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Abstract—Sequential recommendation techniques provide
users with product recommendations fitting their current prefer-
ences by handling dynamic user preferences over time. Previous
studies have focused on modeling sequential dynamics without
much regard to which of the best-selling products (i.e., head
items) or niche products (i.e., tail items) should be recommended.
We scrutinize the structural reason for why tail items are barely
served in the current sequential recommendation model, which
consists of an item-embedding layer, a sequence-modeling layer,
and a recommendation layer. Well-designed sequence-modeling
and recommendation layers are expected to naturally learn suit-
able item embeddings. However, tail items are likely to fall short
of this expectation because the current model structure is not
suitable for learning high-quality embeddings with insufficient
data. Thus, tail items are rarely recommended. To eliminate
this issue, we propose a framework called CITIES, which aims
to enhance the quality of the tail-item embeddings by training
an embedding-inference function using multiple contextual head
items so that the recommendation performance improves for
not only the tail items but also for the head items. Moreover,
our framework can infer new-item embeddings without an
additional learning process. Extensive experiments on two real-
world datasets show that applying CITIES to the state-of-the-art
methods improves recommendation performance for both tail
and head items. We conduct an additional experiment to verify
that CITIES can infer suitable new-item embeddings as well.

Index Terms—Sequential recommendation, Long-tail recom-
mendation, Context modeling, Niche products

I. INTRODUCTION

The objective of a sequential recommendation task is to
recommend products that users would like to have, given
their historical behaviors as a sequence. In many real-world
applications, users’ interests inherently evolve, influenced by
sequential behaviors. To cope with this dynamic situation, var-
ious methods to capture the sequential dynamics from users’
action history have been proposed [1]–[7]. These methods
can effectively model the sequential dynamics. However, most
existing models have not been properly tested in terms of
long-tail recommendation, because items having less than a
threshold number of actions from users are normally discarded
via the preprocessing procedure. Anderson [8] introduced the
term, long tail, to describe the phenomenon by which niche
products can grow to become a large share of total sales.
According to the results of his analyses, companies such as
Amazon, which apply the long-tail effect, successfully earn
most of their revenue not from the best-selling products (i.e.,
head items), but niche products (i.e., tail items). Although tail
items are important, it is well-known that general recommen-

dation models (e.g., matrix factorization [9]) barely serve tail
items because of the skewed distribution of product popular-
ities [10]–[12]. Models trained using skewed distributed data
are prone to a popularity bias. As a result, they recommend
head items over tail or new items, even if the latter would be
viewed favorably.

This phenomenon also occurs in sequential recommendation
models because they are trained by the skewed distributed
data. Moreover, when the user behavior sequence contains
tail items and their embeddings are poorly trained because
of the insufficient training data, sequential recommendation
models may struggle to understand user behavior. Recently, a
method of treating popularity bias in the context of sequential
recommendation was proposed. Kim et al. [13] proposed S-
DIV, which is based on a gated recurrent unit (GRU) [14].
They attempted to recommend tail items more frequently by
replacing each tail item with a cluster of them based on
content features. Their approach had a limitation in which the
embedding of tail items could not be directly obtained.

In this study, we scrutinize the structural reason for why
the tail items are barely served compared with the head items
in general sequential recommendation models comprising an
item-embedding layer, a sequence-modeling layer, and a rec-
ommendation layer. All existing sequential recommendation
methods lack efforts to explicitly improve tail-item embed-
dings. Item embedding plays a major role in the model because
it is used twice: as input to the sequence-modeling layer
to represent the meaning of each item, and as input to the
recommendation layer to rank items in the order in which
a user will likely interact. As a result, the item embeddings
greatly affect the model performance. Previous studies focused
on architecture designs of the sequence-modeling layer and
expected that well-designed architecture would naturally learn
suitable item embeddings via back-propagation. However,
unlike the head item, the tail item is likely to fall short of the
expectation because the general model structure is not suitable
for learning high-quality embedding with insufficient data.
Thus, we require an alternative that will enable us to overcome
this situation and obtain suitable tail-item embeddings.

Inspired by some remarkable natural language processing
(NLP) studies [15]–[18] that allow us to obtain high-quality
embeddings of rare words with their contextual information,
we propose the Contextual Inference of Tail-item Embeddings
(CITIES) framework, which is easily compatible with extant
sequential recommendation models. CITIES aims to enhance
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the quality of tail-item embeddings using contextual items
so that the performance of sequential recommendation im-
proves for both tail and head items. We call a set of nearby
items the contextual items in the sequential recommendation.
Because any item can be consumed by multiple users, the
item might have multiple contextual items. Leveraging this
trait, we propose an embedding-inference function in our
framework to determine the tail-item embeddings using the
multiple contextual items. The embedding-inference function
is trained to take the multiple contextual items of the head item
as input and reproduce the head-item embeddings pre-trained
with the general sequential recommendation model. With the
intent to train the function with sufficient high-quality data,
we utilize only the head item as the reproducing target. After
training, we apply the function to the tail items to enhance
their embeddings.

The enhanced tail-item embeddings directly affect the rec-
ommendation layer and the item-embedding layer. As a re-
sult, the tail items are ranked higher when users are more
likely to interact with them. Performance improvement of
the head items is achieved when the user behavior sequence
contains the tail items. Low-quality tail-item embeddings in
the sequence hinder the neural architectures that model the
sequential dynamics. On the other hand, the enhanced tail-item
embeddings help the neural architectures to model sequential
dynamics. Moreover, using CITIES, when new items appear,
it can also infer their embeddings without further learning. If
a new item is consumed more than once, we can extract its
contextual items. Using the contextual items, we can then infer
the embedding of the new items in the same way as that of
the tail items. To verify our expectations, we conduct extensive
experiments on real-world datasets from Yelp and Amazon.

Our study provides three main contributions. First, we pro-
pose an easily compatible framework, CITIES, that infers the
tail-item embeddings using an embedding-inference function
learned from head-item embeddings to reduce the popularity
bias in sequential recommendation. Second, CITIES can in-
fer embeddings of the new items that did not exist during
training without another learning process. Third, we show
quantitatively that applying our framework improves state-
of-the-art sequential recommendation methods on two real-
world datasets for both tail and head items. Moreover, we
conduct additional experiments to analyze the contributions
of each component and the impact of factors in the proposed
framework.

II. RELATED WORK

A. Sequential Recommendation

Some early works on sequential recommenders captured
sequential dynamics from user behaviors using Markov chains
(MC) [1], [2] and assumed that the user’s next action would
be highly related to their last (or last few) action(s). Recently,
inspired by sequence learning in NLP, several methods based
on deep neural networks have been proposed to learn sequen-
tial dynamics. Recurrent neural network (RNN)-based meth-
ods [3], [4], [19] have been increasingly used to model sequen-

tial dynamics, wherein the hidden states of the RNN reflect
a summary of the sequences. These methods allow for long-
term semantics of the sequence to be uncovered. Other than
RNN-based methods, various methods based on convolutional
neural networks (CNN) and Transformer [20] have been used
to provide sequential recommendations. Tang and Wang [6]
utilized convolutional filters to capture short-term contexts by
regarding sequential features as local features of an image.
Although effective, their mechanism had limitations in that it
reflected long-term interests. Kang and McAuley [5] proposed
a Transformer-based model to represent the user’s interests
from not only all behaviors in the sequences, such as RNNs,
but also for a few behaviors, such as MCs and CNNs. By
improving their model, Sun et al. [7] proposed a bidirectional
sequential model called BERT4Rec, which effectively trained
the Transformer by predicting randomly masked items in the
sequence. However, none of these methods considered the
popularity bias, which tends to only recommend head items.

B. Long-tail Recommendation

In the field of general recommender systems, studies that
well-emphasize tail items can be divided into two direc-
tions: post-processing and learning-to-rank. The first direction
heuristically re-ranks the pre-ranked item list considering
popularity bias. Adomavicius and Kwon [21] re-ranked a pre-
ranked item list in ascending order of popularity. Antikacioglu
and Ravi [22] formulated reranking as a subgraph selection
problem from a super-graph of the pre-ranked items to select
those by explicitly considering both the accuracy and the popu-
larity bias. Although this direction can be applied regardless of
the type of the recommendation model, it is often suboptimal
because of the heuristic nature of the method. The second
direction mitigates this problem by directly training the model
by considering both accuracy and popularity bias. Cheng et
al. [23] proposed a method that directly learned a ranking
function that imposed high values on tail and head items. Zou
et al. [24] improved their method using reinforcement learning
and by avoiding the local optimal solution by learning the opti-
mal global policy. However, these methods were learned based
on the collaborative filtering algorithm [9]. Thus, sequential
dynamics were ignored. Recently, Kim et al. [13] treated the
popularity bias in the context of sequential recommendations
by clustering and relocating consumed tail items to provide
a pseudo ground truth, thereby allowing a GRU to directly
learn the ranking function. Although effective, their approach
was applied only to a GRU, making it difficult to apply the
approach to other neural networks. However, CITIES can be
easily applied to other neural networks because it simply
updates the tail-item embedding.

III. PRELIMINARY

Let U =
{
u1, . . . , u|U|

}
denote a set of users, I ={

i1, . . . , i|I|
}

be a set of items, and Su =
(
suL−`+1, . . . , s

u
L

)
denote an item sequence (suL ∈ I). Su represents ` recent
items consumed by the user, u, and L denotes the current
time step. The sequence can be obtained using all possible user



actions, such as purchasing, writing a review, and browsing.
Given the item sequence, Su, the sequential recommendation
model aims to recommend the item that user u will interact
during the next time step.

As mentioned previously, the sequential recommendation
model has three types of layers, as shown in Figure 1 with
black boxes and red arrows - the item-embedding layer fθE ,
the sequence-modeling layer fθM , and the recommendation
layer fθR . First, the item-embedding layer maps an item
to a dense lower-dimensional vector representation. Second,
the sequence-modeling layer captures the sequential dynamics
in the sequence of items which are encoded via an item-
embedding layer. Lastly, the recommendation layer compares
the similarity between the user’s status representation pro-
duced via the sequence-modeling layer and the item embed-
dings and computes a probability vector of items with which
the user, u, with the sequence, Su, will interact with next.

A. Item-embedding Layer

In a sequential recommendation model, the input is the
recent ` items (i.e., Su) in which each item is represented
by a unique index. Generally, the item-embedding layer, fθE ,
maps each item index to a d-dimensional real-valued dense
vector. fθE operates in an element-wise manner for each item
index of the input sequence. The item-embedding layer can
be designed in various ways. For example, the layer can be
the embedding lookup matrix, which is similar to the neural
language modeling process [25] of NLP. In some cases, to
explicitly reflect an item’s position in the input sequence, fθE
can include a positional embedding matrix. Some techniques,
such as layer normalization [26] and dropout [27], can also be
applied to effectively train the model. In the item-embedding
layer, the sequence of items is represented as

Eu = fθE (S
u)

ᵀ

= fθE ([s
u
L−`+1, · · · , suL])

ᵀ (1)
= [fθE (s

u
L−`+1), · · · , fθE (suL)]ᵀ,

where Eu ∈ R`×d indicates the embedding vectors of items
with which user u has interacted.

B. Sequence-Modeling Layer

The sequence-modeling layer, fθM , captures the user’s in-
terest at the Lth time step by modeling the sequential dynamics
in the sequence of the items. The layer takes the sequence of
the item-embedding vectors, Eu, as input and produces the
current status, mu, of user u as follows:

mu = fθM (Eu). (2)

For fθM , we can use any sequential deep neural architec-
ture. Generally, among the architectures, RNNs and Trans-
former [20], [28] are the most popular, and the selecting
algorithm depends on the sequential dynamics of the items.
Using BERT4Rec [7] as an example, we can expand fθM into
equations (3). BERT4Rec appends a special token, [mask], to
the end of the sequence to extract the user’s current state from

the sequence shown in equation (3a). N -stacked self-attention
layers in equations (3b)–(3c) take Eu as input and iteratively
compute the hidden representation, Hn. The self-attention
layer contains two sub-layers: multi-head attention (MHA)
and position-wise feed-forward (PWFF). MHA models the
dependencies between items by attending to different positions
from multiple perspectives, and PWFF endows the model
with nonlinearity and considers interactions between different
latent dimensions. To effectively train the model, layer normal-
ization (LN), dropout, and residual connection [29] are applied
between sub-layers. hN[mask], the final hidden representation of
the [mask] token after N self-attention layers, is exploited to
represent the sequence vector. mu is computed by applying
a feed-forward layer with Gaussian error linear-unit (GELU)
activation [30] to hN[mask] as follows:

Eu =
[
fθE (s

u
L−`+1), · · · , fθE (suL), fθE (s[mask])

]ᵀ
, (3a)

An−1 = LN
(
Hn−1 +Dropout

(
MHA

(
Hn−1))) , (3b)

Hn = LN
(
An−1 +Dropout

(
PWFF

(
An−1

)))
∀n = 1, . . . , N, (3c)

mu = GELU
(
hN[mask]W + b

)
, (3d)

where H0 = Eu, W is the weight matrix, and b is the bias
vector. For details on expanding fθM into GRU4Rec, please
refer to [3].

C. Recommendation Layer

To determine which items are relevant to user u, we feed
the user’s status vector, mu, into the recommendation layer,
fθR . The relevance score is computed as follows:

ru = fθR (mu, θE) , (4)

where ru ∈ R1×|I| is the probability vector of whole items
at the (L + 1)th time step. As usual, to model fθR , we
harness the classical matrix factorization term [9]. That is,
ru is computed from the inner product between the sequence
vector, mu, and each item-embedding vector. A bias term of
the item can be added to the inner product value. Generally,
the item-embedding vector is shared in the recommendation
layer to alleviate overfitting. It is known that using shared
item embeddings improve recommendation performance [5],
[7], [19].

D. Model Training

We can train the sequential recommendation model using
various loss functions, such as negative log-likelihood loss and
Bayesian personalized ranking loss [31]. These loss functions
are subtly different, but they commonly aim to increase the
probability, rui∗ , of a ground-truth item, i∗. Regarding negative
log-likelihood loss as an example, fθ is optimized as follows:

θ̂ = argmin
θ

∑
u∈U

∑
i∗∈Gu

i∗

− log
rui∗∑
j∈I r

u
j

, (5)

where θ = {θE , θM , θR}, and Gui∗ is a set of the ground-
truth items in Su. Several regularization techniques, such as



General Sequential Recommendation

Sequence Modeling Layer (𝑓𝜃𝑀)
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Fig. 1. Comparison of the general sequential recommendation method and
CITIES. The black items belong to the head items, and the blue items indicate
tail items.

l2 regularization, can be used for training to prevent θ̂ from
overfitting.
Gui can be configured differently depending on recommen-

dation models. For example, BERT4Rec [7] is trained by
predicting the randomly masked items in the input sequence.
Specifically, when Su = (su1 , s

u
2 , s

u
3 , s

u
4 , s

u
5 ), Su can be

converted to (su1 , [mask], s
u
3 , [mask], s

u
5 ). Thus, the set of

ground-truth items Gui = {su2 , su4}. The size of Gui∗ varies
depending on how the sequence is utilized for training.

IV. PROPOSED FRAMEWORK

In this section, we present CITIES, whose framework is
shown in Figure 1 with green boxes and arrows. We first
provide a high-level overview of the proposed model. We then
zoom into each of its phases.

A. Framework Overview

CITIES consists of three phases. First, we pre-train the
general sequential recommendation model. The pre-training
is conducted as a general sequential recommendation learning
method, as shown in Figure 1 with the red arrow. By pre-
training, we obtain high-quality head-item embeddings used as
training pairs for the embedding-inference function. Second,
after dividing the items into head and tail groups based on their
popularity in the training data, we construct training pairs (i.e.,
head-item embeddings and their contextual items) and train
the embedding-inference function using the training pairs to
reproduce the pre-trained embeddings of the head items from
their set of contexts. To cope with the inference situation in
which the tail item has only a few contexts, we formulate the
task-inferring embeddings of the items from their contextual
items as a few-shot learning task. In each iteration, the model
is asked to predict the head item’s embedding with only
κ randomly sampled contexts of the item. Additionally, we
leverage the pre-trained parameters of the sequence-modeling
layer to effectively train the function. The training-completed
function then infers the tail-item embeddings taking their
contexts as input. Finally, relevance scores for each sequence
are newly computed by applying inferred embeddings to the
pre-trained model.

B. First Phase: Pre-training

The goal of the first phase is to obtain the head item’s
high-quality embeddings and pre-trained parameters of the
sequence-modeling layer, which are used to robustly train
the function in the second phase. To obtain them, we adopt
BERT4Rec [7] and GRU4Rec [3] in our framework, because
they show the state-of-the-art performance and any model us-
ing the item-embedding layer can be used for pre-training. For
this, we follow the model architectures and training procedures
used in [3], [7]. BERT4Rec and GRU4Rec utilize Transformer
and GRU, respectively, as their sequence-modeling layer, fθM .
After pre-training, the parameters of fθE and fθM are sent to
the next phase.

C. Second Phase: Inferring Tail-item Embeddings

1) Problem Formulation: The goal of the second phase is to
improve embeddings for the tail items, It =

{
it1, . . . , i

t
|It|

}
.

Because the tail items occur only a few times in the training
data, it is difficult to directly learn their high-quality em-
beddings. Our solution is to learn the embedding-inference
function, Fφ(·), using only head items (Ih = I \It) that have
relatively higher-quality embeddings than do the tail items as
a target item. Let Ci = {C1

i , . . . , C
K
i } be the context set of a

target item, i, and Cki = (sk[i]−ω1
, . . . , sk[i], . . . s

k
[i]+ω2

) must be
a subsequence of some user, u’s, sequence, Su, for target item
i, where K is the size of the context set, ω1 and ω2 are window
sizes of the left and right contextual items, respectively, and [i]
presents the order of item i being consumed. Our embedding-
inference function, Fφ(·), takes the context set, Ci, as input.
During training, the target item should belong to the head
items (i.e., i ∈ Ih), and the function learns to generate an
embedding vector close to its high-quality embedding vector,
fθE (s[i]), which was pre-trained during the first phase. On the
other hand, during testing, for the target item belonging the
tail items (i.e., i ∈ It), or new items (i.e., i /∈ I), the function
estimates the item-embedding vector.

To cope with the inference situation in which the tail item
has only a few contexts, we formulate a training procedure
of Fφ(·) as a few-shot learning task. In each iteration for
target item i, we randomly sample only κ contexts (if κ > K,
κ = K) from Ci to predict the embedding of i. This training
scheme can simulate the inference situation such that Fφ(·)
can robustly infer embedding well, even when K is few. The
training objective for Fφ(·) is to minimize the squared distance
between the pre-trained embedding and inferred embedding
vectors:

φ̂ = argmin
φ

∑
i∈Ih

∑
Cκi ∼Ci

(
Fφ (C

κ
i )− fθE (s[i])

)2
, (6)

where Cκi ∼ Ci means that the κ contexts are randomly
sampled from the contexts set, Ci, containing the target head
item, i ∈ Ih. After φ̂ is trained, it infers the embeddings of
the tail item, i ∈ It, by taking all the contexts, Ci, as input.
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Fig. 2. Embedding-inference function.

2) Embedding-Inference Function: Here, we present the
details of the embedding-inference function, Fφ(·), as shown
in Figure 2. To understand the meaning of this item from
multiple contextual items, Fφ(·) should perform two types
of roles: understanding the semantic of each context and
determining how to aggregate the semantics. By designing
the functions with a hierarchical structure (i.e., a context
interpreter (Fφα ) and an aggregator (Fφβ )), we let Fφ(·)
effectively perform two types of roles (i.e., φ = {φα, φβ}).
Fφα takes the set of contexts, Ci, containing the target

item, i, as input and encodes each context, Cki . We utilize the
structure of fθM as Fφα with our intuition that the role of Fφα
to interpret the contexts in which the target item is consumed
by users is equivalent to extracting the current state of the
user from the sequence of items consumed. When utilizing the
Transformer as the context interpreter (BERT4Rec-CITIES),
the description of Fφα is as in Equations (3). When utilizing
the GRU as a context interpreter (GRU4Rec-CITIES), it is
only necessary to replace the self-attention layer with the
GRU. The difference in doing so is that the last hidden
representation vector is used as the context representation, not
the center.

On top of Fφα , the aggregator, Fφβ , enhances each context
representation by modeling dependencies among contexts us-
ing self-attention layer with parameters that are separate from
Fφα . The enhanced representations are averaged and sent to
a feed-forward layer to infer the embedding vectors. By these
processes, Fφβ can comprehensively understand the contexts
by integrating multiple pieces of contextual information and
infers the embeddings using the integrated representation. The
inferred embedding of the target item, ei, is computed as
follows:

Fφ(Ci) = Fφβ (Fφα(C
1
i ), . . . , Fφα(C

K
i )), (7)

ei =

{
fθE (s[i]), if i ∈ Ih,
Fφ(Ci), otherwise.

(8)

We thus update the tail- and new-item embeddings by the
embedding-inference function trained with the head items’
contexts and their embeddings.

To robustly train a large number of parameters, we leverage
pre-trained parameters of the sequence-modeling layer (fθM )
in the first phase as the context interpreter (Fφα ) and freeze

the parameters. It is widely known that pre-training is more
effective than learning from scratch [32], [33]. Additionally,
to effectively exploit the pre-trained parameters, we differently
generate the training set, Ci, for learning the inference func-
tion, depending on the type of the sequential recommenda-
tion model. Each model has a different inductive bias. The
inductive bias allows a learning algorithm to prioritize one
solution or interpretation over another [34]. BERT4Rec, which
uses Transformer, assumes that some elements of the sequence
can be more important depending on the relationship with
other elements, and it was trained so that items appearing
later can affect the target masked item. On the other hand,
GRU4Rec, using a type of RNN as the sequence-modeling
layer, assumes that the data have strong sequential dynamics
and temporal dependencies, and it was trained by predicting
the next item using the previous sequence of items. Thus,
each Cki is configured as follows. For BERT4Rec, we set
ω1 = ω2 =

⌊
`−2
2

⌋
to incorporate the context from both

directions. For GRU4Rec, we set ω1 = ` − 1 and ω2 = 0
to incorporate the context from left to right.

D. Third Phase: Applying Inferred Embeddings

The third phase aims to produce relevance scores for each
sequence by applying the inferred item embeddings to the pre-
trained model of the first phase. The inferred embedding af-
fects the item-embedding layer, fθE , and the recommendation
layer, fθR , because the inferred item embedding, Fφ(Ci), is
used in both layers. Reflecting the updated item embedding,
we newly compute the relevance score, ru, as follows:

ru = fθR(fθM (fθ′E (S
u)

ᵀ
), θ′E), (9)

where θ′E presents that θE is updated via the embedding-
inference function. Note that when we compute the relevance
scores, we need not fine-tune the original model’s parameters
from the first phase. Recall that the function, Fφ̂(·), was
trained to infer the original embedding of the head items.
This causes the inferred embedding vectors to be distributed
in a space that does not deviate significantly from the original
embedding vector space. Because fine-tuning is not required,
when a new item appears and is consumed only a few times
by other items, it is possible to infer the embedding vector of
the new item without further learning.

V. EXPERIMENT

In this section, we present the experimental setup and re-
sults. Our experiments were designed to answer the following
research questions:
RQ1: Does CITIES outperform baselines in terms of the

recommendation performance of both the head and tail
items?

RQ2: How can CITIES improve the recommendation perfor-
mance of the head and tail items?

RQ3: Are the components of CITIES essential?
RQ4: What factors affect the performance of CITIES?
RQ5: Can CITIES infer new-item embeddings?



TABLE I
DATASET STATISTICS.

Dataset #users #items
avg.

actions
/user

avg.
actions
/item

#actions

Yelp 286,130 185,723 15.9 24.4 4.5M
Movies&TV 309,505 121,678 11.6 29.5 3.6M

A. Datasets

We used two public datasets from real-world applications:
Yelp1 and Amazon2. The Yelp dataset contains user reviews of
local businesses, such as restaurants, dentists, and bars. The
Amazon dataset contains user product-review behaviors for
various categories. We selected the Movies&TV category from
this collection. To enable the implicit feedback setting, we
used all observed reviews for the items as positive feedback.
Then, we grouped the reviews by user and built the sequence
for each user by sorting reviews according to the timestamps.
To filter the noisy data, we kept users having at least five
reviews. The statistics of the datasets after preprocessing are
summarized in Table I.

B. Baselines

We compared CITIES with a variety of baselines, ranging
from state-of-the-art sequential recommendation models to
long-tail ones, to demonstrate the effectiveness of our frame-
work. For baselines, we included some traditional methods
having strong performance in previous sequential recom-
mendation studies [3], [35], and sequential recommendation
methods based on BERT4Rec and GRU4Rec.

Traditional methods:

• Global Popularity (POP). This method ranks items in
descending order by popularity in the training set.

• Sequence Popularity (S-POP). This method ranks items
in descending order by popularity in the target user’s
behavior sequence. Ties are broken up using POP.

• First-order Markov Chain (FOMC). Following the
Markov assumption, this method ranks item according
to transition probability, given the item in the last action,
which is estimated in the training set.

Methods based on BERT4Rec:

• BERT4Rec [7]. This method uses Transformer as the
sequence-modeling layer to model user behavior se-
quences through the “masked-language model’’ training
objective.

• BERT4Rec-Reranking. This method re-ranks the pre-
ranked item list of BERT4Rec. Following [21], the crite-
ria for re-ranking is based on popularity from lowest to
highest. The size of the pre-ranked list is set to five times
that of the reranked list.

Methods based on GRU4Rec:

1https://www.yelp.com/dataset
2http://deepyeti.ucsd.edu/jianmo/amazon/index.html

• GRU4Rec [3]. This method uses the GRU as the
sequence-modeling layer to model user behavior se-
quences.

• GRU4Rec-Reranking. This method follows the re-ranking
method used in BERT4Rec-Reranking. The only differ-
ence is that pre-ranking is given by GRU4Rec.

• S-DIV [13]. This method clusters tail items using their
content features and creates pseudo ground truth for tail
items by relocating the tail cluster. The model is trained
using the pseudo ground truth and listwise ranking loss
function. When testing, we replaced the predicted tail
cluster to an actual tail item that is closest to the centroid
of the cluster. S-DIV was only applied to GRU4Rec
because of the loss function.

C. Implementation Details

For common hyperparameters in all baselines, we con-
sidered the learning rate from [0.0001, 0.0002, 0.001, 0.002]
and the l2 regularizer from [0.0001, 0.0005, 0.001, 0.005]. The
maximum sequence length, `, was set to 50, as roughly
determined by the mean number of actions per user in the
previous study [5]. We explored optimal hyperparameters
using the validation set with the size of the item-embedding
and hidden dimensions of the sequence-modeling layer. The
batch size was fixed to 128. For all other hyperparameters
and initialization strategies in each method, we followed the
suggestions from extant works or tuned the validation set.

CITIES (default version) was implemented with the fol-
lowing settings. For pre-training sequential recommendation
models of the first phase, we used BERT4Rec and GRU4Rec
as baselines. During the second phase, for target embedding of
the training objective, we used only the lookup matrix without
the positional embedding matrix as θM . For the aggregator,
Fφβ , we set the number of self-attention blocks, N , to 2 and
the number of heads in each block to 4. For training as the
few-shot learning task, the number of contexts, κ, for the
target item was randomly sampled for each iteration, and its
upper limit was set to 10. For BERT4Rec-CITIES, window
sizes, ω1, and ω2 were set to 24. For GRU4Rec-CITIES, ω1

and ω2 were set to 49 and 0, respectively. We trained the
model using Adam optimizer [36] with a learning-rate warmup
strategy [37]. When we compared CITIES with the baselines,
the tail threshold, τ , which is the ratio of tail items among
all items, was set to 50%. That is, half of the items belonged
to the tail items based on popularity. In this setting, the tail
items appeared less than 7 in the Yelp dataset and less than 6
in the Movies&TV dataset. The source code of the proposed
framework is available online3.

D. Evaluation Protocols

To evaluate the recommendation performance, we adopted
the leave-one-out evaluation protocol, which has been widely
used in the literature [5], [7]. For each user, we treated the
most recent item of the behavior sequence as test data, the

3https://bit.ly/32UZ2wA

https://www.yelp.com/dataset
http://deepyeti.ucsd.edu/jianmo/amazon/index.html
https://bit.ly/32UZ2wA


second most recent item as the validation set, and the rest
for training. To avoid excessive computation on all user-
item pairs, we paired each ground-truth item in the test set
having 100 negative items that the user had not interacted
with. Following the strategy in [7], these negative items were
sampled according to probability proportional to popularity in
the test data. We ranked these items with the ground-truth item.
The performance of a ranked list was judged by hit ratio@k
(HR@k) and mean reciprocal rank (MRR). HR@k computes
the percentage of times the ground-truth item is among the
top-k items, and MRR is a position-aware metric that assigns
larger weights to higher positions (i.e., 1/i for the ith position
in the ranked list). Ranking the ground-truth item higher was
more preferable. For S-DIV, MRR could not be computed
when the ground truth belonged to the predicted cluster and
was not the centroid.

E. Experimental Results

1) Model Comparison: We summarize the recommendation
performance of CITIES for all baselines in the two datasets
in Table II (RQ1). The best solutions in each sequential
recommendation model are highlighted in bold. The perfor-
mance was evaluated for each group by separating items into
head and tail groups. Our methods (BERT4Rec-CITIES and
GRU4Rec-CITIES) outperformed all other methods on the
tail-item group in the Yelp and Amazon Movies&TV datasets.
The improvement in the tail-item group increased the overall
performance shown by the performance of the all-item group.
In the case of long-tail recommendation methods, S-DIV and
reranking, compared with the original sequential recommen-
dation methods, we observed some increased performance for
the tail-item group, but we observed decreased performance
for all of the head-item groups. The performance degradation
of long-tail recommendation methods was caused by neither
method explicitly improving the tail-item embeddings. In S-
DIV, the process of selecting one tail item from the predicted
tail cluster caused a decrease in performance, and by re-
ranking methods, the reason is that the tail items were not
included in the pre-ranked list. However, CITIES explicitly
improved tail-item embeddings. For the head-item group, our
methods also showed comparable performance.

We next ask how the performance of the head-item group
can improve as the tail-item embeddings are updated (RQ2).
We thus conducted further analysis to grasp when the perfor-
mance improvement of the head-item group was achieved. We
evaluated the performance of HR@10 only for the sequence
wherein the ground truth was the head item, but the tail items
were contained. Table III shows that our methods outper-
formed the baselines in all cases when the sequence contained
tail items. These results demonstrate that improving the tail-
item embeddings also helps increase the recommendation per-
formance of the head items and the tail items. The performance
improvement was more pronounced in GRU4Rec-CITIES.
This is because GRU4Rec was more susceptible to situations,
wherein tail items included in the sequence interfered more

with the interpretation of the sequence than did BERT4Rec
based on the self-attention block.

To answer the remaining RQ2, regarding how the perfor-
mance improvement of the tail item can be achieved, we
visualized how the inferred embeddings were distributed in
vector space using UMAP [38]. Figure 3 shows how the
tail-item embeddings were updated (from left to right) by
CITIES using the two datasets. Originally, most tail items
were distributed far enough to be distinguished from the head-
item group. However, the inferred tail items by CITIES spread
widely into space where the head items were distributed. This
happened with both datasets, and it stands out for the tail-item
group 2 indicated by the red point. In the case of BERT4Rec in
the Yelp dataset, HR@10 of the items in tail-item group 2 was
only 0.0289. When CITIES was applied, HR@10 was 0.4362
for the same items (1,409% increased). This was also the case
with the Movies&TV dataset using BERT4Rec. HR@10 of
the items in tail-item group 2 increased from 0.0184 to 0.0432
(135% increased). Note that the items in tail-item group 2 were
distributed more densely than were the other items. We can
infer that this is because the items that were rarely learned
did not deviate significantly from their initial parameters. In
fact, the average number of reviews of the items in tail-item
group 2 was only 1.2 for both Yelp and Movies&TV datasets:
significantly less than the average number of reviews of other
tail items. Even with these items, using our framework, the
items were not densely distributed in one area but were instead
spread widely throughout.

2) Ablation Study: To answer RQ3, we performed an
ablation study over key components of CITIES to analyze
their impacts. We present four variants of our default setting
as follows:
• Use I for target item: As opposed to using only the head

items for the target in our default setting, when training
the embedding-inference function, Fφ. This setting also
uses the tail items for the target.

• Without few-shot learning: When training Fφ, we take all
contexts of the target item as input in this setting, unlike
the default setting, which takes κ contexts of the target
item.

• Without pre-training φα: We train the context interpreter,
Fφα , from scratch without utilizing the parameters of fθM
in the pre-trained model.

• Without freezing φα: We utilize the parameters of fθM
as Fφα , but we do not freeze it.

Table IV shows the performance of our default setting and the
variants based on HR@10. The best solutions are highlighted
in bold and ↓ indicates performance drop more than 5%.
The most significant performance degradation occurred when
we use I for the target item. This implies that training Fφ
using only high-quality head-item embeddings as the target
was more effective because of the low-quality of tail-item
embeddings. The performance degradation without few-shot
learning implies that training our function with κ contextual
items was essential to inferring tail-item embeddings with
few contextual items. Additionally, the results of without pre-



TABLE II
PERFORMANCE COMPARISON OF ALL METHODS IN TERMS OF HEAD, TAIL, AND ALL ITEMS.

Dataset Method Head items Tail items All items
HR@5 HR@10 MRR HR@5 HR@10 MRR HR@5 HR@10 MRR

Yelp

POP 0.0589 0.1163 0.0589 0.0000 0.0000 0.0106 0.0512 0.1011 0.0526
S-POP 0.0992 0.1542 0.0994 0.0286 0.0286 0.0361 0.0896 0.1374 0.0912
FOMC 0.1296 0.1424 0.1087 0.0101 0.0102 0.0199 0.1140 0.1251 0.0971

BERT4Rec 0.5422 0.7055 0.3696 0.1550 0.2463 0.1087 0.4917 0.6456 0.3356
BERT4Rec-Reranking 0.2352 0.2532 0.2476 0.0851 0.1473 0.0826 0.2157 0.2395 0.2262

BERT4Rec-CITIES 0.5411 0.7043 0.3682 0.3163 0.4460 0.2059 0.5117 0.6706 0.3470
GRU4Rec 0.4167 0.5808 0.2809 0.0359 0.1002 0.0466 0.3670 0.5180 0.2503

GRU4Rec-Reranking 0.1793 0.2120 0.1847 0.0486 0.1103 0.0517 0.1623 0.1988 0.1674
S-DIV 0.4097 0.5732 - 0.0278 0.0589 - 0.3598 0.5061 -

GRU4Rec-CITIES 0.4206 0.5868 0.2830 0.2618 0.3805 0.1659 0.3997 0.5598 0.2677

Movies&TV

POP 0.0595 0.1152 0.0586 0.0000 0.0000 0.0103 0.0547 0.1059 0.0547
S-POP 0.0633 0.1187 0.0624 0.0020 0.0020 0.0123 0.0584 0.1094 0.0584
FOMC 0.1618 0.1981 0.1345 0.0136 0.0137 0.0233 0.1500 0.1833 0.1256

BERT4Rec 0.3155 0.4289 0.2452 0.0611 0.0799 0.0614 0.2951 0.4009 0.2304
BERT4Rec-Reranking 0.1907 0.2333 0.1940 0.0473 0.0653 0.0571 0.1791 0.2197 0.1830

BERT4Rec-CITIES 0.3173 0.4304 0.2464 0.1112 0.1534 0.0760 0.2985 0.4047 0.2327
GRU4Rec 0.2182 0.3094 0.1781 0.0052 0.0089 0.0164 0.2011 0.2853 0.1652

GRU4Rec-Reranking 0.1466 0.1952 0.1487 0.0060 0.0133 0.0174 0.1354 0.1806 0.1382
S-DIV 0.1899 0.2818 - 0.0165 0.0224 - 0.1760 0.2610 -

GRU4Rec-CITIES 0.2201 0.3120 0.1794 0.0414 0.0569 0.0444 0.2057 0.2915 0.1686

(a) (b)

(c) (d)

Head item group Tail item group 1 Tail item group 2

Fig. 3. UMAP visualization of the item embeddings. Head items are indicated by a blue point. According to their position in the UMAP space, we split the
tail items into two groups: normal tail-item group (i.e., group 1) and outlier tail-item group (i.e., group 2). The tail-item group 1 and 2 are indicated by a
pink and a red point, respectively. Tail-item group 2 is farther away from the head-item group than tail-item group 1. (a) Yelp dataset using BERT4Rec. (b)
Yelp dataset using BERT4Rec+CITIES. (c) Movies&TV dataset using BERT4Rec. (d) Movies&TV dataset using BERT4Rec+CITIES.



TABLE III
FURTHER ANALYSIS OF THE PERFORMANCE OF HEAD ITEMS.

Dataset Method Head items
w/ tail

Yelp

BERT4Rec 0.7330
BERT4Rec-CITIES 0.7337

GRU4Rec 0.5807
GRU4Rec-CITIES 0.6001

Movies&TV

BERT4Rec 0.3808
BERT4Rec-CITIES 0.3896

GRU4Rec 0.2131
GRU4Rec-CITIES 0.2293

TABLE IV
ABLATION ANALYSIS OF BERT4REC-CITIES ON TWO DATASETS.

Dataset Setting Head Tail All

Yelp

default 0.7043 0.4460 0.6706
Use I for target item 0.7061 0.2322↓ 0.6443
w/o few-shot learning 0.7025 0.4357 0.6677
w/o pre-training φα 0.7051 0.4168↓ 0.6675

w/o freezing φα 0.7049 0.4342 0.6695

Movies&TV

default 0.4304 0.1534 0.4047
Use I for target item 0.4289 0.0566↓ 0.3990
w/o few-shot learning 0.4290 0.1054↓ 0.4030
w/o pre-training φα 0.4301 0.0893↓ 0.4028

w/o freezing φα 0.4302 0.1381 0.4035

training and without freezing settings imply that our pre-
training strategy was effective. fθM , leveraged from the pre-
trained model, helped us train Fφ, which had a hierarchical
structure. We can thus infer that the roles of fθM and Fφα are
similar.

3) Impact of Tail threshold τ : To answer RQ4, we first in-
vestigated the effect of tail threshold τ . It is used to determine
whether the item embeddings are inferred by CITIES. As τ
increases, a larger number of items are considered as tail-item
groups, and their embeddings are inferred. This reduces the
amount of training data for our embedding-inference function
because only the head items are used as the ground truth
when training. However, the quality of the ground-truth items
relatively improve. Figure 4 shows the performance change for
the all item group according to the tail threshold. As the tail
threshold increases, the performance tends to improve. This
implies that, if the quality of the training data is fine, the
embedding-inference function can be robustly trained using
a small amount of data. However, a large threshold does
not always lead to better performance. This fact is evident

CITIES-BERT4REC CITIES-GRU4Rec

Fig. 4. HR@10 of our methods according to the tail thresholds (left) Yelp
and (right) Movies&TV datasets.

CITIES-BERT4REC CITIES-GRU4Rec

Fig. 5. HR@10 of our methods according to the number of contexts for target
tail item (left) Yelp and (right) Movies&TV datasets.

when examining the Movies&TV dataset having fewer items
than the Yelp dataset. This explains that there was a trade-
off between data quantity and quality when training the
embedding-inference function.

4) Impact of the Number of Contexts, K: Next, we explain
our findings on the effect of the number of contexts, κ,
on the performance in response to RQ4. We stated that
the embedding-inference function requires the ability to infer
embeddings in a few contexts because the number of times, κ,
the tail item is consumed is relatively few. Figure 5 shows the
performance change for the all-item group according to κ. The
most interesting observation is that the performance tended to
converge as κ increased. This demonstrates that, by the few-
shot learning formulation, the embedding-inference function
was trained to work properly, even in situations where there
was insufficient context information in the tail item. A larger
κ does not always lead to better performance because the
diversity of context in which items are consumed varies from
item to item. To understand the meaning of items consumed in
various contexts, more evidence is required. The range of the
x-axis is different in the two plots, because the criteria of the
frequency values belonging to the tail-item group are different
in the two datasets, despite having same tail threshold.

5) Results of New Items: We conducted an additional
experiment to verify that CITIES can infer the new-item
embeddings (RQ5) without further training. We evaluated
the performance (HR@10) by separating the items into the
extant and new groups. For this, we split the data used to
learn CITIES from the previous experiment into two based on
the time of occurrence. We used only half the amount that
occurred earlier to learn the embedding-inference function in
this experiment. When the training was completed, the other
half was used to infer the embedding of new items. This setting
was intended to prevent CITIES from seeing contexts where
the new items appeared during training. Table V compares
the performance of the extant and new items with HR@10. It
shows that, in all cases, the performance of the new tail items
was comparable to that of the extant tail items. We can thus
infer that the slightly lower performance in the new-item group
was caused by the patterns of context that were not seen during
training but appeared when inferring the embedding of the
new item. However, as users increasingly consume new items
over time, by leveraging the contexts of that consumption,
CITIES can infer new-item embeddings of better quality than



TABLE V
PERFORMANCE OF CITIES FOR THE NEW ITEMS COMPARED TO THE

EXTANT ITEMS

Dataset Method Extant items New Items
Head Tail Head Tail

Yelp BERT4Rec-CITIES 0.7046 0.5145 0.5764 0.4497
GRU4Rec-CITIES 0.5880 0.4244 0.4556 0.3624

Movies&TV BERT4Rec-CITIES 0.4383 0.1185 0.1207 0.0840
GRU4Rec-CITIES 0.3130 0.0656 0.0692 0.0491

extant tail-item embeddings. This can be confirmed from the
result, which showed that the performance of the head item of
the new-item group was higher than that of the tail item of the
extant-item group. Moreover, considering that the models not
applying CITIES could not handle new items without using
content features, it can be said that CITIES inferred new-
item embeddings as high quality similar to the extant tail-item
embeddings.

VI. CONCLUSION

In this paper, we proposed CITIES after scrutinizing the
structural reason for why tail items are barely served in general
sequential recommendation models. Our framework precisely
inferred tail-item embeddings by training the embedding-
inference function to grasp the meaning of the item in the
context in which it was consumed. We found that, by applying
CITIES to state-of-the-art methods, we improved the recom-
mendation performance not only for the tail items but also for
the head items of two real-world datasets. Moreover, we found
that CITIES could infer embeddings of the new items without
the further learning process.

Two promising directions for future research remain. The
first direction is to utilize user information to infer embedding.
Even if the item was consumed in the same context, the
meaning could be subtly different depending on which user
consumes. The second direction is to iteratively perform
the general sequential recommendation learning method and
our embedding-inference method for the tail item until con-
vergence. The improved tail-item embeddings via the latter
method can help model sequential dynamics in the former
method, which in turn improves head-item embeddings.
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