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Abstract—Concept drift is a major problem in online learning
due to its impact on the predictive performance of data stream
mining systems. Recent studies have started exploring data
streams from different sources as a strategy to tackle concept
drift in a given target domain. These approaches make the
assumption that at least one of the source models represents a
concept similar to the target concept, which may not hold in many
real-world scenarios. In this paper, we propose a novel approach
called Multi-source mApping with tRansfer LearnIng for Non-
stationary Environments (MARLINE). MARLINE can benefit
from knowledge from multiple data sources in non-stationary
environments even when source and target concepts do not match.
This is achieved by projecting the target concept to the space of
each source concept, enabling multiple source sub-classifiers to
contribute towards the prediction of the target concept as part
of an ensemble. Experiments on several synthetic and real-world
datasets show that MARLINE was more accurate than several
state-of-the-art data stream learning approaches.

Index Terms—concept drifts, non-stationary environment,
multi-sources, transfer learning.

I. INTRODUCTION

The need for efficient streaming data analytics has rapidly
grown in recent years [1]. A data stream can be defined as a
sequence of observations that continuously arrive over time,
occurring in many applications, such as credit card approval,
fraud detection, and software defect prediction [2]. A key
challenge in data stream learning is that the joint probability
distribution of an application may change over time, i.e., there
may be concept drift [3]. Learning from data streams that may
suffer from concept drifts is frequently referred to as learning
in non-stationary environments [4], [5], whereas a given joint
probability distribution can be treated as a concept [2], [6].
Data stream learning algorithms must be able to adapt and
swiftly react to concept drifts to avoid poor predictions [1].

Using information learned from different data sources is a
feasible way to speed up the learning of a new target concept
and improve the accuracy of the predictions. This can be
considered as transfer learning [7]. However, transfer learning
has been usually used off-line, requiring the entire training
set to be available before training commences. While a few
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recent studies applied transfer learning in non-stationary data
streaming environments [5], most of the approaches presume
a similarity existing between the source and target concepts
[2], [8], [9]. This assumption often fails to hold in practice.
For example, the concept underlying the prediction for bike
rental demands in Washington D.C. and London are different
due to different weather patterns and consumer behaviours in
these two cities. However, data streams of these two locations
are available [10], [11] and could potentially be used to
improve the predictive performance of data stream learning
approaches. Another example is software effort estimation,
where data streams describing software projects developed
by different companies may be used to improve software
effort estimation in a given company, despite having different
underlying distributions [12].

Therefore, this paper aims to answer the following re-
search questions: Can multi-source transfer learning help
us to improve the predictive performance in non-stationary
environments where source and target data streams do not
share the same concept? If so, how?

To answer these questions, we hereby propose a novel
approach, namely Multi-source mApping tRansfer LearnIng
for Non-stationary Environments (MARLINE). MARLINE is
the first approach designed to benefit from multiple source data
streams even when sources and target could have considerably
different concepts. It achieves that by projecting the target
concept to the space of each source concept through a novel
mapping mechanism, enabling multiple source sub-classifiers
to contribute towards the prediction of the target concept as
part of an ensemble. Our experiments show that MARLINE
can improve the predictive performance of the existing ap-
proaches over time and quickly obtain good performance at
the early learning stage or after the concept drift occurs, even
though there are only a few training examples available.

II. RELATED WORK

Several approaches have been proposed for data stream
learning in non-stationary environments [4], [6]. Among these,
approaches able to learn example-by-example (online) rather
than chunk-by-chunk [13] are particularly relevant to our
paper. They have the potential to adapt to concept drifts faster
than chunk-based approaches. Such approaches can be further



divided into active and passive approaches [4], [13]. Active
approaches trigger the adaptation mechanisms when concept
drift detection methods alert [4], [14]. Examples of drift
detection methods include the Drift Detection Method (DDM)
[15] and Drift Detection Methods based on the Hoeffding’s
inequality (HDDM) (HDDMA and HDDMW ) [16]. Passive
approaches continuously adapt to concept drift without relying
on explicit concept drift detection [4], [13]. A popular passive
approach is Dynamic Weighted Majority (DWM) [17]. In
spite of their learning capacity, none of these approaches uses
transfer learning or operates in multi-source scenarios.

Very few approaches have used transfer learning in non-
stationary environments [5]. Online inductive parameter trans-
fer learning approaches include Dynamic Cross-company
Mapped Model Learning (Dycom) [12], Diversity for Dealing
with Drifts (DDD) [18] and Online Window Adjustment
Algorithm (OWA) [19]. Dycom treats source data offline,
whereas DDD and OWA do not use source data, transferring
knowledge only from the immediate previous target concept
to the current target concept. A new chunk-based inductive
parameter transfer approach called Diversity and Transfer-
based Ensemble Learning (DTEL) was proposed in [20].
Similar to DDD, DTEL does not consider different sources
but uses historical target concepts. In addition, this is a chunk-
based approach. Recently, two transductive transfer learning
approaches called MultiStream Classification using Relative
Density Ratio (MSCRDR) [8] and Cross-domain Multistream
Classification (COMC) [9] have been proposed to handle
multiple sources, with the assumption that the target stream
is unlabelled and the source is labelled. However, these two
algorithms require both the source and the target to share the
same task, even after a concept drift happens. Multi-source
transfer learning for non-stationary environments (Melanie) [2]
is another online transfer learning method that can learn from
multiple sources. However, Melanie only benefits from source
concepts that are similar to the target.

Overall, there is no existing approach to perform transfer
learning using multiple non-stationary data sources that may
have different concepts from those of the target.

III. PROBLEM STATEMENT

Let {xi, yi} denote an example received at a given point in
time at a data stream i with domain Di = {Xi, pi(x)} and task
Ti = {Yi, pi(y|x)}, where i ∈ {S1, S2, · · · , Sn, T}, Sn is the
nth source data stream, T is the target data stream, xi ∈ Xi,
Xi is a d-dimensional feature space, yi ∈ {−1,+1} is the
class label, pi(x) is the marginal probability distribution and
pi(y|x) is the posterior probability distribution.

All sources and target streams may suffer concept drift. We
will enumerate the concepts pji seen in a data stream i using
a sequential identifier j. Whenever a concept drift occurs, we
increment j. We use Ji to denote the number of concepts
observed so far in data stream i. Note that a given training
example, domain and task are all associated with the given
concept. Therefore, they are actually all indexed by j as shown
in {xji , y

j
i }, D

j
i , and T ji , but we will leave this index implicit.

TABLE I: Key Notation and Description.
Sn The data stream from source n
T The target data stream
M Set of sources and target data streams seen so far
xi Feature vector from data stream i
yi The corresponding label of xi
d Dimensionality of the feature space
Ji Number of concepts from data stream i observed so far
pji The jth concept of data stream i, 0 < j ≤ Ji
x′ji The projection of xT on the jth concept of stream i

Hj
i The base learning ensemble classifier trained by the jth

concept of data stream i
Hi Pool of base learning ensembles for data stream i
K Base learning ensemble size
hj,ki The kth sub-classifier of Hj

i

λs
h
j,k
i

Sum of hj,ki ’s probabilistic predictions for target exam-
ples that it correctly (s = sc) or incorrectly (s = sw)
classifies

α
h
j,k
i

hj,ki ’s predictive performance on current target concept

At the beginning of the data stream or after a concept drift,
due to the lack of the target data representing the new concept,
the performance of the predictive models is usually poor.
Therefore, the aim of multi-source transfer is to improve pre-
dictive performance in non-stationary environments and speed
up learning especially in the beginning of the data stream
or after the occurrence of concept drifts by using the data
from multiple sources. We will investigate inductive transfer
learning (i.e. TSi

6= TT while DSi
6= DT or DSi

= DT ), as
concept drifts may cause changes in TT and TSi

over time.

IV. PROPOSED METHOD

This section introduces MARLINE. An overview of MAR-
LINE’s training framework is given in Figure 1, and its Java
implementation is available in [21]. MARLINE considers that
we have multiple input data streams (represented in grey in
the figure), where the concepts of the sources and target
streams may be different. However, classifiers learned from
the source concepts may still be used to improve the predictive
performance in the target domain. For that, each concept
observed from each data stream is learnt by an independent
online learning ensemble, which we refer to as base learning
ensemble (shown in yellow). To identify different concepts, a
concept drift detection method is used. Whenever a new target
example needs to be predicted, MARLINE uses a mapping
between the current target concept and each source concept,
so that the target example is geometrically projected onto
the space of the source concept (the projections are shown
in purple). Through this mapping, the target example can be
predicted by different sub-classifiers (shown in orange) trained
by different base learning ensembles. MARLINE weights each
sub-classifier depending on how useful it is for predicting
the projected target (shown in cyan-blue). The prediction by
MARLINE is based on the weighted majority vote of the
predictions of all the sub-classifiers that compose all the source
and target ensembles. The set of all weighted sub-classifiers
is referred to as the MARLINE ensemble.

Section IV-A introduces MARLINE’s training procedure.
Section IV-B presents the mapping procedure for concept pro-
jections, which is undertaken with respect to the centroids of



Fig. 1: Overview of the proposed MARLINE training framework.

each concept. The centroids calculation is explained in Section
IV-C. Section IV-D discusses the weighting of sub-classifiers
that compose the MARLINE ensemble used for predictions.
Section IV-E explains the voting procedure used for making
predictions. Section IV-F shows the time complexity.

A. Training

The pseudo-code of MARLINE’s training process is shown
in Algorithm 1. The set M ⊆ {S1, · · · , Sn, T} is the set of
all the sources and target for which an online base learning
ensemble has already been generated. When a new example
(xi, yi) is received from a source or target data stream i for
the first time, the proposed method creates one online base
learning ensemble H1

i for this source or target (lines 3 to 6).
Any online learning ensemble method can be used, e.g., online
boosting or bagging [22]. Ensembles are used here because
their diversity increases the chances that at least some of the
sub-classifiers become useful for predicting the target [2].

As the concept of each data stream i may change due to
concept drifts, each source/target i is associated with a pool
of base learning ensembles Hi, where each ensemble may
represent a different concept observed from that source/target.
Each ensemble Hj

i within the pool contains K sub-classifiers
hj,ki , where 1 ≤ k ≤ K. The newly created ensemble H1

i

is added to its corresponding ensemble pool Hi (line 7).
This pool receives additional ensembles when i suffers from
concept drifts, as explained later in this section. After having
added H1

i to Hi, the method discussed in Section IV-C is
used to calculate the centroid associated with the concept p1i
(line 8). This centroid is used to create the mapping from
the target to the source concepts, as explained in Section
IV-B. Line 9 is used to initialise the weights associated with
each sub-classifier. These weights are used to identify which
sub-classifiers are more important for predicting the projected
target, and their calculation is explained in Section IV-D.

Whenever a new training example (xi, yi) is received from
stream i, MARLINE runs a drift detection method on i. Any

drift detection method could be used, e.g., HDDM [16]. If the
drift detection method requires monitoring a predictive model
representing i, the most recent ensemble HJi

i is used. If a
concept drift is detected, the proposed method creates a new
online base learning ensemble HJi+1

i with the initialisation
of its weights and connection with the pool of ensembles Hi

(lines 11 to 15). If the new example belongs to the target
domain, all the values of λsc

hj,k

i′
, λsw
hj,k

i′
, αhj,k

i′
,∀i′ ∈M, j ≤ Ji′ ,

k ≤ K for all the sub-classifiers are reset (lines 16 to 18) so
that all the sub-classifiers’ weights can start adapting to the
new target distribution.

After checking for concept drift, the most recent ensemble
HJi
i created for the source or target i is trained on the current

example (xi, yi) (line 20). The centroid of concept pJii is
updated (line 21), as explained in Section IV-C.

If the new training example belongs to the target stream, the
sub-classifiers’ weighting scheme discussed in Section IV-D
is applied (line 23). The mapping procedure shown in Section
IV-B is used in the weighting scheme.

B. Mapping Procedure

The main purpose of the mapping procedure is to create
the projection (x′ji ) of the current target example (xT ) on the
source concept pji . Therefore, given a current target example,
the classifiers trained with a certain source concept can make a
prediction on the projection of this target example based on the
knowledge learned from the source concept. After a concept
drift has been detected in the target data stream, any previous
concept in that stream is also regarded as a source concept.
From this point onward, we will use the term “source+”
instead of “source” when the past target concepts are included
as sources. Therefore, i and j in the source+ concept pji
are defined as follows: {i, j | i ∈ {S1, · · · , Sn}, 0 < j ≤
Ji} ∪ {i, j | i = T, 0 < j < Ji}.

To seek the projection (x′ji ) of target example (xT ) on pji ,
a mapping function between pji and pJTT is required. However,
for online learning we only store the latest example in memory



Algorithm 1 Learning Procedure of MARLINE.
Input: Data streams Di, ∀i ∈ {S1, S2, · · · , Sn, T}
Parameter: Online Base Learning Ensemble Algorithm; Base

Learning Ensemble Size K; Drift Detection Method; Time
Forgetting Factor 0 < θ ≤ 1; Performance Index 0 ≤ σ ≤ 1

1: Set Hi = ∅, Ji = 0, M = ∅; ∀i ∈ {S1, S2, · · · , Sn, T}
2: while Receive a new example (xi, yi), i ∈
{S1, S2, · · · , Sn, T} do

3: if i /∈M then
4: M←M∪ i
5: Ji ← 1 (Number of online base learning ensembles

associated to i is 1)
6: Initialise online base learning ensemble HJi

i

7: Hi ← Hi ∪HJi
i

8: Calculate centroids ci,Ji as shown in Section IV-C,
used to create the mapping as shown in Section IV-B

9: λsc
h
Ji,k

i

← 0, λsw
h
Ji,k

i

← 0, α
h
Ji,k

i

← 1,∀k ≤ K
10: end if
11: if DriftDetectioni (xi, yi) = true then
12: Initialise new online base learning ensemble HJi+1

i

13: Ji ← Ji + 1
14: Hi ← Hi ∪HJi

i

15: λsc
h
Ji,k

i

← 0, λsw
h
Ji,k

i

← 0, α
h
Ji,k

i

← 1,∀k ≤ K
16: if i = T then
17: λsc

hj,k

i′
← 0, λsw

hj,k

i′
← 0, αhj,k

i′
← 1,∀i′ ∈ M, j ≤

Ji′ , k ≤ K
18: end if
19: end if
20: OnlineBaseLearnerAlgorithm{HJi

i , (xi, yi)}
21: Update centroids ci,Ji as shown in Section IV-C, used

to create the mapping as shown in Section IV-B
22: if i = T then
23: Update each sub-classifier’s weight as shown in Sec-

tion IV-D
24: end if
25: end while

over time. To build the mapping function between the source+
and target concepts without retrieving the overall historical
data, we propose the following procedure. Consider a pair of
reference points in a given source+ concept, and another pair
in the target concept. For instance, for a single concept pji , the
pair of reference points can be the centroids of the distributions
pji (x|y), y ∈ [−1,+1], i.e.:

cyi,j = [c1, c2, · · · , cd]; y ∈ [−1,+1] (1)

The calculation of cyi,j is shown in Section IV-C.
We connect the pairs of reference points of a given concept

using a vector
−→
Vi,j = cy=1

i,j −cy=−1i,j . The transformation matrix
R between

−→
Vi,j and

−−−→
VT,JT can be considered as the mapping

function of any two vectors between pji and pJTT :

−→
Vi,j = R ·

−−−→
VT,JT (2)

Therefore, the source+ vector
−→
Vi,j can be seen as a projection

of the target vector
−−−→
VT,JT on pji .

The transformation matrix R can be calculated by Eqs. (3)-
(5), where Id is the identity matrix with d dimensions.

−→u =

−→
Vi,j

-1∥∥∥−→Vi,j -1
∥∥∥ , −→v =

−−−→
VT,JT

-1∥∥∥−−−→VT,JT
-1
∥∥∥ (3)

A = Id − (−→u +−→v ) · 2 · (−→u +−→v )-1 · Id
(−→u +−→v )-1 · (−→u +−→v )

(4)

R = (A−−→v · 2 ·
−→v -1 ·A
−→v -1 · −→v

) ·

∥∥∥−→Vi,j∥∥∥∥∥∥−−−→VT,JT

∥∥∥ (5)

When a new example (xT ) from the target domain is
received, the vector between the new example and one centroid
(cy=1
T,JT

) of the target concept can be computed as follows:
−→
V T = xT − cy=1

T,JT
(6)

The projection of
−→
V T on pji can be calculated as follows:
−−→
V Ij = R ·

−→
V T (7)

The projection (x′ji ) is the sum of cy=1
i,j and

−−→
V Ij :

x′ji = cy=1
i,j +

−−→
V Ij (8)

C. Calculating and Updating the Centroids

For saving computational time, we update the centroids of
each concept instead of updating transformation matrix R at
each time step. The transformation matrix R will be calculated
whenever a target example needs to be predicted.

The centroids of the concept pji (x, y) are dynamically
updated based on examples (xi, yi) received from data stream i
during the time window since the concept j has become active.
During this time window, if no example with label yi has been
seen before, the centroid cy=yii,Ji

is set as xi. Otherwise, it is
updated as follows:

sumCy=yii,Ji
= θsumCy=yii,Ji

+ xi (9)

cy=yii,Ji
=

sumCy=yii,Ji∑L
t′=1 θ

(t′−1)
(10)

where L is the number of the training examples received in
the data stream i since the concept pji has become active,
and θ, 0 < θ ≤ 1, is a pre-defined forgetting factor used to
reduce the weight given to the historical examples. It helps to
deal with non-stationary environments. The summation in the
denominator is a normalisation factor, which can be updated
in an online manner.

D. Sub-Classifiers Weighting

When an example (xT , yT ) from the target domain is
received, all the sub-classifiers’ weights ωhj,k

i
are updated.

We assign larger weights to the sub-classifiers which focus on
harder classified examples. The sub-classifier’s weight ωhj,k

i

depends on the corresponding sub-classifier’s performance



αhj,k
i

on the current target concept pJTT . All the sub-classifiers’
performances αhj,k

i
,∀i ∈ M, 0 < j ≤ Ji, 0 < k ≤ K are

updated based on the corresponding projection (x′ji , yT ) of
the current target example (xT , yT ), which has been obtained
by the mapping procedure explained in Section IV-B. When
i = T, j = JT , the projection (x′ji , yT ) is set to the current
target example (xT , yT ).

The sub-classifiers’ performance is initialised with αhj,k
i

=

1,∀i ∈ M, 0 < j ≤ Ji, 0 < k ≤ K. To update each sub-
classifier’s performance, the current example’s weight needs
to be calculated. We get the prediction of each sub-classifier
on the corresponding target example projection. The example’s
weight SW

SC can be calculated as follows:

SC ←
∑
i∈M

Ji∑
j=1

K∑
k=1

αhj,k
i
P (hj,ki (x′ji ) = yT ) (11)

SW ←
∑
i∈M

Ji∑
j=1

K∑
k=1

αhj,k
i
P (hj,ki (x′ji ) 6= yT ) (12)

where P (h(x) = y) is the probability of class y, estimated
by the sub-classifier h(x), and αhj,k

i
is the performance com-

puted based on the target examples received before receiving
(xT , yT ). The example’s weight SW

SC is used to indicate how
confident the MARLINE ensemble is for the current example.
We expect that the more confident the MARLINE ensemble
is, the smaller weight the example receives, and vice versa.

Consider that λsc
hj,k
i

is the sum of the probabilistic pre-

dictions of sub-classifier hj,ki for the target examples that it
correctly classifies and λsw

hj,k
i

is the sum of the probabilistic
predictions for misclassified target examples. The performance
αhj,k

i
of each sub-classifier can be computed incrementally by:

λsc
hj,k
i

← θλsc
hj,k
i

+
SW

SC

αhj,k
i
P (hj,ki (x′ji ) = yT )

SC
(13)

λsw
hj,k
i

← θλsw
hj,k
i

+
SW

SC

αhj,k
i
P (hj,ki (x′ji ) 6= yT )

SW
(14)

αhj,k
i
←

λsc
hj,k
i

λsc
hj,k
i

+ λsw
hj,k
i

, (15)

where 0 < θ ≤ 1 is a forgetting factor and
α

h
j,k
i

P (hj,k
i (x′ji )=yT )

SC

represents how much contribution sub-classifier hj,ki makes in
the MARLINE ensemble to vote for the projection (x′ji ) of
(xT ) with label yT . Thus, αhj,k

i
is the current performance

percentage of each sub-classifier, giving more focus to more
recently arriving target examples.

The weights of all the sub-classifiers associated with
αhj,k

i
> σ are assigned to their predictive performance αhj,k

i

normalised by the sum of the predictive performances of all
the sub-classifiers associated with αhj,k

i
> σ. The weight ωhj,k

i

can be formulated as follows:

ωhj,k
i

=


1∑

i′∈M
∑J

i′
j′=1

∑K
k=1(αh

j′,k
i′

>σ? α
h
j′,k
i′

:0)
αhj,k

i
, αhj,k

i
> σ

0, otherwise
(16)

where σ is a pre-defined parameter, (testCondition ? v1 : v2)
retrieves v1 if testCondition is true, and v2 otherwise.

E. Voting Procedure for Making Predictions

When a prediction is needed for a target instance (xT ),
we multiply the corresponding weights of the sub-classifiers
with the probabilistic prediction made by each sub-classifier
on their corresponding projection (xji′) of the current target
example. All sub-classifiers hj,ki′ , i′ ∈ M, j ∈ {1, · · · , Ji},
k ∈ {1, · · · ,K} are considered for this purpose. Afterwards,
we obtain the sum of the weighted prediction probabilities of
all classes and use majority vote to decide the predicted class.

F. Time Complexity Analysis

When learning a target training example, MARLINE’s train-
ing time complexity is O(fDD+fH+(JS1+JS2+· · ·+JSn+
JT )d

2+(JS1
+JS2

+ · · ·+JSn
+JT )K×fh), where fH , fDD

and fh are the time complexities for training the base learning
ensemble with the example, running the drift detection method
and getting the prediction from a sub-classifier.

When learning a source training example, MARLINE’s
training time complexity is O(fDD + fH + d).

MARLINE’s time complexity for prediction is O((JS1
+

JS2 + · · ·+ JSn + JT )d
2 + (JS1 + JS2 + · · ·+ JSn)K × fh

Details on the complexity estimation can be found in the
Supplementary Material of this paper [23].

V. EXPERIMENTS SETUP

We evaluate MARLINE under several different conditions,
including stationary environments, non-stationary environ-
ments with different types of concept drifts, and different
target data stream sizes. Artificial datasets enable us to better
understand when and how MARLINE can be helpful. Real
world datasets enable us to check whether MARLINE can
work well in practice.

A. Datasets

We use the same three artificial datasets of similar target and
sources as those of [2] and generated additional datasets where
the source was non-similar to the targets. These datasets have
two numeric features and one binary output. The examples
belonging to each output class were generated by a Gaussian
distribution as shown in Table II, where each dataset is
composed of several (target and sources) data streams. The
three datasets with similar sources use only the target and
similar source data streams from Table II, whereas the three
datasets with non-similar source use only the target and non-
similar source data stream from Table II. The datasets simulate
a stationary environment (no drift) and two types of non-
stationary environments (abrupt drift and incremental drift) on
the target stream. Each dataset also has three different versions
based on different class size scenarios (small, medium, large)
by varying the number of target training examples of each
class in 50, 500, 5000. Each source stream has 5000 training
examples of each class without any concept drift.

The real-world datasets are acquired from London bike
sharing dataset [10] and Bike Sharing in Washington D.C.



dataset [11]. The task is to classify whether rental bikes are
in low or high demand. We use the median of the total count
of the rental bikes of a given dataset to indicate low and high
demands in this dataset. We select the features shared by the
two datasets (actual temperature, feeling temperature, humidity
and wind speeds) to unify the feature dimension. Each dataset
is divided into three sub-datasets based on holiday, weekend
and weekday and compose the following three scenarios: We
choose weekdays from Washington D.C. as the source, and (1)
holidays and (2) weekends in London are the targets. We make
weekends in Washington D.C. as the source and (3) weekdays
in London are the target. The aim of these three different target
sub-datasets is to create small, medium and large stream sizes
(Holiday: 384, Weekend: 4970, Weekday: 12060).

B. Benchmark Methods and Evaluation Measures

MARLINE was compared against Melanie [2], Adaptive
Random Forest [14], Dynamic Weighted Majority (DWM)
[17], Online Bagging [22], Online Boosting [22], Online
Bagging with Drift Detection and Online Boosting with Drift
Detection. Melanie was chosen for the comparison because it
is the state-of-the-art multi-source transfer learning approach
for non-stationary data streams. As MSCRDR [8] and COMC
[9], Melanie is only able benefit from source concepts when
they share the same task as the target concept. However,
different from these approaches, Melanie has the advantage
of being able to detect when source tasks are dissimilar to the
target, avoiding to hinder predictive performance on the target
when that is the case. Comparing MARLINE against Melanie
will reveal whether MARLINE’s mapping function is helpful
to improve predictive performance against an approach that
is only able to benefit from source concepts when they are
similar to the target concept.

Adaptive Random Forest and DWM were chosen because
they are popular data stream learning approaches available in
the Massive Online Analysis (MOA) tool [24]. Comparing
against them shows whether MARLINE can outperform the
popular approaches. Online bagging and online boosting [22]
were included as baseline ensemble approaches with no strat-

TABLE II: The parameters of the Gaussians of Artificial Datasets.
Datasets Domain Type Data Stream Class 0 Centre Class 1 Centre

No Drift Datasets
Target Target (2,3) (7,8)
Similar Source (2,1) (7,8)
Non-Similar Source (-2,-3) (-7,2)

Abrupt Drift Datasets
Target Target Before Drift (2,3) (7,8)

After Drift (2,9) (5,4)
Similar Source (2,9) (5,4)
Non-Similar Source (-2,-3) (-7,2)

Incremental Drift Datasets

Target Target Before Drift (2,3) (7,8)
After Drift (2,3) (7,8)

Similar

Source 1 (2,3) (7,8)
Source 2 (3,4) (6,7)
Source 3 (4,5) (5,6)
Source 4 (5,6) (4,5)
Source 5 (6,7) (3,4)
Source 6 (7,8) (2,3)

Non-Similar Source (-2,-3) (-7,2)

The covariance matrix for each class of each domain is
(
1 0
0 2

)
except for

target in the no drift and non-similar datasets, which uses
(
2 0
0 2

)
for both

classes. For the incremental drift, the centres of the Gaussian of class 0 and
1 move towards each other by one unit at each 100, 1000 and 10000 time
steps for the datasets with class sizes of 50, 500, 5000, respectively, until the
Gaussians of class 0 and 1 swap location. This leads to intermediate concepts
that are equivalent to each of the similar sources 1 to 6.

egy to deal with concept drift. They provide a desired lower
bound for the predictive performance achieved by MARLINE
and any other approaches for non-stationary environments. Ad-
ditionally, they were also applied in combination with a drift
detection method, which resets the models upon drift alarm,
to enable these approaches to cope with drifts. Comparing
against the combination shows whether or not MARLINE is
able to benefit from sources in general.

MARLINE without source data streams was also used in the
comparison because mapping is also performed between the
old target concepts and the current target concept. Including
this approach shows whether or not it is beneficial to use
different sources especially for the initial learning stage, rather
than only mapping between old and new target concepts.

Both MARLINE and Melanie have been investigated with
online bagging and online boosting as base learning ensemble
methods [22]. All ensemble approaches used Hoeffding trees
[25] as the basic units of learning, except for one of the
compared approaches (ARF), which is based on ARFHoeffd-
ing Tree [14]. Two drift detection methods (DDM [15] and
HDDMA [16]) were used for all the approaches that require
drift detection. DDM is a well known method. HDDMA has
been recently shown to perform well compared to other drift
detection methods when configuring ensembles [26].

Thirty runs were performed for all the compared ap-
proaches, except for DWM [17], which is deterministic and
requires a single run. The average accuracy across the 30 runs
is reported.

Grid search was used to tune the hyperparameters of each
approach on each dataset based on a preliminary run. For
Online Bagging and Boosting, the sizes of the sub-classifiers
varied in 1:1:30. For DWM, β varied in 0:0.1:1, period p =
1, and the weight threshold for removing sub-classifiers was
0.01. For ARF, the number of trees varied in 10:1:30 (MOA
restricts the minimum ARF ensemble size to 10). For Melanie,
the forgetting factor varied in 0.9 : 0.01 : 1. For MARLINE,
θ = 0.9 : 0.01 : 1 and σ = 0.1 : 0.1 : 1. The grid searches’
results are in the Supplementary Material of this paper [23].

For the artificial data streams, the predictive performance
is calculated prequentially and reset upon the real location
of the drifts [18]. In the artificial datasets, we know exactly
when the concept drifts happen. This evaluation framework
will reset the accuracy to zero when the concept drifts (or the
increments of an incremental drift) occur. This enables us to
measure the performance on each concept separately without
being affected by the previous concepts. For real world data
streams, the predictive performance of all the approaches is
evaluated using sliding windows [27] with the size of 10% of
the target data stream. Friedman and their Nemenyi post-hoc
tests were used to compare the predictive performance of all
approaches, on each dataset.

VI. EXPERIMENT RESULTS

A. Comparison on Artificial Datasets

1) Experiments with Non-Similar Source: The experiment
aims to investigate whether or not the use of very different



TABLE III: Friedman Ranks on Each Dataset.
Dataset

Non-Similar Source Similar Source Real-World Data
No Drift Abrupt Incremental No Drift Abrupt Incremental Holiday Weekend Weekday

Class Size or Target Stream Size 50 500 5000 50 500 5000 50 500 5000 50 500 5000 50 500 5000 50 500 5000 384 4970 12060
Marline(DDM(Online Bagging)) with source 2.8 2.3 2.7 5.9 6.4 2.7 10.9 9.5 14.2 7.9 3.0 3.5 3.5 8.4 7.9 10.5 9.6 13.2 6.8 4.9 2.0
Marline(DDM(Online Boosting)) with source 2.8 11.0 19.9 3.2 1.5 9.9 8.5 14.2 16.2 6.2 7.3 8.5 6.1 3.5 7.9 10.6 12.5 15.3 10.0 13.6 8.3
Marline(HDDMA(Online Bagging)) with source 2.8 1.2 1.5 5.5 9.0 1.4 11.1 5.3 3.1 6.2 3.8 3.5 3.4 6.3 5.4 7.6 6.0 4.3 5.6 1.6 1.4
Marline(HDDMA(Online Boosting)) with source 2.8 10.2 13.8 2.7 1.7 4.4 7.3 11.0 11.4 6.4 8.7 9.2 5.0 2.7 4.6 11.0 10.1 10.1 10.2 7.6 7.0
Marline(DDM(Online Bagging)) without source 7.3 6.7 5.0 10.2 17.1 7.5 9.8 8.2 13.0 11.0 9.5 7.5 13.0 17.8 8.6 12.2 12.0 16.2 7.5 5.1 9.1
Marline(DDM(Online Boosting)) without source 5.8 16.4 14.4 5.8 3.9 12.3 12.6 10.5 14.5 9.6 17.5 16.4 9.4 5.9 13.5 15.3 14.3 17.5 6.7 10.0 20.1
Marline(HDDMA(Online Bagging)) without source 10.0 4.7 5.0 10.8 23.2 8.6 9.0 3.6 3.9 13.3 8.0 7.5 13.6 23.1 9.9 11.4 6.2 5.3 6.7 2.5 4.6
Marline(HDDMA(Online Boosting)) without source 5.8 16.6 15.2 4.3 8.5 10.6 12.5 10.8 12.1 9.6 17.6 17.1 7.7 9.2 12.0 14.9 14.1 14.6 6.5 6.3 10.9
Melanie(DDM(Online Bagging)) with source 19.6 8.0 8.0 16.7 13.8 14.3 15.7 13.4 17.3 2.9 2.4 2.7 11.9 8.9 10.3 5.9 4.3 6.1 16.9 18.6 15.3
Melanie(DDM(Online Boosting)) with source 12.0 15.4 13.9 12.7 6.3 9.4 17.4 18.3 18.4 2.9 7.8 14.4 4.4 5.1 4.6 5.6 7.1 8.8 18.1 22.7 23.7
Melanie(HDDMA(Online Bagging)) with source 10.3 5.9 15.3 15.8 17.2 12.3 12.1 11.1 8.7 2.6 3.6 4.1 7.8 10.8 10.8 7.0 3.9 5.0 19.6 17.6 12.9
Melanie(HDDMA(Online Boosting)) with source 12.1 15.3 15.2 12.7 6.3 11.1 14.8 19.1 20.3 3.0 7.7 15.5 4.7 6.8 5.8 7.9 6.1 8.3 19.4 23.8 23.5
Melanie(DDM(Online Bagging)) without source 15.5 9.1 15.3 18.3 14.8 15.3 12.5 12.1 11.4 16.3 11.1 17.2 18.6 14.4 15.5 14.1 14.9 13.3 13.0 13.6 14.4
Melanie(DDM(Online Boosting)) without source 11.6 18.2 14.5 9.2 6.2 10.2 13.2 15.3 15.2 14.0 18.4 16.6 11.9 8.3 11.3 15.3 17.9 18.3 15.0 20.0 19.8
Melanie(HDDMA(Online Bagging)) without source 17.8 10.1 7.0 16.2 18.2 14.2 11.3 10.8 7.6 18.6 12.7 10.4 18.0 17.7 14.6 13.3 13.2 9.0 13.6 12.8 10.9
Melanie(HDDMA(Online Boosting)) without source 8.8 18.1 15.2 9.2 9.4 11.6 12.6 16.0 15.6 12.2 18.4 17.1 11.9 10.7 12.6 14.3 18.7 18.7 14.2 18.9 20.7
DDM(Online Bagging) 19.0 12.6 10.1 18.6 17.1 18.7 12.6 14.2 10.8 19.7 15.3 12.6 19.0 17.1 18.5 14.6 16.6 12.6 15.8 19.5 18.7
DDM(Online Boosting) 23.7 23.1 24.9 17.9 21.3 18.2 15.7 15.9 14.9 23.7 23.1 24.9 19.3 21.8 18.2 17.3 18.1 17.7 15.4 13.3 12.9
HDDMA(Online Bagging) 19.0 12.6 10.1 19.8 18.7 16.3 11.2 10.4 6.9 19.7 15.3 12.6 20.0 18.6 16.3 13.3 12.6 8.3 16.8 18.1 17.1
HDDMA(Online Boosting) 23.7 24.4 23.6 17.9 17.3 15.0 16.5 15.6 11.2 23.7 24.4 23.6 19.3 18.4 15.6 17.7 18.2 14.3 17.4 14.5 13.4
Online Bagging 19.0 12.6 10.1 19.8 19.2 23.6 18.5 17.3 17.0 19.7 15.3 12.6 20.0 19.1 23.2 19.0 17.8 17.4 16.9 18.0 17.6
Online Boosting 23.7 24.4 23.6 17.9 17.3 15.0 20.2 22.5 20.2 23.7 24.4 23.6 19.3 18.4 15.6 21.1 23.4 22.0 16.2 14.0 14.3
Adaptive Random Forest(DDM) 16.9 21.1 19.0 17.7 16.3 20.9 11.5 13.9 17.0 17.9 21.2 20.0 19.0 17.1 20.9 13.7 16.6 19.3 12.1 4.9 6.2
Adaptive Random Forest(HDDMA) 16.9 21.4 20.0 18.9 18.5 22.5 15.6 14.0 14.8 17.9 21.4 20.8 19.7 18.9 22.4 17.2 16.7 17.3 14.6 6.3 4.9
Dynamic Weighted Majority 15.5 3.5 2.1 17.3 15.6 18.9 12.1 11.8 9.4 16.4 7.0 3.2 18.6 15.9 19.1 14.3 14.1 12.1 10.3 16.9 15.4

Friedman’s p-values were always < 2.2×10−16. The best approach has its ranking in red with grey background and the approaches not significantly different
from it according to the Nemenyi test are in bold with grey background. Mean accuracy and standard deviations are in the Supplementary Material [23].

(a) No Drift; class size of 50 (b) No Drift; class size of 5000

(c) Abrupt; class size of 50 (d) Abrupt; class size of 5000

(e) Incremental; class size of 50 (f) Incremental; class size of 5000

Fig. 2: Average Accuracy with Non-Similar Source.

concept sources by MARLINE can help us to improve the
predictive performance. The Friedman ranking of the ap-
proaches on each dataset is shown in Table III. We can see that
MARLINE with source is amongst the best performers under
different amounts of the training data and different types of
drifts, as shown by the table cells highlighted in grey, except
the incremental drifts with the class size of 500. MARLINE
without source is sometimes amongst the best, demonstrating
that mapping the new target concept to the space of the
historical target concepts is also beneficial. Figure 2 shows

(a) Holiday (b) Weekend

(c) Weekday (d) Weekday

Fig. 3: Accuracy on Real World Datasets.

some representative results across time. Other figures were
omitted due to space restrictions.

2) Experiments with Similar Source: Melanie was designed
to transfer knowledge with similar sources and target concepts,
being thus expected to achieve the best performance for these
data streams. Based on Friedman and Nemenyi tests shown in
Table III, Melanie outperforms the other approaches in most
scenarios. However, MARLINE with source also achieves
competitive results, similar to those of Melanie. In some cases,
the performance of MARLINE with source is better than
that of Melanie, e.g., MARLINE(HDDMA(Online Boosting))
with source and Melanie (HDDMA(Online Boosting)) with
source with the class size of 500 on the abrupt drift dataset.

B. Comparison on Real World Datasets

London and Washington D.C. bike sharing data were
collected from different sources, so their input and output
spaces are quite different (see Table IV). Therefore, the
concepts (both in terms of domains and tasks) of the two
datasets are supposed to be very different. From Table III,



TABLE IV: Input Space and Rental Count for Real World Dataset.
Feature AT FT HD WS RC
London −1.5 : 34 −6 : 34 20.5 : 100 0 : 56.5 0 : 7860
Washington D.C 0.02 : 1 0 : 1 0 : 1 0 : 0.85 1 : 977

AT: Actual Temperature; FT Feeling Temperature; HD: Humidity; WS: Wind
Speed; RC: Rental Count.

MARLINE(HDDMA(Online Bagging)) with source has the
best performance on all the real world datasets. MARLINE
without source is the 2nd best. From Figure 3, we can see
that the accuracy of MARLINE with source is quite similar
to that of MARLINE without source. This may be due to the
adaptive mechanism of MARLINE.

It is worth noting that when the concept of the stream was
easier to learn (as for the artificial datasets), then MARLINE
was most helpful in the beginning of the stream and right after
drifts. This is because, with time increasing, every method
can learn the concept well (Figure 2). However, when the
concept was more complex (as in the real world datasets),
then MARLINE provided great help throughout time (Fig-
ure 3). Additional related analyses are in the Supplementary
Material [23].

C. Contribution of Source+ Sub-classifiers

To further investigate the importance of individual sub-
classifiers in MARLINE, we select two datasets (Abrupt with
non-similar source and class size of 5000; and Weekday) and
plot the average weight ratios of all the source+ sub-classifiers
over 30 runs in Figure 4. The total weight ratio of the source+
sub-classifiers is calculated as:

WeightRatio =
∑

i∈M,i6=T

Ji∑
j=1

K∑
k=1

ωhj,k
i

+

JT−1∑
j=1

K∑
k=1

ωhj,k
T

This is the sum of the total weights assigned to the source and
historical target sub-classifiers in the MARLINE ensemble.

From Figure 4a, before the concept drift occurs, the mean
total weight of the source sub-classifiers during this pe-
riod is 25.86%. After concept drift, due to past target sub-
classifiers joining the MARLINE ensemble, the importance of
the source+ sub-classifiers increases and the mean total weight
of the source+ sub-classifiers is 48.24%. The average total
weight is even larger for the real world dataset (see Figure
4b). From Figure 4b, we notice that the source+ classifiers
can significantly contribute towards the predictions throughout
time (the mean of the total weights over the whole data stream
is 94.88%). This may be due to the fact that the real world
dataset poses more challenges to the target sub-classifiers,
which struggle to maintain their performance on the artificial
datasets. We also notice some spikes and sudden drops in
the total weights over time. This suggests that the weighting
mechanism is affected by noise. In our future work, we will
investigate whether or not other weighting mechanisms can
improve the predictive performance of MARLINE further.

VII. SENSITIVITY ANALYSIS

As MARLINE has a few hyperparameters, it is important to
conduct a study to understand (Q1) how different MARLINE

(a) Non-similar; Abrupt; Size 5000 (b) Weekday

Fig. 4: Sources+ Sub-classifiers’ Average Total Weight (Over 30
Runs) by MARLINE (HDDMA(Online Bagging)) with source.

ensemble compositions (different types of base learning en-
semble with different sizes K and performance index σ) affect
the predictive performance, and (Q2) the influence of different
drift detection methods and forgetting factors θ used to handle
different types of concept drift. Section VII-B1 answers these
questions based on artificial datasets. The real world datasets
are also used to support the analysis in Section VII-B2.

A. Experimental Design

To investigate (Q1) and (Q2), Analysis of Variance
(ANOVA) [28] was performed to analyse the influence of
each hyperparameter as well as its interactions with others
on the average prequential accuracy. The step-wise changes of
each hyperparameter are defined to cover the range of the best
hyperparameter values selected by the grid search for different
datasets in Section V.

For (Q1), the following factors are investigated: base learner
with two levels (BLM: Online Bagging and Boosting), base
learning ensemble size K ∈ {10, 20, 30} and performance
index σ ∈ {0.0, 0.2, 0.4, 0.6}. As these are all subject-based
factors, a Repeated Measures ANOVA design is used. For
(Q2), the following factors are investigated: drift detection
method (DD: DDM and HDDMA), forgetting factor θ ∈
{0.9, 0.92, 0.94, 0.96, 0.98, 1} and drift type (DT: No Drift,
Abrupt, Incremental). The last is only considered when we
apply the artificial datasets. As the first two factors are within-
subject factors and the last is a between-subjects factor, a
split plot (mixed) ANOVA design is adopted for the artificial
datasets and a Repeated Measures ANOVA design is adopted
for the real world datasets. Thirty runs for each combination
of the factors are carried out on each dataset.

Mauchly’s sphericity test [29] is used with a level of
significance of 0.05 to evaluate whether or not the sphericity
assumption is violated. If violated, the ANOVA’s p-values are
corrected to take that into account. If the epsilon estimate
is below 0.75, the Greenhouse–Geisser correction [30] is
adopted to correct the degrees of freedom of the F-distribution.
Otherwise, the Huynh–Feldt correction [31] is adopted to make
it less conservative [32].

B. Results

Table V and VI present the ANOVA results for the artificial
and real world datasets, respectively. The Sum of squares (SS),
degrees of freedom (DF), mean squares (MS), test F statistics
(F) and partial eta-squared (η2p) are reported.



TABLE V: ANOVA Results for Artificial Datasets.

Factor/Int. SS DF MS F η2p
Test of Within-Subjects Effects (Q1)

σ 26.142 1.012 25.826 2409.381 0.199
K 1.455 1.681 0.865 1487.022 0.133
K * σ 2.999 1.601 1.873 1468.858 0.131
BLM * K 0.133 1.719 0.077 165.938 0.017
BLM 0.281 1 0.281 117.828 0.012
BLM * K * σ 0.099 1.702 0.058 57.919 0.006
BLM * σ 0.18 1.023 0.176 48.067 0.005

Test of Within-Subjects Effects (Q2)
DD * DT 0.9 2 0.45 796.4 0.076
θ 7.64 1.191 6.413 1530.274 0.073
θ * DT 7.427 2.382 3.117 743.804 0.071
DD * θ * DT 0.128 2.397 0.053 66.069 0.007
DD 0.023 1 0.023 40.876 0.002
DD * θ 0.01 1.198 0.008 10.508 0.001

Test of Between-Subjects Effects (Q2)
DT 553.298 2 276.649 12346.194 0.56

BLM: Base Learner Method; DD: Drift Detector Method; DT: Drift Type.
The p-value is always less than 0.001, except for DD * θ, which is 0.001.

(a) Effect of K*σ with Online Bag-
ging

(b) Effect of K*σ with Online Boost-
ing

(c) Effect of θ*DT with DDM (d) Effect of θ*DT with HDDMA

Fig. 5: Plots of marginal means on Artificial Datasets.

1) Analysis Using Artificial Datasets: As it can be observed
from Table V, performance index σ, base learning ensemble
size K and interaction K∗σ have a large impact (η2p ≥ 0.131),
whereas the other factors and interactions have a small impact
(η2p ≤ 0.017). Therefore, the MARLINE ensemble composi-
tion factors σ and K have more influence on the accuracy.

Figures 5a and 5b illustrate the impact of factors σ, K, base
ensemble learner method and their interaction. The two plots
are fairly similar to each other, confirming that the interaction
BLM * K * σ has a small impact. A large σ = 0.06 is
detrimental to the accuracy with worse accuracy obtained
especially with a smaller ensemble size K. This is because
this performance index is difficult to be reached by the sub-
classifiers. Therefore, most sub-classifiers will have weight
zero in the MARLINE ensemble, effectively decreasing its
size and diversity. When σ ≤ 0.4, different ensemble sizes
K and σ values lead to similar accuracy, where a smaller
ensemble size, e.g. K = 10, leads to slightly worse accuracy
and σ = 0.4 leads to slightly better accuracy when we use
Online Bagging.

Table V also shows that the forgetting factor θ, the inter-
action between the drift detecting method and the drift type
DD * DT and the interaction θ * DT have a medium impact
(0.071 ≤ η2p ≤ 0.076). So, the drift detection method and
θ play important and probably diverse roles when handling
different types of concept drifts. Figures 5c and 5d illustrate
the effect of the factors θ, DD and DT and their interaction.
The two plots show fairly similar patterns, verifying that the
interaction DD * θ * DT has a small impact.

When the drift appears abruptly, independent of the drift
detection method (DT), θ = 0.9 result in the best accuracy.
As θ increases, the accuracy slightly decreases. When the
drift type is incremental, the accuracy has larger drops with
θ ≥ 0.96, compared with the abrupt concept drift. As the
concept drifts in the incremental datasets are more difficult to
be detected than the concept drifts in the abrupt datasets, it
is reasonable that θ will take more responsibilities to cope
with concept drifts when drift detection does not perform
well. When the dataset has no drift, there is no significant
difference between the accuracy obtained by different drift
detection methods, which we confirmed by additional paired
T tests with Bonferroni corrections. Furthermore, the accuracy
changes very slightly when we change θ.

Therefore, we summarise that:
• Q1: Large performance index σ and small ensemble sizes
K can be detrimental to the predictive performance of
MARLINE, whereas in general σ = 0.4 associated with
K ≥ 20 led to better results.

• Q2: If there are concept drifts in the data steam, when
the drift detection method cannot detect the concept drifts
accurately, a small value for the forgetting factor (0.9 ≤
θ ≤ 0.94) normally can help MARLINE to increase
predictive performance on handling concept drifts. When
there is no concept drift, a small value for the forgetting
factor will not hurt the performance either.

2) Analysis Using Real World Datasets: Table VI shows the
tests of within-subjects performed on the real world datasets.
The plots of marginal means are shown in Figure 6. The
results are in general similar to the results on artificial datasets,
though certain effects and differences in the magnitude of the
predictive performance were larger. We can see that σ, K
and interaction σ ∗ K have large effect size (η2p ≥ 0.161).
Meanwhile, θ has a very large effect size (η2p = 0.495) and
the choice of drift detection method also has a large effect size
(η2p = 0.111). This could be because in the real world datasets,
the concept drifts are a mix of different types of concept drift,
which makes them more difficult to be detected. Therefore,
MARLINE relies more on θ to cope with the concept drifts.

Figures 6a and 6b show similar trends to the artificial
datasets. However, when σ ≤ 0.4, the improvement in ac-
curacy with a greater σ is more significant, confirming that
both the size and the quality (performance index) of the sub-
classifiers are important. Figure 6c also shows that HDDMA

performs better on the real world datasets, in line with the
experiments shown in Section V. Also, we find that smaller θ
values benefit the accuracy more.



TABLE VI: ANOVA Results for Real World Datasets.

Factor/Int. SS DF MS F η2p
Test of Within-Subjects Effects (Q1)

σ 18.815 1.007 18.692 845.271 0.281
K * σ 2.16 1.695 1.275 461.576 0.176
K 1.008 1.699 0.593 413.163 0.161
BLM 0.6 1 0.6 231.762 0.097
BLM * σ 0.979 1.038 0.943 182.082 0.078
BLM * K * σ 0.14 1.909 0.074 36.82 0.017
BLM * K 0.027 1.903 0.014 12.6 0.006

Test of Within-Subjects Effects (Q2)
θ 21.629 1.302 16.612 4235.103 0.495
DD 3.197 1 3.197 541.906 0.111
DD * θ 0.26 1.194 0.218 98.49 0.022

BLM: Base Learner Method; DD: Drift Detector Method; DT: Drift Type.
The p-value is always less than 0.001.

(a) Effect of K*σ with Online Bag-
ging

(b) Effect of K*σ with Online Boost-
ing

(c) Effect of DD*θ

Fig. 6: Plots of marginal means on Real World Datasets.

VIII. CONCLUSION

In this paper, we focus on a general and challenging problem
– learning from very different concepts in data stream mining.
By mapping the target concept to the space of each source+
concept, the sub-classifiers that closely match the part of
the projection of the target concept are given higher weights
in the MARLINE ensemble, being able to achieve better
performance in non-stationary environments. We carried out
extensive experiments and the results demonstrate that our
proposed MARLINE is effective. A sensitivity analysis is also
presented. Future work includes the investigation of strategies
to reduce the size of MARLINE’s classifier pool; investigation
of different weighting schemes to further improve accuracy;
analysis of the computational time taken to run the approach,
complementing its time complexity analysis; experiments with
more data streams, base learners and drift detection methods;
and an investigation of sensitivity to noise.
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