandit problem,” in Proceedings of the 25th Annual Conference
on Learning Theory, 2012, pp. 39.1–39.26.

[21] ——, “Further optimal regret bounds for thompson sampling,” in
Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, 2013, pp. 99–107.

[22] E. Kaufmann, N. Korda, and R. Munos, “Thompson sampling: An
asymptotically optimal finite-time analysis,” in Proceedings of the 23rd
International Conference on Algorithmic Learning Theory, 2012, pp.
199–213.

[23] D. Russo and B. Van Roy, “Learning to optimize via posterior sampling,”
Mathematics of Operations Research, vol. 39, no. 4, pp. 1221–1243,
2014.

[24] D. Russo and B. V. Roy, “An information-theoretic analysis of thompson
sampling,” Journal of Machine Learning Research, vol. 17, no. 68, pp.
1–30, 2016.

[25] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems, vol. 5,
no. 4, 2016.

APPENDIX

A. Preliminary

1) Definitions: We can decompose the regret as

R(T) = Ropt(T) +Ralg(T) +Rest(T),

where

Ropt(T) =
∑
t∈[T]

∑
i∈I∗t

θ∗>xt(i)−
∑
i∈It

r̂t(i)

 ,

Ralg(T) =
∑
t∈[T]

∑
i∈It

(
r̂t(i)− θ̂>t xt(i)

)
, and

Rest(T) =
∑
t∈[T]

∑
i∈It

(
θ̂t − θ∗

)>
xt(i).

For both UCB and TS, we bound Ropt(T), Ralg(T) and Rest(T), respectively.
For the case λ ≤ k, we use the following matrix instead of Vt in our analysis:

V t = λI +
λ

k

∑
s∈[t]

∑
i∈Is

xs(i)xs(i)
>.

2) Known Results: Our proof depends on the following known results:

Lemma 1 (Theorem 2 in Abbasi-Yadkori, Pál and Szepesvári [1]). Let {Ft}∞t=0 be a filtration, {Xt}∞t=1 be an Rd-valued
stochastic process such that Xt is Ft−1-measurable, {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft-measurable.
Let V = λI be a positive definite matrix, Vt = V +

∑
s∈[t]XsX

>
s , Yt =

∑
s∈[t] θ

∗>Xs + ηs and θ̂t = V −1t−1Yt. Assume for
all t that ηt is conditionally R-sub-Gaussian for some R > 0 and ‖θ∗‖2 ≤ S. Then, for any δ > 0, with probability at least
1− δ, for any t ≥ 1,

‖θ̂t − θ∗‖Vt−1
≤ R

√
2 log

(
det(Vt−1)1/2 det(λI)−1/2

δ

)
+
√
λS.

Furthermore, if ‖Xt‖2 ≤ L for all t ≥ 1, then with probability at least 1− δ, for all t ≥ 1,

‖θ̂t − θ∗‖Vt−1
≤ R

√
d log

(
1 + (t− 1)L2/λ

δ

)
+
√
λS.

Lemma 2 (Lemma 10 in Abbasi-Yadkori, Pál and Szepesvári [1]). Suppose X1, X2, . . . , Xt ∈ Rd and for any 1 ≤ s ≤
t, ‖Xs‖2 ≤ L. Let Vt = λI +

∑
s∈[t]XsX

>
s for some λ > 0. Then,

det(Vt) ≤ (λ+ tL2/d)d.

Lemma 3 (Proposition 3 in Abeille and Lazaric [19]). Let X ⊂ Rd be a compact set. Then, J(θ) = supx∈X x
>θ has the

following properties: 1) J is real-valued as the supremum is attained in X , 2) J is convex on Rd, and 3) J is continuous with
continuous first derivative except for a zero-measure set with respect to the Lebesgue’s measure.

Lemma 4 (Lemma 2 in Abeille and Lazaric [19]). For any θ ∈ Rd, we have ∇J(θ) = arg maxx∈X x
>θ except for a

zero-measure set with respect to the Lebesgue’s measure.

B. Lemmas for Bounding Rest(T)

To bound Rest(T), we can utilize the following lemmas.

Lemma 5. Let λ > 0. For any sequence {xt(i)}t∈[T],i∈It such that |It| ≤ k and ‖xt(i)‖2 ≤ 1 for all t ∈ [T] and i ∈ [N], we
have ∑

t∈[T]

∑
i∈It

‖xt(i)‖2V −1
t−1

≤ 2kd

λ
log(1 + kT/d). (1)

Accordingly, we have ∑
t∈[T]

∑
i∈It

‖xt(i)‖V −1
t−1
≤
√

2dk2T log(1 + kT/d)/λ. (2)

Proof: We define

Ṽt(S) =
λ

k
I +

λ

k

 ∑
s∈[t−1]

∑
i∈Is

xs(i)xs(i)
> +

∑
i∈S

xt(i)xt(i)
>

 .

For all t ∈ [T] and S (It, we have

‖xt(i)‖2Ṽt(S)−1 ≤
‖xt(i)‖

λmin(Ṽt(S)−1)
≤ k

λ
,

where λmin(V) is the minimum eigenvalue of V . Moreover, under the same notations, we have

Ṽt(S) =
λ

k
I +

λ

k

 ∑
s∈[t−1]

∑
i∈Is

xs(i)xs(i)
> +

∑
i∈S

xt(i)xt(i)
>

�
(
λ

k
+
|S|λ
k

)
I +

λ

k

 ∑
s∈[t−1]

∑
i∈Is

xs(i)xs(i)
>

� λI +

λ

k

 ∑
s∈[t−1]

∑
i∈Is

xs(i)xs(i)
>

= V t−1.

From these properties of Ṽt(S), we have

log det
(
ṼT (IT)

)
= log det

(
ṼT (IT \{i})

)
+ log det

(
I +

λ

k
uuT

)
= log det

(
ṼT (IT \{i})

)
+ log

(
1 +

λ

k
‖xT (i)‖2

ṼT (IT \{i})−1

)
≥ log det

(
ṼT (IT \{i})

)
+

λ

2k
‖xT (i)‖2

ṼT (IT \{i})−1

≥ log det
(
ṼT (IT \{i})

)
+

λ

2k
‖xT (i)‖2

V
−1
T−1

≥ log det
(
ṼT−1(IT−1)

)
+
∑
i∈IT

λ

2k
‖xT (i)‖2

V
−1
T−1

≥ log det

(
λ

k
I

)
+

λ

2k

∑
t∈[T]

∑
i∈It

‖xt(i)‖2V −1
t−1

,

where u = ṼT (IT \{i})−1/2xT (i) and the first and second inequalities are derived from λ
k ‖xt(i)‖

2
Ṽt(S)−1 ≤ 1 and Ṽt(S) � V t−1

for all t ∈ [T] and S (It, respectively. From Lemma 2, we obtain

log det
(
ṼT (IT)

)
− log det

(
λ

k
I

)
≤ d log(1 + kT/d).

We combine these inequalities to obtain (1). From (1) and the Cauchy-Schwarz inequality, we have (2).

Lemma 6. Let λ ≥ k. For any sequence {xt(i)}t∈[T],i∈It such that |It| ≤ k and ‖xt(i)‖2 ≤ 1 for all t ∈ [T] and i ∈ [N], we
have ∑

t∈[T]

∑
i∈It

‖xt(i)‖2V −1
t−1

≤ 2d log(1 + kT/d). (3)

Accordingly, we have ∑
t∈[T]

∑
i∈It

‖xt(i)‖V −1
t−1
≤
√

2dkT log(1 + kT/d). (4)

Proof: We define

Vt(S) = I +
∑

s∈[t−1]

∑
i∈Is

xs(i)xs(i)
> +

∑
i∈S

xt(i)xt(i)
>.

Similar to the proof of Lemma 5, we have

log det(VT (IT)) ≥ 1

2

∑
t∈[T]

∑
i∈It

‖xt(i)‖2V −1
t−1

.

and

log det(VT (IT)) ≤ d(log(1 + kT/d).

Thus, we have (3). From (3) and the Cauchy-Schwarz inequality, we obtain (4).

C. Proof of Theorem 1

For this proof, we only consider the case λ ≥ k for the sake of simplicity. For 1 ≤ λ ≤ k, we can modify our proof by
replacing v>xt(i) ≤ ‖v‖Vt−1‖xt(i)‖V −1

t−1
with v>xt(i) ≤ ‖v‖V t−1

‖xt(i)‖V −1
t−1

for all v ∈ Rd, t ∈ [T] and i ∈ [N], using the

fact that ‖v‖V t ≤ ‖v‖Vt for all v ∈ Rd and t ∈ [T] and using Lemma 5 instead of Lemma 6.
To deal with the uncertainty of θ̂t and the randomness of estimators sampled from the posterior, we introduce the following

filtration and events.

Definition 1. We define the filtration Ft as the information accumulated up to time t before the sampling procedure; i.e.,

Ft = (F1, σ({x1(i)}i∈I1 , {r1(i)}i∈I1 , . . . , {xt−1(i)}i∈It−1
, {rt−1(i)}i∈It−1

)),

where F1 contains any prior knowledge.

Definition 2. Let δ ∈ (0, 1), δ′ = δ/(4T), and t ∈ [T]. Let γt(δ) =
√

2d log
(
2dN
δ

)
βt(δ) for all t ∈ [T]. We define

Êt = {∀s ≤ t, ‖θ̂s − θ∗‖Vs−1
≤ βs(δ

′)}, and Ẽt = {∀s ≤ t, ∀i ∈ [N], ‖θ̃s(i) − θ̂s‖Vs−1
≤ γs(δ

′)}. We also define
Et = Êt ∩ Ẽt.

The following lemma shows that these events occur with high probability.

Lemma 7. We have P (ET) ≥ 1− δ
2 , where P (A) is the probability of the event A.

Proof: From the proof of Lemma 1 in Abeille and Lazaric [19], we have P (ÊT) ≥ 1− δ
4 . By the same line of the proof

of bounding P (ẼT) in the proof of Lemma 1 in Abeille and Lazaric [19], we have

P

(
‖θ̃t(i)− θ̂t‖Vt−1 ≤ βt(δ′)

√
2d log

2dN

δ′

)
≥ 1− δ′/N

for all t ∈ [T] and i ∈ [N]. Thus, taking a union bound over the bound above and Êt, we obtain the desired result.
From Lemma 7, we can bound the regret as follows:

R(T) = Ropt(T) +Ralg(T) +Rest(T)

≤
∑
t∈[T]

Roptt 1{Et}+
∑
t∈[T]

Ralgt 1{Et}+
∑
t∈[T]

Restt 1{Et}

with probability at least 1− δ/2, where

Roptt =
∑
i∈I∗t

θ∗>xt(i)−
∑
i∈It

r̂t(i),

Ralgt =
∑
i∈It

(
r̂t(i)− θ̂>t xt(i)

)
and

Restt =
∑
i∈It

(
θ̂t − θ∗

)>
xt(i).

In Section C1, we have

Ropt(T) = Õ
(

max
(
d,
√
dλ
)√

dkT
)

with probability at least 1− δ/2. Moreover, in Section C2, we obtain

Ralg(T) = Õ
(

max
(
d,
√
dλ
)√

dkT
)

and

Rest(T) = Õ
(

max
(√

d,
√
λ
)√

dkT
)
.

Finally, we take a union bound over ET and the event that is needed to bound Ropt(T).
1) Bounding Ropt(T) for Arm-wise TS: We utilize the line of proof in Abeille and Lazaric [19]. 6

First, we define a function Jt(θ) similar to J(θ) in Abeille and Lazaric [19]. For each I ∈ St, we construct a natural
correspondence between {xt(i)}i∈I and a dN -dimensional vector xt(I): the i-th block of xt(I) (which is a d-dimensional
vector) is xt(i) if i ∈ I and otherwise zero vector. Let Xt be {xt(I)}I∈St . Then, we define

Jt(θ) = sup
x∈Xt

θ>x.

Note that from the definition of Xt, we have

Jt(θ) = max
I∈St

∑
i∈I

θ(i)>xt(i),

where θ(i) is the i-th block of θ.
Using Jt(θ), we bound Roptt . Let θ∗([N]) and θ̃t be dN -dimensional vectors whose i-th block are θ∗ and θ̃t(i), respectively.

Then, from the definition of It for the arm-wise TS, we can rewrite Roptt as follows:

Roptt 1{Et} =
(
Jt(θ

∗([N]))− Jt(θ̃t)
)
1{Et}.

On event Et, θ̃t(i) belongs to Et = {θ ∈ Rd | ‖θ − θ̂t‖Vt ≤ γt(δ′)} for all i ∈ [N]. Thus, we have

(
Jt(θ

∗([N]))− Jt(θ̃t)
)
1{Et} ≤

Jt(θ∗([N]))− inf
θ(i)∈Et,
i∈[N]

Jt(θ)

1{Êt}.

Let Θopt
t = {θ ∈ RdN | Jt(θ∗([N])) ≤ Jt(θ), θ(i) ∈ Et (∀i ∈ [N])}. From the definition of Θopt

t , we can bound Jt(θ∗([N]))
as follows: Jt(θ∗([N]))− inf

θ(i)∈Et,
i∈[N]

Jt(θ)

1{Êt} ≤ Eθ̃

Jt(θ̃)− inf

θ(i)∈Et,
i∈[N]

Jt(θ)

1{Êt}

∣∣∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

 ,
where, for all i ∈ [N], θ̃(i) is sampled from the distribution of the arm-wise TS algorithm at round t.

From Lemma 3 and Lemma 4, Jt(θ) is a differentiable convex function and ∇Jt(θ) = arg maxx∈Xt θ
>x. Thus, we have

Eθ̃

Jt(θ̃)− inf

θ(i)∈Et,
i∈[N]

Jt(θ)

1{Êt}

∣∣∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

 ≤ Eθ̃

 sup
θ(i)∈Et,
i∈[N]

∇Jt(θ̃)>(θ̃ − θ)1{Êt}

∣∣∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

= Eθ̃

 sup
θ(i)∈Et,
i∈[N]

∑
i∈Ĩ

xt(i)
>(θ̃(i)− θ(i))1{Êt}

∣∣∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

 ,
6Ropt(T) is referred to as RTS(T) in Abeille and Lazaric [19].

where Ĩ = arg maxI∈St
∑
i∈I θ̃(i)

>xt(i). Moreover, from Cauchy-Schwarz inequality, we obtain

Eθ̃

 sup
θ(i)∈Et,
i∈[N]

∑
i∈Ĩ

xt(i)
>(θ̃(i)− θ(i))1{Êt}

∣∣∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t

≤Eθ̃

 sup
θ(i)∈Et,
i∈[N]

∑
i∈Ĩ

‖xt(i)‖V −1
t−1
‖θ̃(i)− θ(i))‖Vt−1

∣∣∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t , Êt

P (Êt)

≤ 2γt(δ
′)Eθ̃

∑
i∈Ĩ

‖xt(i)‖V −1
t−1

∣∣∣∣∣∣ Ft, θ̃ ∈ Θopt
t , Êt

P (Êt).

From the following lemma, we obtain P (θ̃t ∈ Θopt
t |Ft, Êt) ≥ p/2, where p = 1

4
√
eπ

.

Lemma 8 (Lemma 3 in Abeille and Lazaric [19], Simplified). Let θ̃t = θ̂t + βt(δ
′)V
−1/2
t η with η ∼ N (0, I). Then, we have

P (θ̃t ∈ Θopt
t |Ft, Êt) ≥ p/2 for any t ∈ [T].

Now we are ready to bound Roptt . Using Lemma 8, for arbitrary non-negative function g(θ), we have

E[g(θ̃) | Ft, Êt] ≥ E[g(θ̃) | θ̃ ∈ Θopt
t ,Ft, Êt]P (θ̃ ∈ Θopt

t)

≥ E[g(θ̃) | θ̃ ∈ Θopt
t ,Ft, Êt]p/2.

Therefore, by substituting 2γt(δ
′)
∑
i∈Ĩ ‖xt(i)‖V −1

t−1
for g(θ̃), we obtain

Roptt 1{Et} ≤
4γt(δ

′)

p
Eθ̃

∑
i∈Ĩ

‖xt(i)‖V −1
t−1

∣∣∣∣∣∣ Ft, Êt
P (Êt)

≤ 4γt(δ
′)

p
Eθ̃

∑
i∈Ĩ

‖xt(i)‖V −1
t−1

1{Êt}

∣∣∣∣∣∣ Ft
 .

Thus, we have

Ropt(T) ≤
∑
t∈[T]

Roptt 1{Et}

≤ 4γT (δ′)

p

∑
t∈[T]

∑
i∈It

‖xt(i)‖V −1
t−1

+
4γT (δ′)

p

∑
t∈[T]

Eθ̃

∑
i∈Ĩ

‖xt(i)‖V −1
t−1

∣∣∣∣∣∣ Ft
−∑

i∈It

‖xt(i)‖V −1
t−1

 .

Using Lemma 6, we can bound the first term. For the second term, we need to show that we can apply Azuma’s inequality.
That term is a martingale by construction. Since for any t ∈ [T] and i ∈ [N], ‖xt(i)‖ ≤ 1 and λ ≥ k, we obtain∣∣∣∣∣∣Eθ̃

∑
i∈Ĩ

‖xt(i)‖V −1
t−1

∣∣∣∣∣∣ Ft
−∑

i∈It

‖xt(i)‖V −1
t−1

∣∣∣∣∣∣ ≤ 2
√
k,

almost surely. Therefore, from Azuma’s inequality, the second term can be bounded as follows:

∑
t∈[T]

Eθ̃

∑
i∈Ĩ

‖xt(i)‖V −1
t−1

∣∣∣∣∣∣ Ft
−∑

i∈It

‖xt(i)‖V −1
t−1

 ≤√8kT log
4

δ

with probability at least 1− δ/2.
2) Bounding Ralg(T) and Rest(T) for Arm-wise TS: From the definition of the event Et, we obtain

Ralgt 1{Et} =
∑
i∈It

(
(θ̃t(i)− θ̂t)>xt(i)

)
1{Et}

≤ γt(δ′)
∑
i∈It

‖xt(i)‖V −1
t−1

and

Restt 1{Et} =
∑
i∈It

(
θ̂t − θ∗

)>
xt(i)1{Et}

≤ βt(δ′)
∑
i∈It

‖xt(i)‖V −1
t−1
.

Thus, from Lemma 6, we have

Ralg(T) = Õ
(

max
(
d,
√
dλ
)√

dkT
)

and

Rest(T) = Õ
(

max
(√

d,
√
λ
)√

dkT
)
.

D. Proof of Theorem 2

We can prove Theorem 2 using our same line of proof for Theorem 1 with slight modifications.
Since the round-wise TS gets an estimator from the posterior in each round, while the arm-wise TS gets N estimators, we

can drop the log(N) term in γt(δ):

γt(δ) :=

√
2d log

(
2d

δ

)
βt(δ).

For the same reason, we need to modify Xt as {
∑
i∈I xt(i) | I ∈ St}. Because of this modification, Jt(θ) becomes a

function from Rd to R and the following holds:

Jt(θ) := max
I∈St

∑
i∈I

θ>xt(i).

We also need to modify the definition of Θopt
t as {θ ∈ Rd | Jt(θ∗) ≤ Jt(θ), θ ∈ Et}. These modifications enables us to use

Lemma 8.

E. Proof of Theorem 3

We only consider the case λ ≥ k for the sake of simplicity. We can modify the proof below for the case 1 ≤ λ ≤ k as
described in the proof of Theorem 1.

For Rest(T), it follows from Lemma 1 that with probability 1− δ,

Rest(T) =
∑
t∈[T]

∑
i∈It

(θ̂t − θ∗)>xt(i)

≤
∑
t∈[T]

∑
i∈It

‖θ̂t − θ∗‖Vt−1
‖xt(i)‖V −1

t−1

≤
∑
t∈[T]

∑
i∈It

βt(δ)‖xt(i)‖V −1
t−1

≤ βT (δ)
∑
t∈[T]

∑
i∈It

‖xt(i)‖V −1
t−1
.

Thus, from Lemma 6, we obtain

Rest(T) = Õ
(

max
(√

d,
√
λ
)√

dkT
)

with probability at least 1− δ.
For Ralg(T), we can rewrite the term as follows:

Ralg(T) =
∑
t∈[T]

∑
i∈It

(
r̂t(i)− θ̂>t xt(i)

)
=
∑
t∈[T]

∑
i∈It

((1 + ct(i))βt(δ)) .

Since 0 ≤ c̃t(i) ≤ 1 for all t ∈ [T] and i ∈ [N], we obtain

Ralg(T) = Õ
(

max
(√

d,
√
λ
)√

dkT
)
.

For Ropt(T), recalling that ‖θ̂t − θ∗‖Vt−1
≤ βt(δ) for all t ∈ [T], we have

r̂t(i)− θ∗>xt(i) = (θ̂t − θ∗)>xt(i) + βt(δ)‖xt(i)‖V −1
t−1

≥
(
βt(δ)− ‖θ̂t − θ∗‖Vt

)
‖xt(i)‖V −1

t−1

≥ 0.

Therefore, we obtain

Ropt(T) =
∑
t∈[T]

∑
i∈I∗t

θ∗>xt(i)−
∑
i∈It

r̂t(i)

≤
∑
t∈[T]

∑
i∈I∗t

r̂t(i)−
∑
i∈It

r̂t(i)

≤ 0,

where the second inequality is derived from Ît maximizing the optimization problem in the algorithm.
By finding the sum of Rest(T), Ralg(T) and Ropt(T), we obtain the desired result.

	I Introduction
	II Related Work
	III Combinatorial Linear Semi-bandit
	III-A Problem Setting
	III-B Assumptions on rewards and features

	IV Motivating Examples
	IV-A Stagnation of C2UCB Algorithms in Clustered Cases
	IV-B Clustered Cases in Real-World Applications

	V Proposed Algorithms
	VI Regret Analysis
	VII Numerical Experiments
	VII-A Setup
	VII-A1 Artificial Clustered Cases
	VII-A2 Sending Promotion Problem

	VII-B Algorithms
	VII-B1 Greedy Algorithm
	VII-B2 CombLinUCB and CombLinTS wen15
	VII-B3 C2UCB and PC2UCB
	VII-B4 Round-wise and Arm-wise TS algorithms

	VII-C Results

	References
	Appendix
	A Preliminary
	A1 Definitions
	A2 Known Results

	B Lemmas for Bounding Rest(T)
	C Proof of Theorem ??
	C1 Bounding Ropt(T) for Arm-wise TS
	C2 Bounding Ralg(T) and Rest(T) for Arm-wise TS

	D Proof of Theorem ??
	E Proof of Theorem ??

