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Abstract—Suppose we are given an event sequence X of
observed events and an equally long binary sequence Y that
indicates whether something of interest happened at that partic-
ular point in time. We consider the problem of mining sequential
patterns from X that reliably predict those interesting events.
With reliable we mean those patterns that not only predict
that an interesting event is likely to follow but especially those
patterns for which we can with high precision tell how long
until that event will happen. That is, we are after patterns
that have highly skewed distributions of delays between pattern
occurrences and predicted events. In particular, we are after
the smallest, least redundant set of such patterns that together
explain the interesting events well.

We formally define this problem in terms of the Minimum
Description Length principle, by which we identify the best
patterns as those that describe the data most succinctly. As
discovering the optimal explanation of Y given a set of patterns,
as well as the discovery of optimal pattern set are both hard
problems that do not allow for straightforward optimization,
we propose the heuristic OMEN algorithm. Through extensive
empirical evaluation we show that OMEN works well in practice
and beats the state of the art both quantitatively and qualitatively.

I. INTRODUCTION

Suppose we are given an event sequence X of observed
events and an equally long binary sequence Y that indicates
those points in time where something happened that we
want to predict—earthquakes, for example. We consider the
problem of mining a small set of interpretable and actionable
patterns from X that reliably predict those interesting events.
With reliable and actionable we mean those patterns that not
only highly accurately predict that an interesting event will
follow, but especially those for which we can tell with high
precision how long it will be until the predicted event will
happen. That is, we are after patterns that have a compact
distribution of delays between pattern occurrences and pre-
dicted events. As real processes are rarely trivial, we consider
the problem of discovering a small and non-redundant set of
patterns that fogether reliably predict the interesting events.

Event prediction is well-studied in time series analysis. Most
work focuses on continuous-valued data, however, and particu-
larly considers detecting abrupt distributional changes [15] and
identifying events that precede such changes [27]. As we aim
to discover patterns that explain the interesting time points,
our work is closer to that of sequence classification [35]; we
can interpret the interesting events in Y as labels, by which
the task is to find those patterns that predict these. Existing
solutions, however, focus purely on discovering all patterns

that sufficiently accurately predict that an interesting event will
follow some time after their occurrence [36], rather than our
goal of discovering a small set of patterns for which we can
reliably say how long it will take before that event occurs.
As such, our work is also related to information flow [28]
and Granger causality [13], in the sense that patterns are
only interesting if their occurrences provide significantly more
information about Y than the history of Y does by itself.

We formalize the problem in terms of the Minimum De-
scription Length (MDL) principle [25], by which we identify
the best patterns in X as those that describe Y most succinctly.
We model the data such that for every pattern occurrence we
have to encode the delay until the associated interesting event.
The more peaked this distribution, the cheaper it will be to
encode the delay, and hence we particularly favor patterns
that accurately predict both the occurrence as well as the time
until an interesting event. Discovering the optimal explanation
of Y given a set of patterns, as well as the discovery of
optimal pattern set, are both hard problems, and neither allow
for straightforward optimization. To efficiently discover good
pattern sets in practice, we propose OMEN, a greedy heuristic
that iteratively optimizes the alignment of pattern occurrences
to interesting events, and uses this alignment to discover the
best refinements of the patterns. OMEN does not have any
hyper parameters, does not impose restrictions on the delay
distribution, and does allow for overlap between predictions.

We evaluate OMEN in practice on both synthetic and real-
world data. We show that the OMEN score reliably determines
the predictiveness of patterns, and compares favorably two
state-of-the-art information flow scores [28], [5]. We show
that the OMEN pattern miner reconstructs the ground truth
both in terms of predictive patterns as well as their delay
distributions, outperforming four supervised and unsupervised
sequential pattern miners [30], [10], [31], [35]. On real-world
data we confirm that OMEN discovers meaningful patterns.

This paper is structured as usual. We start with notation and
preliminaries in Sec. II, after which we formally introduce the
problem in Sec. III. We present the OMEN algorithm in Sec. IV
and discuss related work in Sec. V. We empirically evaluate
in Sec. VI, and round up with discussion and conclusions
in Secs. VII and VIII. We make all code and data publicly
available,.
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II. PRELIMINARIES

We start by introducing the notation and discussing prelim-
inaries we will use throughout the paper.

A. Notation

We consider finite-length discrete event sequences X of
length n over a finite alphabet Q = {a,b,...}, ie. X € Q™.
We write | X| = n to denote the length of the sequence, X [i]
to refer to the i'" event in X, and X[i: j] to denote the
subsequence X[i], ..., X[j]. We write ||X]||, for the number
of times we see event a € ) in X.

As data, we consider two equally long event sequences X
and Y, where X encodes the observed events over (2x, and
Y is a binary sequence, 2y = {0,1}, in which a 1 encodes
that something ‘interesting’ happened at that point in time.

We consider sequential patterns s € Q™, where m = |s]
is the length of the pattern. We say a pattern s occurs in, or
matches X [j] iff X[j —m : j] = s. Given an event sequence
X and pattern s we can construct a binary sequence Z, where
all Zs[j] = 1 iff s matches X[j]. A predictive pattern s
is a sequential pattern s with an associated discrete delay
distribution P; that specifies the probability density Ps(d)
that something interesting will happen 0 time steps after an
occurrence of the pattern.

All logarithms are base 2, and we use the common conven-
tion that 0log0 = 0.

B. Minimum Description Length

The Minimum Description Length (MDL) principle [14] is
a computable and statistically well-founded model selection
criterium based on Kolmogorov Complexity [20]. For a given
model class M, it identifies the best model M € M as the
one that minimizes the number of bits needed to describe both
model and data, L(M) + L(D|M) where L(M) is the length
of model M in bits and L(D|M) the length of data D given
M. This is known as two-part, or crude MDL—in contrast
to one-part, or refined MDL [14], which is not computable
for arbitrary models. More specifically, we use two-part MDL
because we are particularly interested in the model: those
patterns that predict. In MDL we are never concerned with
materialized codes and only care about code lengths. To use
MDL we have to define a model class M, and encodings for
data and model. Below we present our encoding and model
definition for the problem of discovering predictive patterns.

III. THEORY

In this section, we introduce the problem at hand. Before
stating the problem formally, we will define a model class,
and show how to encode a model and data given a model.

A. The Problem, Informally

We are interested in discovering that set of predictive
sequential patterns s that most reliably predict the interesting
events in Y given observed events X. Our models consist of
sequential patterns s and associated delay distributions P, i.e.
M = {(s1, Ps,), (82, Ps,), ..., (Sk, Ps,.)}. Given s and X we
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Figure 1: Encoding example (left) and time delay distribution
P, (right) of pattern ab. Toy example where pattern ab covers
3 out of 5 interesting events in Y.

have a binary sequence Z to mark those time points where s
occurs in X and every such occurrence predicts (in principle)
that an interesting event is about to happen in Y. We call the
mapping of occurrences of a pattern s to the actual interesting
events it predicts in Y its alignment A;. Formally an alignment
As is a sequence of time delays of length ||Z]|;.

We allow for noise in both X as well as in Y, and hence not
all predictions are required to be successful; it is allowed that
a prediction is ‘skipped’. We interpret a ‘skip‘ as an infinite
delay. A delay distribution provides the probabilities of an
interesting event occurring § time steps after an occurrence
of pattern s. The higher the probability of J, the fewer bits
we will need to encode that value. Overall, the less we have
to ‘skip’ and the more peaked the distribution is, the more
cost effective, in terms of bits per interesting event, we can
describe Ag, and hence the more succinctly we will be able
to describe Y.

As an illustrative example, consider the toy setting depicted
in Fig. 1. We show an event sequence X of length 18 over an
alphabet 2 = a, ..., f in which there are four occurrences of
pattern ab. We show both the occurrence sequence Z,;, as well
as an example alignment of these occurrences to the interesting
events in Y. We show the corresponding delay distribution on
the right, which shows that in 50% of the cases an interesting
event happens one time step after the occurrence of the pattern,
as well as that it has a 25% probability of false predicting the
occurrence of an interesting event (skip).

We allow Y to be complex, in the sense that multiple
patterns may be needed to reliably predict all interesting
events. In other words, we have to allow every pattern s € M
to predict only some of the interesting events in Y. We write
Y, for the binary sequence that indicates which interesting
events in Y that s predicts. Formally, f’s = A, 0 Z,, where o
shifts the 7*" 1 in Z,, to the right, by A,[i] positions.

Ideally, the patterns in M together predict all interesting
events in Y, Y = \/Se M }AQ = Y. However, due to noise not
all interesting events may have good explanations, and further,
not every model will be able to explain all interesting events,
and hence in addition to M and A, we will need to transmit
the residual sequence R that is defined as the bit-wise XOR
between the predicted Y andthe true Y, R=Y @Y.



B. MDL for Predictive Sequential Patterns

Based on the intuition above, we will now formalize our
score. We will first discuss how to encode the interesting event
sequence Y given a model M and observed events X, and
afterwards detail how to encode a model M.

1) Encoding the Data given a Model: Given X and the
patterns s € M, it is straightforward to construct pattern
occurrences sequences Z;. To determine the YS from Z, we
need to know the delays between pattern occurrences and
predicted events. That is, we need the alignments Aj.

To encode an alignment A, for pattern s, we simply have to
transmit the delay § for every occurrence of s in X. We do so
using optimal prefix codes [8] over the time delay distribution
P, by which we have

|As|

ZlogP

Once we know the alignments, we can reconstruct the YS
and therewith Y. To reconstruct Y without loss, we need the
residual sequence R. We have

- ||Y||1>

|R[[1 ’

where we first encode the number of 1s in R using Ly, the
MDL-optimal encoding for integers [26]. It is defined as

Ln(z)

where log™ z is defined as log z+loglog z+... , only including
the positive terms in the sum. To obtain a valid encoding, i.e.
satisfy the Kraft inequality, we set ¢y = 2.865064 [26]. Now
that we know the number of 1s in R, we can optimally encode
the actual sequence R via an index over a canonically ordered
set of all sequences of length n with ||R||; 1s. Since we
already know the location of predicted interesting events, we
don’t have to consider these in the residual, therefore we can
remove ||Y||; possible locations. As the binomial coefficient
greatly increases with every additional interesting event in IR
we favor residuals with fewer interesting events.
Putting these two parts together, we have

L(A, | P)

L(R) = Lu(||R|l1) + log ('X'

= log™ z + log cg

LY |MX)=| > LA |P)|+L(R)

(s,Ps)eEM
for the number of bits to encode Y given a model M and
observed events X.
2) Encoding a Model: Next, we formalize how we encode
a model M € M in bits. At a high level we have

S L)+ LR .

(s,Ps)EM

L(M) = Ly(IM]) +

where we first encode the number of patterns in the model,
and then the patterns and their associated delay distributions.

Patterns are essentially just a sequence of k events from
Q. We use Ly to encode their length, and to avoid any bias

towards events e € (2, we encode the actual events in s using
an index over §2. Thus the cost of one pattern is

L(s)

To encode a time delay distribution, it suffices to encode
which time deltas have a probability greater zero, and then
encoding how likely each of these deltas are. We write
Ay = {0 | Ps(6) > 0} for the set of § values with non-zero

= Ln(0™) + log(d™)

probability. Formally, we then have
0 +1 [|Zs]]1 — 1
1 1
+og( 3 >+og< b1 ,

where we first encode interval of possible deltas, [0, %],
by encoding the value of the largest delta with non-zero
probability, §* = max(A), using Ly. As we are not interested
in ‘instantaneous’ predictions, we repurpose 6 = 0 as ‘skip‘.
Next we encode the number of Js with non-zero probability
mass, k = |A|[, for which we need log * bits. We then encode
the values § € A by an index. The more gaps, ¢’s where
P,(6) = 0, the higher this cost.

After which we only have to specify the probability mass
per 6. This reduces to an index over a number composition,
i.e. an index over every possible way to distribute the ||Zs||;
occurrences (balls) over k£ non-empty bins. The more deltas
we have to consider the higher the cost will be, hence we
prefer distributions with fewer deltas.

This concludes the description of a lossless MDL encoding
for a model M.

= Ln(ls|) + [s[log €] .

L(P,|X)

C. The Problem, Formally
With the above we can now formally state the problem.

The Minimal Prediction Problem Given event sequence
X over alphabet Q) and binary sequence Y indicating
time points of interest, find that set of predictive sequen-
tial patterns and associated time delay distributions M =
{(s1,Ps;), (82, Ps,), -+, (8k, Ps,)} and that alignment A of
pattern occurrences to interesting events in Y, such that the
total encoded length

L(Y,M | X) = L(M) + L(Y | M, X)

is minimal.

To solve this problem exactly we have to consider a rather
large search space; as we do not wish to limit the length of a
pattern beforehand, patterns can be up | X| — 1 long, resulting
in L):(ll_l |2]* possible patterns. Per pattern s there exist
(|[Y[]; + D)%l possible alignments. This leaves the final

part selecting a set of of pattern, alignment tuples. We can
limit the number of tuples in our model to ||Y||;. Combined

this gives us
Zl (ZSES(|Y||1 + 1)|Z.g)
J



Algorithm 1: FINDALIGNMENT
input : binary sequence Z, and binary sequence Y
output: alignment A; between Z; and Y

1 A, < align each ¢ where Z[i] = 1 to the next j
where Y[j] =1

2 A, « for each j where Y[j] = 1, only keep alignment
with highest P, (j — i)

3 A, < for each Z,[i] = 1 aligned to a skip, align to
Y[j] =1 that max Ps(j — @)

4 while L;(Y) decreases do

for each (i,7) € A; where P,(j — i) = min Ps(9),

L align ¢ to Y[j] = 1 that max Ps(j — 7)

6 return A,

possible solutions, where S is the set of all patterns. Un-
fortunately, this search space does not exhibit structure such
as (weak) monotonicity, convexity, or submodularity, that we
could exploit to guide our search.

Hence, we resort to heuristics.

IV. ALGORITHM

In this section we present the OMEN algorithm to heuris-
tically solve the Minimal Prediction Problem. We approach
this by splitting the problem into two parts. First, given a
pattern we aim to find its delay distribution by optimizing the
alignment between pattern occurrences and interesting events.
Second, we consider the problem of discovering good patterns.
We discuss these steps in turn.

A. Discovering Alignments and Delay Distributions

We start by discussing how to optimize a pattern delay
distribution P; — or equivalently, an alignment A; — for a
given pattern s. That is, how to minimize L(Y, {(s, Ps)} | X).
To enhance readability, wherever clear from context, we will
write Ly(Y) for L(Y,{(s,Ps)} | X), and L(Y) for the
length of Y under the null model. As we have seen above,
solving L(Y") exactly requires testing all possible alignments,
and is hence computationally unfeasible. We will therefore
heuristically minimize L;(Y"), for which in Algorithm 1, we
present a simple yet effective approach.

To allow a simpler representation we overload the notation
of alignment A and represent the alignment as a set of tuples
(i,7), where 7 is the location of the pattern match in X and j
the location of the aligned interesting event (or ‘skip‘). This
can easily be transformed into a sequence of deltas by ordering
the elements by ¢ and subtracting ¢ from j.

FINDALIGNMENT consists of four main steps, that each
result in a new alignment. First, based on the assumption
that each pattern occurrence predicts the directly following
interesting event, we simply align every occurrence X[i] = s
of pattern s in X to that interesting event in Y that is closest in
time but at least one time step into the future, i.e. As = {(7,7) |
X[i] = s,argmin;>; Y[j] = 1} (line 1), and determine
the resulting delay distribution from the alignment. Some

interesting events may now be aligned with multiple pattern
occurrences, which inherently is not a problem but redundant
nevertheless. It also ‘blocks‘ these pattern occurrences from
predicting other interesting events. We hence re-align all such
pattern occurrences to ‘skip‘, except for the one with maximal
Ps(j — 1), and re-infer the delay distribution (I. 2). Next, we
use the new distribution to align every pattern occurrence
mapped to ‘skip® to that interesting event, Y'[j] = 1, which
maximizes Ps(j — ). If there is no interesting event with non-
zero probability under Ps, we map it to ‘skip‘ (1. 3).

This gives us an initial alignment that we can optimize
towards L4(Y"). We do this by reassigning all pattern occur-
rences mapped to interesting events with minimal Ps(9), to
interesting events with maximal Ps(J). If there is no inter-
esting event where Ps(d) > min Ps(d), we map it to ‘skip*
(. 5). We repeat this step until Ls(Y) no longer decreases.
We can now, given a pattern, find an alignment between Z;
and Y. For the remaining section L(Y") denotes the length
of Y under pattern s with the alignment given by the above
described method.

B. Discovering Good Sets of Patterns

With the above we know how to find an alignment for a
given pattern, and hence how to score a pattern. We will now
discuss how to find good patterns. As is usual, we consider a
greedy bottom-up approach. We immediately face a problem,
however. If a pattern s does not encode Y in fewer bits than
under the null model, the best alignment is given by mapping
all pattern occurrences to ‘skip‘, which amounts to the null
model of encoding all of Y in the residual. That is, we cannot
use our score to identify whether a pattern is ‘promising’
unless it is already ‘good enough’, and as only in trivial cases
singleton events in X will help to compress Y we cannot start
by adding ‘good’ singletons and then refine them.

Rather than resorting to exhaustively scoring every possible
pattern s under some arbitrary constraints, we define an
optimistic estimator L(Y") by which we estimate the L (Y')
of the theoretically best possible refinement s’ of s which
has exactly that subset of occurrences of s that align best
with Y. To find out which set of pattern occurrences are
the ‘right‘ instances, i.e. the best compressing ones, would
however, require testing all possible combinations and hence
result in an unfeasible runtime. We therefore instead estimate
via aligning Z, and Y as described above, and treat pattern
occurrences mapped to ‘skip‘ as if they do not exist, in our
encoding this is equivalent to setting the encoding cost of
‘skip* to zero. Hence, L,(Y") gives the length of Y where we
set Py(skip) = 1 for the encoding of As and Ps(skip) = 0 for
the encoding of Pk, as if only the pattern occurrences aligned
to interesting events exist.

With L,(Y) we can now estimate whether it is possible to
extend a (possibly currently non-compressing) pattern s to a
pattern s’ that would improve our model. We give the pseudo
code of the OMEN pattern miner as Algorithm 2. We start with
an empty model where all interesting events are unexplained
by patterns, i.e. encoded via residual R (line 1). The main idea



Algorithm 2: OMEN

Algorithm 3: REFINE PATTERN

input : event sequence X and binary sequence Y
output: model M, set of pattern delay distribution
pairs
1 M+ 0; R+Y
20+ Q; C'«0; S«0
3 while C is not empty do
4 foreach s € C do

5 if Ly(R) < L(R) then

6 C'+C'U{s+ee+s]|Vee}
7 if Ls(R) < L(R) then

8 | add sto S

9 foreach s € S ordered by L(R) do

10 if Ls(R) < L(R) then

1 s', Py + REFINE PATTERN(S)

12 add (s', Py) to M

13 Y« compute from M

14 R«YaY

5 [ C«C5 C'«0; S0

16 return M

is to then iteratively add patterns to the model M that predict
some of the events in R, by which we focus the search on
those interesting events that are not yet predicted.

Starting from the singletons as candidate set C, we take a
breadth-first search approach where we extend all candidates
that are promising with regard to our optimistic estimate (line
4-6) and identify those that help to better compress Y (1. 7-8).
As extensions of promising patterns we consider all patterns
s’ where we add any single symbol from alphabet 2 at either
the end or beginning of s (1. 6).

Next, we iteratively consider adding the candidates s € S
that passed the compression-check into the model (1. 9-14).
We do so in order of how much they help to compress (l.
9) and to avoid redundancy only consider those that indeed
improve the score (1. 10) — for example, if abcd is the true
pattern and ab € S and cd € S then both (probably) explain
the same interesting events. Once we added one, the other does
not offer any additional information. When adding a pattern
to our model we first refine it in a depth-first manner (1. 11)
which we discuss below. After adding a pattern we recompute
the residual (1. 13—14). We repeat these steps until we have no
further candidates (1. 3), and then return the final model M.

The refinement of patterns goes hand in hand with our
estimator. That is, for those patterns that already give a
gain in compression, we search for their best possible refine-
ment. Rather than exhaustively exploring every possible super-
pattern of a candidate s, the key idea is to greedily extend the
pattern until our optimistic estimator no longer estimates a
better possible pattern (or, we run out of possible extensions).

We give the pseudo-code as Algorithm 3. We start with a
pattern s (1. 1) and consider the most frequent out of the refine-

input : predictive pattern s,
output: greedy refinement of pattern s and delay
distribution Py
1 sk+5 s+ s
2 while L;(R) < Ly (R) do
3 H«+ {(i,j) € A, | j # skip, X[i+ 1] = s'e}
4 | T+ {(i,5) e A,|j+# skip,X[i] =es'}
5 if max.cq [T] > max.cq |H| then
6 L s’ « s’ + argmaxecq |T|

7 else

8 | 8« argmaxccq |[H|+ 5
o | if Ly-(R) > Ly(R) then

10 | st

1 return (s*, Ps+)

ments es and se (1. 5). For both we choose event e € () that
maximizes frequency. That is, rather than merely maximizing
frequency, we only count events e that are adjacent to pattern
occurrences that are currently aligned to an interesting event
(1. 3-4). The key idea is that extending a pattern makes it more
specific, and hence reduce recall—while, by maintaining the
current predictions, we maximize precision.

We repeat this process until our optimistic estimator no
longer gives a better estimation than the best seen pattern up
to this point. We then return that pattern with lowest Ls(R).
This concludes the description of OMEN.

C. Complexity

Next we consider the complexity of OMEN. In the worst
case OMEN considers every possible sequential pattern over 2,
which means a complexity of O(|Q|l¥|=1). For every pattern
we have to find an alignment. The alignment algorithm and
the subsequent optimization is dominated by picking the most
likely 0 for each pattern occurrences aligned to a ‘skip‘. In
the worst case we have to consider all possible § € P;.
This gives a complexity O((||Zs||1)?), as in the worst case
our distribution has a different time delta for every pattern
occurrence, i.e. || Zs||; time deltas.

When adding a pattern to our selection we refine it to the
best version we can find. We do this by greedily, but in the
worst case we have to consider up to | X|—1 patterns. For each
considered pattern we have to go over X to count the adjacent
symbols, combined this gives us a complexity of O(] X|?).

Although the overall complexity is therewith quite horrible
in the worst-case, as real data is sparse and our MDL score
protects against overfitting, OMEN is fast in practice, taking
seconds up to minutes in our experiments.

V. RELATED WORK

Our work is related both to prediction and information flow
in time series, as well as to pattern mining.



At its core, the OMEN score aims to measure how the
occurrences of a pattern s in X help to reliably predict the
occurrences of interesting events in Y. As such, it is strongly
related to Granger causality [13]. Granger causality is based
on the idea that if the past of a time series Z does help to
predict Y, given the past of Y, it “Granger” causes Y. Linear
[13] and nonlinear [6] scores have been proposed, whereas
others studied the effects of events on time series [27]. Transfer
Entropy (TENT) [28] and CUTE [5], are both information-
theoretic instantiations of Granger causality for discrete data,
where the one measures information flow in terms of entropy,
and the other in terms of MDL. In the experiments we will
compare the OMEN score to both.

Prediction in time series [19], [36], [33], [7], [34] is a
classic research topic to which OMEN is related. A prototypical
example is failure prediction, where the goal is to predict
upcoming failures with sufficient time to act on the prediction.
By far most work focuses on the case where X is continuous
valued and the goal is to discover time points where the
distribution of X changes [32], [15]. Another popular task
is the prediction of upcoming events based on social media
activities and text [24], [12].

Discovering interpretable sequential patterns has been ex-
tensively studied [1]. We can differentiate between two set-
tings, based on the notion of support of a pattern. The first,
where we have a database of sequences and support is defined
by the number of instances containing a pattern [31], and
the second where we have one or multiple sequences where
support is defined as the number of occurrences within a
sequence, measured using either a sliding window [22] or
counting the number of minimal windows [18]. Both settings
have been studied in detail, especially for the goal of mining
all (closed) frequent patterns [31].

Recently, research focused more on discovering small, non-
redundant sets of patterns that generalize the data, for which
MDL based approaches, such as SQS [30], SQUISH [4], and
DITTO [3] have been shown to be effective. Instead of taking
a descriptive approach, Fowkes and Sutton [10] proposed a
method to discover small sets of informative patterns based on
a generative model. One step closer to our goal, Galbrun et
al. [11] recently studied the problem of discovering sequential
patterns that periodically appear. Although all related to OMEN
in the sense that they also discover small sets of patterns, these
methods are all strictly unsupervised. We will compare to both
SQs [30] and IsM [10].

Identifying patterns that predict the occurrence of events
can be approached as a supervised sequence classification
problem, where given a labeled sequence database the goal is
to find those sequential patterns that allow a classification [2],
[35], [9]. Scis [35], a recently proposed rule-based sequence
classifier, to this end filters the top-k best classifying rules out
of many candidates. We consider a different setting, where
instead of a sequence database, we only have two sequences
X and Y, where Y can be interpreted as our labels. We include
a comparison to SCIS in the experiments.
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Figure 2: [Higher is Better] OMEN reliably determines pre-
dictiveness of patterns, both for destructive (left) and additive
(right) noise. Dashed lines are the results of TENT and CUTE
on the predicted Y, for Z, as discovered by OMEN.

VI. EXPERIMENTS

In this section, we will empirically evaluate OMEN on
synthetic as well as real-world data. We compare OMEN
to TENT [28] and CUTE [5] to determine how well it can
tell predictive from non-predictive patterns, as well as to
SQs [30], BIDE+ [31], IsM [10], and ScIs [35] to determine
how well it can discover predictive patterns from data. We
implemented OMEN in Python and provide the source code for
research purposes, along with the used datasets and experiment
specifications with generator? All experiments were executed
single-threaded on machines with two Intel Xeon CPU E5-
2643 processors and 256 GB of memory, running Linux. We
report wall-clock running times.

A. Synthetic Data

To assess performance against known ground truth we
consider synthetic data, which we generate as follows. We
first generate event sequence X of length n = 500000 by
uniformly at random drawing n events from an alphabet ()
of length 26, i.e. X € Q", and initialize Y = {0}". We add
structure by planting 50 predictive and 25 non-predictive pat-
terns. Every pattern is generated independently, where we first
draw its length [ from [2, 6], its events s = {ey,...,¢e;} from
Q, and its frequency f from [25,1000], again all uniformly
at random. We plant patterns into X by sampling v.ar. f
insertion positions ¢ € [0,n], where we simply overwrite the
existing values in X, ie. X[i : ¢ + 1] = s. To ensure the
ground truth holds, we do not overwrite previously planted
patterns and remove any accidental occurrences of patterns in
X by resampling those events. For the predictive patterns s we
additionally generate interesting events in Y by, per insertion
position ¢, sampling a delay § u.a.r. from [10, 15] and setting
Y[i 41+ 6] = 1. Finally, we add noise to the data by flipping
values in Y. We consider both destructive noise, where we
flip 1s to Os, as well as additive noise, where we flip Os to
1. Unless specified otherwise, all results on synthetic data are
averaged over 20 independently generated datasets.



B. Evaluating the Score

We first evaluate how well OMEN can tell predictive from
non-predictive patterns. For OMEN, we consider a pattern to
be predictive if it helps to compress Y. We compare OMEN to
TENT [28] and CUTE [5], two state of the art methods based
on Granger causality that measure how much information Z;
provides towards Y. For both we say Z, predicts Y if they
conclude that Z; Granger-causes Y. We optimize the lag-
parameter of TENT over [1, 15] per experiment.

We generate data with varying amounts and type of noise
as described above, and for every planted pattern in every
dataset test whether the score considers it predictive or not.
We give the average weighted accuracies in Fig. 2. We see
that OMEN is able to identify predictive patterns with high
accuracies even for large amounts of noise, whereas TENT
and CUTE applied on Z, and Y reduce to a coin flip as they
expect all (most) interesting events to be explained by Z;.
When we apply TENT and CUTE not on the raw data Y but
rather on the YS that OMEN discovers as the best explanation
of Y given s, we see that their accuracies increase up to 80%,
yet remain much worse than those of OMEN.

C. Evaluating the Patterns

Next, we evaluate how well OMEN discovers predictive pat-
terns from data. We compare OMEN to BIDE+ [31], Scis [35],
SQs [30], and IsM [10]. Although BIDE+, SQS, and ISM are
unsupervised by nature, we can use them to discover predictive
patterns by first splitting X according to the interesting
events in Y—so creating a database of sequences leading
up to the next interesting event—and subsequently using the
OMEN alignment and score to determine which patterns are
predictive. As SQS and ISM discover reasonable numbers
of patterns we evaluate all. As BIDE+ here discovers 2.9M
patterns on average, we only consider the top-200 results.
Scis discovers predictive patterns by itself but requires a
labeled sequence database as input. As positive samples we
consider the window of w events in X that lead up to each
interesting event in Y. As negative samples we then split the
remaining data into non-overlapping windows of length w,
which avoids skew (in positive and negative samples) as well
as bias (non-intersecting with positive samples). We ensure
Scis can discover all planted patterns by setting w = 20.

As metric to evaluate success we consider the edit distances
between planted patterns ¢ to the best matching discovered
pattern s, as this allows us to reward recovery not only of
exact matches but also of fragments of ground truth patterns.
As an example, if we plant pattern abed but discover abc as
best match, we should not treat it as random. Formally,

d
max 1 — (g, 5)
s€s lql

Uy (Tv S) =
qeT

is our quality metric on which we evaluate recall, with T' is
the set of planted patterns, .S is the set of discovered patterns,
and d(q, s) is the standard Levenshtein edit distance between

2http://eda.mmci.uni-saarland.de/prj/omen/

two patterns ¢ and s. We sum only the non-negative terms. To
evaluate precision we compute for all s € S the best match
and take the sum over the max |T’| elements. Formally, we use

up(T,S) = Z s

seS*

where S* is the set of the max |T| elements of {maxger 1 —
d(g:5)/1q| | Vs € S}.

We run all methods on synthetic data generated as above.
IsM reports only singletons, and BIDE+ does not return any
predictive patterns. We therefore omit them from the analysis.
We report the F1 scores of the remaining methods as Figure 3,
and provide the precision and recall plots in Figure 7 and
Figure 8 in the appendix.

We use the usual definitions for recall and precision where
the true positive count is replaced by the respective u(T, S).
We see that OMEN outperforms SQS and SCIS by a wide
margin, and is especially robust against destructive noise. For
additive resp. combined noise, it performs well up to 40%
noise. While SQs is a good second, SCIS returns overly many
patterns and hence has very low precision.

D. Evaluating the Model

As the final experiment on synthetic data, we evaluate how
well OMEN can describe the data at hand, in particular, how
close the models that it discovers get to the ground truth.
We start with a sanity check, considering data where Y is
independent from X. We do so by generating data without
noise and then destroying any dependence between X and Y
by randomly permuting Y. When we run OMEN on this data
it correctly does not report any patterns.

Next, using the same data generating scheme as above, and
consider the number of bits that OMEN requires to describe
the data, compared to the ground truth model, and the null
or ‘empty’ model where X and Y are described without any
patterns. Per noise level we report the worst-case performance,
where the difference between discovered and true model is
greatest. We give the results as Fig. 4. Overall we see that
OMEN returns high quality models and is highly robust against
noise. In particular, we see that destructive noise has barely any
effect on OMEN’s ability to discover good models: in terms of
bits, its results are always very close to the ground truth and
far from the null model. For additive noise—where increasing
numbers of interesting events cannot be explained by patterns
in the data—of around 40% we see that OMEN reduces to the
null model, which from 70% noise is indeed the most succinct
description of the data. For combined noise we see that OMEN
discovers models close to the ground truth, up till about 40%
noise, after which it correctly returns the null model as the
best (simplest) description of the data. These results explain
the drop in F1 we observed in the previous experiment, as
beyond these noise levels the data simply does not exhibit any
significant structure anymore.

To evaluate how well OMEN approximates the ground
truth delay distributions, we measure the Jensen-Shannon
divergence [8] between the discovered P, and true P; for
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Figure 3: [Higher is better] F'1 score results on synthetic data for destructive (left), additive (middle) and combined (right)
noise. OMEN clearly outperforms SQS and ScIs. Figure 4 shows that the data does not exhibit any significant structure beyond
80% for destructive, 60% for additive and 40% for combined noise. Hence the drop in F'1 for additive and combined noise.
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combined (right) noise. Plots show bits needed to encode Y given the null, planted and discovered model. We show for each
noise level the experiment with the worst performance, i.e. where the difference, in bits, between discovered and planted model

is greatest.

all exactly recovered patterns, averaging over all noise levels.
We find that with a worst case divergence of 0.53 bits and
an average divergence of only 0.014 bits, OMEN recovers the
delay distributions nearly perfectly.

Last, we consider the robustness of OMEN against patterns
with noisy delay distributions. To this end we generate syn-
thetic data as above, but, to keep the results interpretable,
we now plant only a single pattern of length 6 that predicts
2000 interesting events. As time delay distribution we consider
a Normal distribution with mean 50, and vary the standard
deviation from 2 to 60 in steps of 2. We record the number
of bits L(Y,M | X) needed by resp. the null model, the
ground truth model, and the model discovered by OMEN.
We give the worst case results per standard deviation, out of
20 experiments, as Fig. 5. We see that OMEN is robust to
patterns with wide delay distributions, discovering models that
compress better than the null—and hence, discovering the true
pattern—up to a delay distribution with a standard deviation
of 44. From a standard deviation of 58 onward the null model
beats the planted model.

E. Evaluating on Real Data

Last, we evaluate OMEN on real world data. We consider
three datasets, electrocardiograms (ECG), a daily activities log
(Lifelog) and water levels combined with precipitation records
(Saar). We give the basic statistics in Table I. We compare to
SQs and Scis. As SQs allows for gaps, and real world patterns
might show these, we interpret its results as minimal windows

— Null
—— Planted

L(Y, M|X)

—— Discovered

0 10 20 30 40 50 60

standard deviation

Figure 5: [Lower is better] OMEN recovers a model close to
ground truth for a Gaussian time delay distribution. Ground
truth model consists of one pattern with gaussian time delay
distribution with a median at 50.

for which we again use the OMEN score and alignment to
determine which ones are predictive.

On the ECG dataset the goal is to find patterns that predict
the occurrence of a heartbeat. Our dataset is based on the first
record (id 300.1) of the MIT-BIH ST Change Database? We
subsampled the record, replacing each 5 subsequent values
with their average, transformed the result into a relative
sequence by replacing each value with the difference to the
previous value. Finally, using SAX [21] we discretize the
sequence to 3 symbols. The heartbeats are annotated in the
data. We shift the annotation slightly forward such that they
are strictly before the heartbeat.

3https://physionet.org/content/stdb/1.0.0/



When we run it on this data, SQS discovers 12 patterns out
of which only one is predictive: it corresponds to the previous
heartbeat. SCIS requires a window length, which we set to
the approximate length of one cardiac cycle, excluding the
heartbeat (w = 40), for which it then returns 41 318 patterns.
OMEN needs 388 seconds to discover two predictive patterns
that together compress Y to only 70% of the number of
bits needed by the null model. The first pattern corresponds
to the previous heartbeat. The second, more subtle, pattern
corresponds to the p-wave that occurs before a heartbeat. We
visualized this pattern in Figure 6 and show the reported delay
distribution. This experiment shows that OMEN is able to find
non trivial patterns and delay distributions in real data.

Next we consider Lifelog, which is based on the life of
Sacha Chua who logs and publishes all her daily activities?
We considered the data over 2017, removing any activities
with have the same start and stop timestamp. As this dataset
provides many events that are potentially interesting, we
consider every e € () as target, and have 40 target sequences
with Y[i] = 1 iff X[i] = e. In addition, we consider a Y
where we marked all business related activities as interesting.

Over all these datasets, SCIS discovers on average 695
patterns, many of which are redundant and not all make
intuitive sense. While SQS only discovers 3 predictive pat-
terns, these do make sense: Cook, Dinner— Clean the Kitchen
and Subway, Social—Subway. OMEN takes between 6.1 and
37 seconds per dataset, and overall discovers 24 patterns.
Many of these, such as Sleep— Childcare, Cook— Dinner,
Dinner— Clean the Kitchen, predict the next action, i.e. a time
delay distribution with a peak at 1. A more interesting pattern
is Subway—Subway which has its peak at § = 2, and for
which a natural interpretation is that Sacha takes the subway,
logs on average one activity, and then takes the subway back.

Finally, we consider the Saar dataset, where the goal is to
use daily precipitation records’ to explain the rise (Saar-Rise)
or fall (Saar-Fall) of the Saar river® by 10cm or more over
one day. We considered the timespan from 2007 to 2018. We
discretize the values to 17 symbols using [log; 55 1+x] where
we accumulate all values > 15 into one symbol.

For Scis with w = 10, we discover more than 400 patterns
for either dataset. Many of these patterns are non-intuitive,
such as that two successive days without rain predict a rise
in water level. OMEN terminated for both datasets in under 4
seconds. SQS does not discover any descriptive nor predictive
patterns. OMEN only reports singletons. Unsurprisingly, from
the reported time delay distributions, we find that the more it
rains the more likely it is for the Saar to have risen by 10cm
or more, by either the next day or even two days later. For
Saar-Fall we find an interesting pattern that expresses that
approximately three days after heavy rain the water levels
quickly drop—which indeed is likely as the water levels first
rose due to rain.
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Shttps://www.dwd.de/DE/leistungen/klimadatendeutschland/
klarchivtagmonat.html (Ensheim weather station)

%Measured at Sankt Arnual by the Federal Institute of Hydrology (BfG)

l— Signal — Prediction @ Interesting Eventeb e a l 0.3 4
y| ° ° °

777% 777777 7/\7777777/\777 02‘
X ‘IH\J\‘/‘-NV\\’«N\IL 0.1

0 ..
T T - -
0 50 100 skip 8 9 10 43
Timesteps

Figure 6: Window of ecg record with pattern bbbbbbbbbbba
overlayed (left) and the reported time delay distribution (right).

VII. DISCUSSION

The experiments showed that OMEN works well in practice.
We saw that its score is very good at telling predictive from
spurious patterns, and that the mining algorithm is able to
reconstructs the ground truth without picking up spurious
or redundant patterns. In experiments on synthetic data we
observed that it’s highly robust against noise, and vastly
outperforms the state of the art. On real world data we
showed that it discovers easily interpretable patterns that
reliably explain our target events. The results of the ECG
experiment demonstrate that OMEN can find subtle patterns (p-
wave pattern) even in the presents of clearer patterns (previous
heartbeat). In summary, on all considered settings it discovers
small, easily interpretable and non-redundant sets of reliable
patterns that together predict the interesting events well.

We consider mining predictive rather than causal patterns.
We do note, however, the close kinship between the two, and
the fact that we share at least one common assumption: a
cause needs to precede the effect in time [13], [23]. It will
be interesting to explore under which additional conditions
(assumptions) our patterns are indeed causal. By encoding Y
using delay distributions that are independent of the actual
pattern occurrences in X, our framework naturally fits the
algorithmic model of causality [17], which could explain why
our score performs so well in comparison to CUTE [5] and
TENT [28]. By explicitly maximizing this independence we
could possibly adapt OMEN to discover sequential patterns that
are causal under the additive noise model [29], [16], which is
an interesting direction for future work.

Although OMEN is effective at discovering meaningful
patterns, it currently considers a relatively simple pattern
language. At the expense of additional computation, it is
straightforward to extend both the OMEN score and search
to sequences with gaps, serial episodes [18] or complex
multivariate patterns [3].

Even though OMEN works well in practice, its alignment
algorithm allows for further improvement. While it currently
fails for adversarial input, at the expense of computation
we could compute optimal alignments via dynamic program-
ming [30]. A more interesting extension would be to include
prior knowledge on the time-delay distributions, such as a
shape (Gaussian, Poisson) or expected delay.



Scis SQSs +OMEN OMEN
Dataset |X| 1 IY|h Found | M| |[M] %L  Runtime in sec
ECG 107395 3 2558 41318 1 2 70 388
Saar-Rise 4018 17 278 419 0 7 78 4
Saar-Fall 4018 17 278 442 0 2 98.5 4
Lifelog 5970 40 153 695 0.07 0.6 95 6

Table I: Results on real datasets. We give data sequence length, alphabet size and number of interesting events in Y and the
number of reported patterns for SQS + OMEN and ScIS. For OMEN we additional report compression rate relative to the null
model in percent, %L and runtime. For Lifelog we report the average over 41 independent runs, with different target events.

VIII. CONCLUSION

We considered the problem of discovering small sets of
sequential patterns that not only predict that something in-
teresting will happen, but for which it is additionally easy
to tell how long it will be until the predicted event. We
formulated the problem in information-theoretic terms using
the Minimum Description Length principle. As the resulting
problem does not lend itself of efficient exact optimization, we
propose the OMEN algorithm to heuristically discover good
alignments and pattern sets. Extensive evaluation on synthetic
and real world data showed that OMEN compares favorably
to the state of the art. In particular, the OMEN score performs
very well in telling predictive from associative patterns, even
under large quantities of noise. The OMEN pattern miner
efficiently discovers high quality sets of predictive patterns
give clear insight into the data generating process. In future
work we will focus on generalizing the pattern language, as
well as investigating under which conditions we can discover
sequential patterns that are causal.
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