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Abstract—Sparse learning is a very important tool for mining
useful information and patterns from high dimensional data. Non-
convex non-smooth regularized learning problems play essential
roles in sparse learning, and have drawn extensive attentions
recently. We design a family of stochastic proximal gradient
methods by applying arbitrary sampling to solve the empirical
risk minimization problem with a non-convex and non-smooth
regularizer. These methods draw mini-batches of training ex-
amples according to an arbitrary probability distribution when
computing stochastic gradients. A unified analytic approach
is developed to examine the convergence and computational
complexity of these methods, allowing us to compare the different
sampling schemes. We show that the independent sampling
scheme tends to improve performance over the commonly-used
uniform sampling scheme. Our new analysis also derives a tighter
bound on convergence speed for the uniform sampling than the
best one available so far. Empirical evaluations demonstrate that
the proposed algorithms converge faster than the state of the art.

Index Terms—Stochastic algorithm, proximal methods, arbi-
trary sampling.

I. INTRODUCTION

High dimensional problems in data mining are challenging
from both the statistical and computational analysis. Many
successful applications for high dimensional problems rely
on regularization for sparsity. For example, genomic analyses
use sparse regularization to identify (a sparse set of) genes
contributing to the risk of a disease [1] and smartphone-based
healthcare systems use sparsity regularization to learn the most
important mobile health indicators [2]. In this work, we consider
the following non-smooth non-convex regularized empirical
risk minimization (ERM) problems, which have been widely
used in high-dimensional data analyses:

min
x∈Rd

F (x) := f(x) + r(x) =
1

n

n∑
i=1

fi(x) + r(x) (1)

where f(x) is the average over a large number of non-convex
smooth functions fi(x), i ∈ [n] := {1, 2, . . . , n}, and the
regularizer r(x) : Rd → R is possibly non-differentiable or
non-convex, or both (e.g., the l1 norm, lp (0 ≤ p < 1) norm
and quantization function). Particularly, lp (0 ≤ p < 1) are one
of the most widely-used sparsity constrains, which introduce
non-smoothness and non-convexity to Problem (1). Due to NP-
hardness of non-smooth and non-convex regularizer [3], the
goal of this work is to find an ε-stationary point x satisfying

E[dist(0, ∂̂F (x))] ≤ ε,

where ∂̂F (x) is Fréchet subgradient of F (x) and dist(·, ·) is
the Euclidean distance metric (formal definitions can be found
in preliminaries section).

Non-convex loss functions have been observed to give better
generalization performance, such as the Savage loss function
[4], Lorenz loss function [5] and the objective functions used
in deep learning models [6], due to better robustness to noisy
sample data or representation capabilities. Non-smooth non-
convex regularizers also become popular recently since they
have been shown to reduce bias in parameter estimation in
comparison with their convex relaxation counterparts, such as
the l0 norm penalty [7], smoothly clipped absolute deviation
[8], or minimax concave penalty [9].

Problem (1) with a non-smooth convex regularizer r(x)
has been extensively studied for both convex f(x) [10], [11]
and non-convex f(x) [12]–[15], but solving non-smooth non-
convex regularized problems is still underexplored. Previous
analyses, depending on the convexity of r(x), can no longer
be applicable. For a non-convex regularizer r(x), to our best
knowledge, [16] is the first paper to provide non-asymptotic
theoretical guarantees for finding an ε-stationary point. Stage-
wise Stochastic algorithm and its variance reduced algorithm
have been proposed for Difference of Convex functions (SSDC)
- SSDC-SPG and SSDC-VR with computational complexities
O
(
ε−8
)

and O
(
nε−4

)
, respectively. Both algorithms are

designed based on multi-stage analysis of the following
difference of convex functions

min
x∈Rd

f(x) +
1

2µ
‖x‖2 −Rµ(x),

where Rµ(x) = max
y∈Rd

1
µy
>x − 1

2µ‖y‖
2 − r(y) is convex and

comes from the Moreau envelope of rµ(x):

rµ(x) = min
y∈Rd

1

2µ
‖y − x‖2 + r(y).

Rather than using stage-based analysis in [16], [17] provides
a simplified analytic procedure and presents the mini-batch
stochastic gradient descent (MBSGD) algorithm and variance
reduced stochastic gradient descent (VRSGD) algorithm, with
computational complexities O

(
ε−5
)

and O
(
n2/3ε−3

)
, respec-

tively. These methods improve performance by reformulating
the objective function F (x) at each iteration k as follows:

f(x) +
1

2µ
‖x‖2 −Rµ(xk)− 〈proxλµ(xk), (x− xk)〉,
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where proxλµ(x) := argmin
y∈Rd

{
1

2µ‖x− y‖
2
2 + r(y)

}
is a prox-

imal operator. Previous analysis on non-convex non-smooth
regularized problems heavily relies on the Moreau envelope
of rµ(x), which can slow down the convergence due to the
approximation error introduced at each iteration or stage.
Furthermore, an extra parameter µ for smoothness has been
introduced, which requires expensive tuning in practice and
prevents the algorithms from broad utility. To overcome
these issues, [18] directly solves Problem (1) with the Mini-
batch Stochastic Proximal Gradient (MB-SPG) and Stochastic
Proximal Gradient with SPIDER/SARAH (SPGR) methods,
and proposes new theoretical analysis to guarantee convergence
for non-convex non-smooth regularized problems with the state-
of-the-art computational complexities O

(
ε−4
)

for SPG and
O
(
n1/2ε−2 + n

)
for SPGR. All of these analyses use the

standard uniform sampling in the stochastic process, which
results in high variance of the estimator, and hence has a
negative effect for the convergence of proximal algorithms.
Effective sampling techniques can enhance all these methods,
which we will explore in this work.

When sample size in the statistical learning problems boosts,
subsampling is commonly used to extract useful information
(subsets S) from the massive whole data set [n]. To improve
computational efficiency, subsampling is often implemented by
sampling the full sample with a replacement or via a specific
distribution. Later, arbitrary sampling has been introduced
and shown a more general and relaxed sampling without any
additional assumptions, and has been analyzed for popular
stochastic algorithms [19], and coordinate gradient algorithms
[20]. However, there has no prior work investigating arbitrary
sampling for non-smooth non-convex regularized problems.
In this work, we study and develop arbitrary-sampling based
algorithms that can more efficiently solve non-smooth non-
convex regularized problems.

A. Contributions

Our main contributions are summarized as follows:
• The scheme of arbitrary sampling is incorporated into

the MB-SPG, (which leads to the mini-batch ProxSGD-
AS), and the variance-reduction versions of SPG: Proxi-
mal SARAH (ProxSARAH-AS) and Proximal SPIDER
(ProxSPIDER-AS) to effectively solve non-smooth non-
convex regularized problems. An analytic strategy is
provided for proximal methods to use any sampling
technique to speed up the process of solving non-convex
non-smooth regularized problems.

• We present a new analytic approach to investigate the
convergence and computational complexity of the pro-
posed methods. Our analysis helps compare the different
sampling schemes. As a concrete example, we show that
the methods with independent sampling can be faster
than the ones with uniform sampling by up to a factor
of n

∑n
i=1G

2
i

(
∑n
i=1Gi)

2 or n
∑n
i=1 L

2
i

(
∑n
i=1 Li)

2 , where Gi and Li are the
measurements of fi(x) for Lipschitz continuous and
smoothness, respectively.

• When the uniform sampling scheme is employed, we
derive an upper bound, 28L

√
n

ε2 (F (x̃1) − F (x∗)), on
the convergence speed of these methods, especially
ProxSARAH, which is tighter than the latest bound by
a constant factor. The latest bound given in [18] is:
4
c+8c−2

1−3c
L
√
n

ε2 (F (x̃1) − F (x∗)) (where 0 < c < 1
3 and

4
c+8c−2

1−3c ≥ 46.67).
• Experimental evaluations also demonstrate that the pro-

posed arbitrary sampling, specifically the independent
sampling method, helps the stochastic proximal methods
to decrease the objective value faster than the state of the
art.

B. Other related work

Stochastic gradient decent methods. SGD method and its
variants are commonly used to solve the problem

min
x∈Rd

f(x) := Ei∼D[fi(x)], (2)

where both f and fi(x) can be non-convex, and their gradients
and Hessians are Lipschitz continuous. For Problem (2), finding
global or local minimum of f is generally NP-hard [21]. Recent
studies have shown that an ε-first-order stationary point x, i.e.,
∀ ε > 0, ‖∇f(x)‖ ≤ ε for a smooth non-convex function f ,
can be found by the gradient descent (GD) in O(ε−2) iterations
and the SGD in O(ε−4) iterations [22].
Stochastic variance reduced methods. For convex opti-
mization, variance reduced methods have been extensively
studied, e.g., the stochastic variance reduced gradient (SVRG)
[23], stochastically controlled stochastic gradient (SCSG)
[24], stochastic average gradient (SAGA) [25], stochastic
recursive gradient algorithm (SARAH) [26] and stochastic path-
integrated differential estimator (SPIDER) [27] methods, and
they are well-known for faster convergence rates. In non-convex
optimization, variance reduced methods have been proved to
converge to ε-first-order stationary points [28].

II. PRELIMINARIES

Notations. We use uppercase letters, e.g. A, to denote matrices
and lowercase letters, e.g. x, to denote vectors. We use ‖ · ‖p
(p > 0) to denote the p-norm of a vector, and ‖ · ‖ to denote
the 2-norm for vectors. For two matrices A and B, A � B iff
A−B is positive semi-definite. In this paper, the notation O(·)
is used to hide all ε-independent constants. The operator E[·]
represents the expectation over all randomness, [n] denotes the
integer set {1, ..., n}, ∇f(·), ∇fI(·) and ∇fi(·) are the full
gradient, the stochastic gradient over a mini-batch I ⊂ [n] and
the stochastic gradient over a single training example indexed
by i ∈ [n], respectively. dist(x, y) = ‖x− y‖ is the Euclidean
distance.

In addition, we assume that there exists proximal
mapping proxηr(·) for r(x), such that proxηr(x) =

arg miny∈Rd
{

1
2η‖y − x‖

2 + r(y)
}
.



Given a non-smooth function f(x) : Rd → R, denote its
Fréchet subgradient by ∂̂f(x) and the limiting subgradient by
∂f(x), i.e.,

∂̂f(x) =

{
v : lim

x→x
inf

f(x)− f(x)− v>(x− x)

‖x− x‖
≥ 0

}
,

∂f(x) =
{
v : ∃ xk

f→ x, vk ∈ ∂̂f (xk) , vk → v
}
,

where the subgradient vector v ∈ Rd, the notation xk
f→ x

means that lim
k→∞

xk = x and lim
k→∞

f(xk) = f(x).
In order to make a fair comparison about the computa-

tional performance and avoid the dependence on the actual
implementation of algorithms, we use the number of IFO as
computational complexity, which is a convention of stochastic
optimization.

Definition 1. (Incremental First-order Oracle (IFO) [29]) An
IFO is a subroutine that takes a point x ∈ Rd and an index
i ∈ [n] and returns a pair (fi(x),∇fi(x)).

A. Assumptions

Assume that the function F (x) is lower-bounded by a
constant F (x∗), which is the minimum of the objective.
An assumption commonly used in the related works on
stochastic optimization is that the gradient of fi is Gi-Lipschitz
continuous and Li-smoothness.

Assumption 1. A differentiable function fi(x), ∀ i ∈ [n],
satisfies:

1) Gi-Lipschitz continuous, i.e, ‖∇fi(x)‖ ≤ Gi, ∀x ∈ Rd.
Without loss of generality, we assume that 0 ≤ G1 ≤
G2 ≤ · · · ≤ Gn.

2) Li-smoothness, i.e., ‖∇fi(x1) − ∇fi(x2)‖ ≤ Li‖x1 −
x2‖, ∀x1, x2 ∈ Rd. Without loss of generality, we assume
that L1 ≤ L2 ≤ · · · ≤ Ln.

Clearly, we can arrive at the following lemma.

Lemma 2.1. With Li-smoothness of each loss function fi(x),
the averaged function f(x) = 1

n

∑n
i=1 fi(x) is L̃-smooth,

where L̃ := 1
n

∑n
i=1 Li, i.e.,

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
L̃

2
‖x1 − x2‖2. (3)

III. SAMPLING TECHNIQUES

Let S be a sampling scheme, which is a mapping function
from the subsets of [n] to R. Therefore, a sampling S is uniquely
defined by assigning probabilities to all 2n subsets of [n]. Let
S be a random sample drawing with sampling S from [n] with
a sample size of E[|S|] = b.

For each sampling scheme S, we denote its probability matrix
as P ∈ Rn×n, where the element in i-th row j-th column is

Pij = Prob({i, j} ⊂ S).

We denote the diagonal elements of P by p = (p1, p2, ..., pn)
and assume that p1 ≤ p2 ≤ ... ≤ pn. We also define constant

k = max{i : pi < 1}. The sampling scheme S is proper if
pi > 0 for i ∈ [n].

For probability matrix P, we further assume that there is a
vector v ∈ Rn such that

P− ppT � Diag(p ◦ v), (4)

where ◦ calculates the element-wise product of p and v, and
Diag(x) creates a diagonal matrix with the diagonal entries
equal to x. For any probability matrix P, associated with proper
sampling S, there exists at least one v satisfying Eq. (4), where

vi =

{
n(1− pi), for i ≤ k
0, otherwise

Other values of vi exist. For instance, the standard uniform
sampling admits vi = n−b

n−1 and the independent sampling
admits vi = 1− pi [19].

We give two specific probability matrices as concrete
examples, which are for standard uniform sampling and
independent sampling separately.
Standard uniform sampling. Each element in S can be
drawn uniformly from [n] with a fixed mini-batch size b. The
probability matrix P is calculated by

Pij =

{
b
n , i = j
b(b−1)
n(n−1) , i 6= j

Independent sampling. Each i ∈ [n] is independently included
into S with a probability pi, where pi = Prob(i ∈ S). The
probability matrix P is given by

Pij =

{
pi, i = j
pipj , i 6= j

Although this paper provides standard uniform sampling
and independent sampling schemes as concrete examples, the
analysis can be easily extended to other sampling schemes,
such as approximate independent sampling and τ -nice sampling
[19].

IV. THE MINIBATCH PROXSGD WITH ARBITRARY
SAMPLING

The proximal SGD methods have been developed recently
and use the uniform sampling method to solve non-convex non-
smooth regularized problems [18]. The ProxSGD method we
introduced here draws mini-batches using a general probability
matrix P that can be used to characterize any proper sampling
technique. Our analytic method provides a united framework
to study and compare different sampling schemes. For instance,
we have compared uniform sampling and independent sampling
schemes.

We propose to use arbitrary sampling (AS) scheme in the
mini-batch ProxSGD method named ProxSGD-AS, shown
in Algorithm 1. It draws a mini-batch St of training ex-
amples at each iteration t, and the mini-batches are all
sampled from [n] based on an arbitrary distribution P,
with batch size b. After AS, we can aggregate the stochas-
tic gradient information by using gt =

∑
i∈St

1
npi
∇fi(xt)

and then conduct proximal operator proxηr(xt − ηgt) =



Algorithm 1 The mini-batch ProxSGD-AS

Require: Number of loop T , initial state x1 ∈ Rd, stepsize
η > 0, probability matrix P

1: for t = 1, 2, . . . , T do
2: Draw a subset St ⊂ {1, ..., n} according to P
3: gt =

∑
i∈St

1
npi
∇fi(xt)

4: xt+1 = proxηr(xt − ηgt)
5: end for
6: return xR, where R is uniformly sampled from {1, . . . , T}

arg minx∈Rd
{

1
2η‖x− (xt − ηgt)‖2 + r(x)

}
at current t-

iteration. With AS technique, optimizers have more choices in
subsampling step, while it also brings more challenges in the
theoretical analysis. We provide a general convergence analysis
for the ProxSGD-AS as follows.

A. Unified analysis of ProxSGD-AS

Examine the update in each iteration of ProxSGD-AS:

xt+1 ∈ argmin
x∈Rd

{
r(x) +

1

2η
‖x− (xt − ηgt)‖2

}
= argmin

x∈Rd

{
r(x) + 〈gt, x− xt〉+

1

2η
‖x− xt‖2

}
. (5)

Then, we know that 0 ∈ ∂̂r(xt+1) + gt + 1
η (xt+1 − xt). By

moving the last two terms to the left and adding ∇f(xt+1) on
both sides, we get

∇f(xt+1)− gt −
1

η
(xt+1 − xt) ∈ ∇f(xt+1) + ∂̂r(xt+1)

= ∂̂F (xt+1). (6)

Before given the main theorem, we first analyze the differ-
ence between consecutive iterates xt and xt+1 and give the
following upper bound.

Lemma 4.1. Suppose that Assumption 1 holds, we have that
for any t ≥ 1,

‖xt+1 − xt‖2 ≤
2η

1− 2L̃η
(F (xt)− F (xt+1))

+
η

L̃− 2L̃2η
‖gt −∇f (xt)‖2 . (7)

Using Eq. (7), we can prove that the expected dis-
tance E[dist(0, ∂̂F (xT ))2] of the mini-batch ProxSGD-AS
is bounded by the sum of two terms: the variance of stochastic
gradient term, E[‖∇f(xt) − gt‖2], which can be controlled
by using AS techniques, and the other term associated with
∆ = F (x1) − F (x∗), where x1 is the initial state and x∗ is
the optimal of Problem (1).

Theorem 4.2. (Convergence guarantee for ProxSGD-AS)
Given Problem (1), under Assumption 1, if 0 < η < 1

2L̃
,

then for all t ≥ 1, ProxSGD-AS (Algorithm 1) has

E[dist(0, ∂̂F (xT ))2] ≤ C1

T

T∑
t=1

E[‖∇f(xt)− gt‖2] +
C2

T
∆,

where C1 = 1+4L̃η−2L̃2η2

L̃η−2L̃2η2
, C2 = 2+4L̃η+4L̃2η2

η−2L̃η2
, and ∆ =

F (x1)− F (x∗).

Proof Sketch. In order to evaluate if 0 is in the subgradient of
the regularized non-smooth non-convex problem, we compute
the dist(0, ∂̂F (xt+1)). By Eq. (6),

dist(0,∂̂F (xt+1))2 ≤ ‖∇f(xt+1)− gt −
1

η
(xt+1 − xt)‖2

= ‖∇f(xt+1)− gt‖2 +
1

η2
‖xt+1 − xt‖2

− 2

η
〈∇f(xt+1)− gt, xt+1 − xt〉.

From the L̃-smoothness, the unbiased property of stochastic
gradient generated with AS, and subgradient definition in
Eq. (6), and take the expectation on both sides of the above
inequality yields

E[dist(0,∂̂F (xt+1))2] ≤ 2E[‖∇f(xt)− gt‖2]

+
1 + 2L̃η + 2L̃2η2

η2
‖xt+1 − xt‖2.

Substituting Eq. (7) into the above inequality further yields

E[dist(0, ∂̂F (xt+1))2]

≤ C1E[‖∇f(xt)− gt‖2] + C2(F (xt)− F (xt+1)).

Our result is then obtained with properly defined C1 and C2

as in the Theorem 4.2.
According to the result in Theorem 4.2, to minimize the

expected distance E[dist(0, ∂̂F (xT ))2], we need to choose
the sampling probability at t-th iteration, denoted as Pt, that
minimizes the variance of the stochastic gradient, E[‖∇f(xt)−
gt‖2], i.e.,

min
pt={pti∈[0,1]|

∑n
i=1 p

t
i=b}
‖
∑
i∈St

1

npti
∇fi(xt)−∇f(xt)‖2. (8)

Since as shown in [19], E

[
‖
∑
i∈S

ξi
npi
− ξ̃‖2

]
≤

1
n2

∑n
i=1

vi
pi
‖ξi‖2 if ξ1, ξ2, ..., ξn are vectors in Rd and ξ̃ =

1
n

∑n
i=1 ξi, Problem (8) is equivalent to solve the following

problem

min
pt={pti∈[0,1]|

∑n
i=1 p

t
i=b}

1

n2

n∑
i=1

vti
pti
‖∇fi(xt)‖2. (9)

However, the solution to (9) is still inefficient since the
distribution Pt needs to be updated at each iteration and Eq. (9)
requires to compute the gradient for each sample in [n]. Because
function fi is Gi-Lipschitz continuous, i.e. ‖∇fi(x)‖ ≤ Gi,
we can optimize the following problem instead:

min
pt={pti∈[0,1]|

∑n
i=1 p

t
i=b}

1

n2

n∑
i=1

vi
pi
G2
i . (10)

For the first time, we unify the analysis of Problem (1) for
different sampling schemes. With Problem (10), we are able
to explore and compare the performance of different sampling
schemes.



We examine the specific values for vi in different sampling
strategies. Our analysis also works for other sampling schemes,
such as approximate independent sampling or τ -sampling, etc.
Due to the space limitation, we only cover two commonly
used sampling schemes – uniform sampling and independent
sampling.

B. Mini-batch ProxSGD with uniform sampling

The unified analysis can first cover the special case – uniform
sampling, where pi = b

n and vi = n−b
n−1 , we are able to get the

following corollary.

Corollary 4.2.1 (Convergence with uniform sampling). Given
Problem (1), under Assumption 1, if 0 < η < 1

2L̃
, then for

all T ≥ 1, ProxSGD (Algorithm 1) with uniform sampling
achieves

E[dist(0, ∂̂F (xT ))2] ≤ 1

b

1

n

n− b
n− 1

(

n∑
i=1

G2
i )C1 +

C2

T
∆,

where C1 = 1+4L̃η−2L̃2η2

L̃η−2L̃2η2
, C2 = 2+4L̃η+4L̃2η2

η−2L̃η2
, and ∆ =

F (x1)− F (x∗).

We further can obtain the number of IFO calls for computa-
tional complexity to obtain ε-stationary points.

Corollary 4.2.2 (Complexity with uniform sampling). Given
Problem (1), under Assumption 1, if 0 < η < 1

2L̃
, T = 2C2∆

ε2 ,

and a fixed batch size b =
(2

∑n
i=1G

2
i )C1

nε2 , ProxSGD (Algorithm
1) with uniform sampling achieves E[dist(0, ∂̂F (xR))2] ≤
ε2. Then, the number IFO calls is 4(

∑n
i=1G

2
i )C1C2∆

nε4 so the
computational complexity is O( 1

ε4 ).

C. Mini-batch ProxSGD with independent sampling

In independent sampling case, vi = 1− pi and Problem (10)
becomes equivalent to the following optimization problem:

min
pt={pti∈[0,1]|

∑n
i=1 p

t
i=b}

1

n2

n∑
i=1

1

pi
G2
i . (11)

Employing the KKT conditions, we can derive the solution Pt

to Problem (11) as follows:

pi :=

{
(b+ k − n) Gi∑k

j=1Gj ,
if i ≤ k

1, if i > k
(12)

where k is the largest integer satisfying 0 < b + k − n ≤∑k
j=1Gj

Gk
. When Gi’s for each i ∈ [n] are significantly different,

such as 1 <
∑k
j=1Gj

Gk
< 2 for k ∈ [n], then k = n− b+ 1 and

pi =

{
Gi∑k
j=1Gj

, if i ≤ n− b+ 1

1, if i > n− b+ 1.
(13)

When Gi’s are similar to each other, i.e., bGn ≤
∑n
j=1Gj ,

k = n and pi = bGi∑n
j=1Gj

for i ∈ [n].
We then present important corollaries for convergence and

computational complexity when the sampling scheme takes on
independent sampling scheme.

Corollary 4.2.3 (Convergence with independent sampling).
Given Problem (1), under Assumption 1 and with the same
setup in Theorem 4.2, ProxSGD (Algorithm 1) with independent
sampling achieves

E[dist(0, ∂̂F (xT ))2] ≤ C1

n2

(
1

b+ k − n
(

k∑
i=1

Gi)
2

)
+
C2

T
∆.

where C1 = 1+4L̃η−2L̃2η2

L̃η−2L̃2η2
, C2 = 2+4L̃η+4L̃2η2

η−2L̃η2
, and ∆ =

F (x1)− F (x∗).

Corollary 4.2.4 (Complexity with independent sampling). If
we further assume that Gi’s are similar, k = n, T = 2C2∆

ε2 , and

a fixed batch size b =
2(

∑n
i=1Gi)

2C1

n2ε2 , ProxSGD (Algorithm 1)
with independent sampling achieves E[dist(0, ∂̂F (xR))2] ≤ ε2.
Then, the number of IFO calls is 4(

∑n
i=1Gi)

2C1C2∆

n2ε4 , so the
computational complexity is O( 1

ε4 ).

Remark 1. Based on the Cauchy-Schwartz inequality, we
obtain

(
∑n
i=1G

2
i )

n
/

(
∑n
i=1Gi)

2

n2
=

n
∑n
i=1G

2
i

(
∑n
i=1Gi)

2
≥ 1. (14)

By cross referencing the results with uniform sampling in
Corollary 4.2.2, Eq. (14) implies that the independent sampling
scheme can improve the computational complexity over the
uniform sampling.

V. THE PROXSARAH WITH ARBITRARY SAMPLING

In this section, we first propose the ProxSARAH method
with AS, named ProxSARAH-AS in Algorithm 2. We then
give a unified convergence, and computation complexity of
ProxSARAH-AS under any proper sampling schemes for
non-smooth non-convex regularized problems. Similarly, the
theoretical results for uniform sampling and independent
sampling are also provided. Note that the ProxSARAH [18] is
a special case of our formulation with uniform sampling. Our
new analysis actually helps show a better convergence speed
for the ProxSARAH method with a tighter bound.

In the family of variance reduced methods, there are inner
loops in each outer loop. In the j-th outer loop, a full gradient
V(j)

0 is computed (Line 3) for the use of reducing the variance of
the stochastic gradients. In the following inner loops, stochastic
variance reduced gradient V(j)

t is calculated using a mini-
batch S(j)

t that is drawn from [n] according to P, i.e., V(j)
t =∑

i∈S(j)
t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1)) +V(j)
t−1. We then update

the variable x(j)
t+1 based on stochastic variance reduced gradient

V(j)
t and the proximal mapping of r(x).

A. Unified analysis of ProxSARAH-AS

In this subsection, we provide the general convergence and
computational complexity analysis for the ProxSARAH with
uniform sampling and independent sampling respectively.



Similar to ProxSGD, the update of x(j)
t+1 in ProxSARAH is:

x
(j)
t+1 ∈ argmin

x∈Rd

{
r(x) +

1

2η
‖x− (x

(j)
t − ηV

(j)
t )‖2

}
(15)

= argmin
x∈Rd

{
r(x) + 〈V(j)

t , x− x(j)
t 〉+

1

2η
‖x− x(j)

t ‖2
}
,

then by the definition of arg min, we have

0 ∈ ∂̂r(x(j)
t+1) + V(j)

t +
1

η
(x

(j)
t+1 − x

(j)
t ).

Hence, −V(j)
t − 1

η (x
(j)
t+1 − x

(j)
t ) ∈ ∂̂r(x(j)

t+1), implying

∇f(x
(j)
t+1)− V(j)

t −
1

η
(x

(j)
t+1 − x

(j)
t ) ∈ ∇f(x

(j)
t+1) + ∂̂r(x

(j)
t+1)

= ∂̂F (x
(j)
t+1). (16)

Algorithm 2 ProxSARAH-AS

Require: Number of outer loops J , inner loop m, initial state
x̃1, stepsize η, probability matrix P

1: for j = 1, 2, . . . ,J do
2: x

(j)
0 = x̃(j)

3: V(j)
0 = 1

n

∑n
i=1∇fi(x

(j)
0 )

4: x
(j)
1 = x

(j)
0

5: for t = 1, 2, . . . ,m do
6: Draw a random subset S(j)

t ⊂ {1, ..., n}
7: according to P

8: V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1))

9: +V(j)
t−1

10: x
(j)
t+1 = proxηr[x

(j)
t − ηV

(j)
t ]

11: end for
12: set x̃j+1 = x

(j)
m+1

13: end for
14: return xR, where xR is uniformly sampled from
{x(1)

1 , . . . , x
(J )
m }

Before diving into the proof for the main theorem of
convergence, we first give the following three lemmas as
preparation. Detailed proof can be found in supplemental
material.

Lemma 5.1. Suppose that Assumption 1 holds and con-
sidering updating formula in ProxSARAH-AS: V(j)

t =∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1))+V(j)
t−1, then ∀1 ≤ t ≤ m,

we have that for any j ≥ 1

E[‖V(j)
t −∇f(x

(j)
t )‖2] ≤ Q

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2],

where Q =
∑n
i=1

viL
2
i

pin2 .

Lemma 5.2. Suppose that Assumption 1 holds, we have that
for any ∀1 ≤ t ≤ m, j ≥ 1

〈V(j)
t −∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t 〉+

1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

≤ F (x
(j)
t )− F (x

(j)
t+1).

Lemma 5.3. Suppose that Assumption 1 holds, we have that
for any j ≥ 1

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]

≤ 1
1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)],

where 1
2 ( 1
η − 2L̃)− mQ

2L̃
> 0.

Using the above lemmas, we can state and prove our core
convergence result for ProxSARAH-AS in Theorem 5.4, where
we let J be the total number of epochs, ∆ = F (x̃1)−F (x∗),
where x̃1 is the initial state and x∗ is the optimal of Problem
(1) and define a constant Q =

∑n
i=1

viL
2
i

pin2 .

Theorem 5.4. (Convergence guarantee for ProxSARAH-AS)
Given Problem (1), under Assumption 1, η = 1

4L̃+ 2mQ

L̂

, the

ProxSARAH-AS (Algorithm 2) satisfies

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2] ≤ 1

mJ
(24L̃+

4mQ

L̃
)∆.

Proof Sketch. Let’s try to bound dist(0, ∂̂F (x
(j)
t+1)). By Eq.

(29),

dist(0,∂̂F (x
(j)
t+1))2 = ‖∇f(x

(j)
t+1)− V(j)

t −
1

η
(x

(j)
t+1 − x

(j)
t )‖2

= ‖∇f(x
(j)
t+1)− V(j)

t ‖2 +
1

η2
‖x(j)

t+1 − x
(j)
t ‖2

− 2

η
〈∇f(x

(j)
t+1)− V(j)

t , x
(j)
t+1 − x

(j)
t 〉. (17)

Then by reorganizing inequality in Lemma 2.3 , we obtain:

−〈∇f(x
(j)
t+1)− V(j)

t , x
(j)
t+1 − x

(j)
t 〉

≤ F (x
(j)
t )− F (x

(j)
t+1)− 1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

− 〈∇f(x
(j)
t+1)−∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t 〉.

Putting the above result in Eq. (17), and further applying
L̃-smoothness of f(x) and Young’s inequality, we get,

dist(0, ∂̂F (x
(j)
t+1))2

≤ 2‖V(j)
t −∇f(x

(j)
t )‖2 + (2L̃2 +

3L̃

η
)‖x(j)

t+1 − x
(j)
t ‖2

+
2

η
(F (x

(j)
t )− F (x

(j)
t+1)),

By summing over t = 1, ...,m, using the result in Lemma
2.2, and taking the expectation,

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ (2Qm+ 2L̃2 +
3L̃

η
)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]

+
2

η
E[F (x

(j)
0 )− F (x

(j)
m+1)].



Next, plugging in Lemma 2.4 for the term
∑m
t=1E[‖x(j)

t+1−
x

(j)
t ‖2],

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ (
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

+
2

η
)E[F (x

(j)
0 )− F (x

(j)
m+1)].

Let 1
2

1
η = 2L̃ + mQ

L̃
, then 1

2
1
η > L̃ + mQ

L̃
, we get the final

result.
We further analyze the computational complexity of the

ProxSARAH-AS and obtain its computational complexity in
terms of the IFO calls. Note that this part of our analysis does
not need to go down into a specific sampling scheme, since
we have a unifying form of Q for different sampling schemes.

Theorem 5.5. (Complexity for ProxSARAH-AS) In order to
achieve an ε-accuracy solution, i.e., E[dist(0, ∂̂F (xR))] ≤ ε,
the number of epochs required is J = 1

mε2 (24L̃ + 4mQ

L̃
)∆,

where ∆ = F (x̃1)− F (x∗). The computational complexity in
terms of the number of IFO calls is n+mb

mε2 (24L̃+ 4mQ

L̃
)∆.

B. ProxSARAH with uniform sampling

For uniform sampling, we have pi = b
n and vi = n−b

n−1 . With
Theorem 5.5, we are able to get the following corollary.

Corollary 5.5.1 (Complexity with uniform sampling). In order
to have E[dist(0, ∂̂F (xR))] ≤ ε, the number of epochs J =

1
mε2 (24L̃ + 4m

L̃
1
b

1
n
n−b
n−1 (

∑n
i=1 L

2
i ))∆, where ∆ = F (x̃1) −

F (x∗). If we further assume b = m =
√
n, the number of IFO

calls is upper bounded by
√
n
ε2 (24L̃+ 4

L̃
1
n (
∑n
i=1 L

2
i ))∆, so the

computational complexity is O( 1
ε2 ).

Remark 2. If all Li’s are the same and equal to L, the
computational complexity is 28L

√
n

ε2 ∆. Comparing with the
results in [18], ( 4

c+8c−2)/(1−3c)L
√
n

ε2 ∆, where 0 < c < 1
3 .

Because ( 4
c + 8c − 2)/(1 − 3c) ≥ 46.67, our bound is the

tightest one so far.

C. ProxSARAH with independent sampling

For independent sampling case, we have vi = 1 − pi. To
minimize E[dist(0, ∂̂F (xT ))2], again we need to optimize the
following problem for the best Pt:

min
p={pi∈[0,1]|

∑n
i=1 pi=b}

1

n2

n∑
i=1

1

pi
L2
i (18)

Based on the KKT condition, the solution Pt to the above
optimization problem is:

pi :=

{
(b+ k − n) Lt∑k

j=1 Lj ,
if i ≤ k

1, if i > k
(19)

where k is the largest integer satisfying 0 < b + k − n ≤∑k
j=1 Lj

Lt
. If Li’s for i ∈ [1, n] significantly differ one another

so that 1 <
∑k
j=1 Lj

Lk
< 2 for k ∈ [n], then k = n− b+ 1 and

pi =

{
Li∑k
j=1 Lj

, if i ≤ n− b+ 1

1, if i > n− b+ 1.
(20)

If Li’s are similar to each other, so bLn ≤
∑n
j=1 Lj , then

k = n and pi = bLi∑n
j=1 Lj

for i ∈ [n].
We also obtain the following specific corollary for indepen-

dent sampling:

Corollary 5.5.2 (Complexity with independent sampling). In
order to have E[dist(0, ∂̂F (xR))] ≤ ε, the number of epochs
is

J =
1

mε2
(24L̃+

4m

L̃

C1

n2

1

b+ k − n
(

k∑
i=1

Li)
2∆). (21)

If we further assume bLn ≤
∑n
j=1 Lj , and b = m =

√
n, the number of IFO calls is bounded by

√
n
ε2 (24L̃ +

4
L̃
C1

n2 (
∑n
i=1 Li)

2∆), so the computational complexity is O( 1
ε2 ).

Remark 3. Results in Corollaries 5.5.1 and 5.5.2 imply that
the independent sampling scheme improves the computational
complexity, because

(
∑n
i=1 L

2
i )

n
/

(
∑n
i=1 Li)

2

n2
=

n
∑n
i=1 L

2
i

(
∑n
i=1 Li)

2
≥ 1.

VI. THE PROXSPIDER WITH ARBITRARY SAMPLING

In this section, we further propose a new method,
ProxSPIDER-AS to speed up the convergence process of
solving non-convex non-smooth regularized problems. We also
provide the convergence and computational complexity results
under our unified analytic approach.

The details of ProxSPIDER-AS are given in Algorithm
3. The key difference between Algorithm 2 and 3 is that
ProxSPIDER-AS, unlike ProxSARAH-AS, avoids computation
of the full gradient, which can be computationally prohibitive
for massive datasets. Instead, it calculates a batch gradient
over a mini-batch S(j) for variance reduction. Specifically,
at the beginning of each outer loop iteration j, we estimate
the gradient

∑
i∈S(j)

1
np′i
∇fi(x(j)

0 ) over a random subset S(j)

with batch size B, which are sampled from [n] based on an
arbitrary distribution P′. In the following inner loop iterations,
we construct the stochastic gradient estimator V(j)

t based on
a subset data samples S

(j)
t draw from [n] according to a

probability matrix P, i.e., V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t ) −

∇fi(x(j)
t−1)) + V(j)

t−1. In order to handle the possible non-
smoothness, we then perform a proximal gradient step to update
the variable, i.e., x(j)

t+1 = proxηr[x
(j)
t − ηV

(j)
t ].

A. Unified analysis of ProxSPIDER-AS

In this subsection, we will provide the general convergence
analysis for the ProxSPIDER-AS, which can cover any proper
sampling. Before showing the convergence result of the



Algorithm 3 ProxSPIDER-AS

Require: Number of outer loops J , inner loop m, initial state
x̃1, stepsize η, probability matrices P, P′

1: for j = 1, 2, . . . ,J do
2: x

(j)
0 = x̃(j)

3: Draw a random subset S(j) ⊂ {1, ..., n} with
4: size B, according to P′

5: V(j)
0 =

∑
i∈S(j)

1
np′i
∇fi(x(j)

0 )

6: x
(j)
1 = x

(j)
0

7: for t = 1, 2, . . . ,m do
8: Draw a random subset S(j)

t ⊂ {1, ..., n}
9: with size b, according to P

10: V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1))

11: +V(j)
t−1

12: x
(j)
t+1 = proxηr[x

(j)
t − ηV

(j)
t ]

13: end for
14: set x̃j+1 = x

(j)
m+1

15: end for
16: return xR, where xR is uniformly sampled from
{x(1)

1 , . . . , x
(J )
m }

ProxSPIDER-AS, we first provide the following preparation
lemmas to help the understanding of main theorem. Detailed
proof can be found in supplemental material.

Lemma 6.1. Suppose that Assumption 1 holds and con-
sider updating formula in ProxSPIDER-AS: V(j)

t =∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1))+V(j)
t−1, Q =

∑n
i=1

viL
2
i

pin2 ,
then ∀1 ≤ t ≤ m, we have for any j ≥ 1

E[‖V(j)
t −∇f(x

(j)
t )‖2] ≤ Q

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2] +Q′.

where Q =
∑n
i=1

viL
2
i

pin2 and Q′ =
∑n
i=1

v′iG
2
i

p′in
2 .

Lemma 6.2. Suppose that Assumption 1 holds, for j ≥ 1, we
have

∑m
t=1E[‖x(j)

t+1 − x
(j)
t ‖2] ≤ 1

1
2 ( 1
η−2L̃)−mQ

2L̃

E[F (x
(j)
0 ) −

F (x
(j)
m+1)], where 1

2 ( 1
η − 2L̃)− mQ

2L̃
> 0.

With the above preparations, we are able to derive the
following generic convergence result of the ProxSPIDER-
AS for any proper sampling using ∆, Q and Q′, where
∆ = F (x̃1)− F (x∗), Q =

∑n
i=1

viL
2
i

pin2 , and Q′ =
∑n
i=1

viG
2
i

pin2 .

Theorem 6.3. (Convergence guarantee for ProxSPIDER-AS)
Given Problem (1), under Assumption 1, let η = 1/(4L̃ +
2mQ/L̂), then for ∀1 ≤ t ≤ m, j ≥ 1, the ProxSPIDER-AS
(Algorithm 3) achieves

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ 1

mJ
(24L̃+

4mQ

L̃
)∆ + 2Q′.

Proof Sketch. Let’s try to bound dist(0, ∂̂F (x
(j)
t+1)). Similar

with the analysis of ProxSARAH-AS,

dist(0, ∂̂F (x
(j)
t+1))2 ≤ 2‖V(j)

t −∇f(x
(j)
t )‖2

+ (2L̃2 +
3L̃

η
)‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1)),

By summing over t = 1, ...,m, using the result in Lemma
3.2, and taking the expectation,

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ (2Qm+ 2L̃2 +
3L̃

η
)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]

+
2

η
E[F (x

(j)
1 )− F (x

(j)
m+1)] + 2mQ′

Next, plugging in Lemma 3.3 for the term
∑m
t=1E[‖x(j)

t+1−
x

(j)
t ‖2],
m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ (
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

+
2

η
)E[F (x

(j)
0 )− F (x

(j)
m+1)] + 2mQ′.

Therefore:

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ 1

mJ
(
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

+
2

η
)E[F (x̃1)− F (x∗)] + 2Q′.

Let 1
2

1
η = 2L̃+ mQ

L̃
,then 1

2
1
η > L̃+ mQ

L̃
and we get the final

result.
For simplicity, we use the same sampling scheme, either the

uniform sampling or independent sampling, for drawing both
S(j) and S(j)

t .

B. ProxSPIDER with uniform and independent sampling

Again, we obtain the following corollaries on computational
complexity if a specific sampling scheme is used.

Corollary 6.3.1 (Complexity with uniform sampling). Given
Problem (1), under Assumption 1, if B = 2

nε2 (
∑n
i=1G

2
i ), m =

b =
√
B, ∆ = F (x̃1)− F (x∗), then the number of IFO calls

to achieve E[dist(0, ∂̂F (xR))] ≤ ε is bounded by 2
√
B

ε2 (24L̃+
4
L̃

1
n (
∑n
i=1 L

2
i ))∆, and the computational complexity is O( 1

ε3 ).

For the independent sampling scheme, we further assume
there is no significant difference in Gi’s and Li’s ( i.e., bGn ≤∑n
j=1Gj and bLn ≤

∑n
j=1 Lj ), we obtain the following

result.

Corollary 6.3.2 (Complexity with independent sampling).
Given Problem (1), under Assumption 1, if B =

2
n2ε2 (

∑n
i=1Gi)

2, m = b =
√
B, ∆ = F (x̃1)−F (x∗), then the

number of IFO calls required to achieve E[dist(0, ∂̂F (xR))] ≤
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Fig. 1: Comparisons of Prox-SGDU , Prox-SARAHU , Prox-SPIDERU , Prox-SGDI , Prox-SARAHI and Prox-SPIDERI , with SSDC-VR and
VRSGD on l0 and l0.5 regularized problems. F ∗ is a lower bound of function F (x).

ε is bounded by 2
√
B

ε2 (24L̃ + 4
L̃

1
n2 (
∑n
i=1 Li)

2)∆. so the
computational complexity is O( 1

ε3 ).

VII. EXPERIMENTS

We empirically compare the proposed algorithms against the
state-of-the-art methods: SSDC-VR [16], and VRSGD [17].
For clarity, we use the superscript U to denote the methods
with uniform sampling (Prox-SGDU , Prox-SARAHU , Prox-
SPIDERU ) and the superscript I to denote those with indepen-
dent sampling (Prox-SGDI , Prox-SARAHI , Prox-SPIDERI ).
Three benchmark datasets are used in our experiments: covtype,
australian and ijcnn1, all of which can be downloaded from
the LibSVM website1.

Following the convention in the stochastic optimization
literature, we use the number of the IFO calls to measure
the computational complexity. This can make the computa-
tional complexity independent of actual implementation of an
algorithm. For a comprehensive comparison, we also include
the decrease of function values over the number of iterations
into our comparison. The parameter µ for SSDC-VR and
VRSGD is chosen by grid search from {10, 1, 0.1, 0.01, 0.001}.
The stepsize η for each algorithm is set by a grid search
from {10, 1, 10−1, 10−2, 10−3, 10−4}. All the algorithms are
initialized with the same x(0) for the same dataset.

In our experiments, we use different algorithms to solve the
following problem for classification tasks:

min
x∈Rd

{F (x) := f(x) + λr(x)} .

1http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/

We adopt the following smooth but non-convex regression
function f(x) to be the classification loss function: f(x) =
1
n

∑n
i=1

(
1− yiσ

(
a>i x

))2
where σ(·) is the sigmoid function.

This function has been extensively used to test stochastic
algorithms with different sampling techniques because Gi’s
and Li’s for this function can be computed via ‖x‖2. These
parameters may be estimated, for some more complex problems
[19]. The non-smooth and non-convex lp norm is used as the
regularizer r(x) where 0 ≤ p < 1, which are commonly used
in sparse learning. More specifically, p = 0 and p = 0.5 are
tested due to their well-studied proximal operators.

In our experiments, both SSDC-VR and VRSGD do not
perform well for covtype data and VRSGD also reduce function
values slower than other algorithms for ijcnn1 data. Compared
with the SSDC-VR and VRSGD methods, the Prox-SARAHI

and Prox-SPIDERI show obvious improvements over the
counterparts with uniform sampling. We can also see that
the proposed Prox-SPIDERI algorithm is the fastest among the
algorithms across the different tasks. An interesting observation
shown in Figure 1 (e) is that the Prox-SPIDERI can not only
reduce the loss function quickly at the beginning stage, but also
escape narrow stationary points in the later stage, which may
benefit from the variation of the batch gradient in the outer
loop. Based on the experimental results, it is safe to conclude
that all methods using the independent sampling technique tend
to be faster than their corresponding methods with uniform
sampling. These empirical observations are consistent with our
theoretical results.



VIII. CONCLUSION

To solve the sparse learning problems with nonconvex nons-
mooth regularization, we propose a series of stochastic proximal
gradient methods, including ProxSGD-AS, ProxSARAH-AS,
and ProxSPIDER-AS, that replace the original methods by
a new data sampling scheme. The proposed methods draw
mini-batches based on an arbitrary probability distribution
when calculating the stochastic gradients. A unified analytic
approach is developed to examine the convergence and com-
putational complexity of these methods when an arbitrary
sampling scheme is adopted. This theoretical framework helps
us compare the different sampling schemes, and we show
that these proximal methods tend to perform better when
independent sampling is used rather than uniform sampling.
Furthermore, even for the uniform sampling, our new analysis
derives a tighter bound on convergence speed than the best
one available so far. Empirical studies confirm our theoretical
observations. As a future direction, since the current research is
focused on ε-stationary points, further exploration for escaping
saddle points or converging to local minimal might be of great
interest for non-convex problems.
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APPENDIX

I. MINIBATCH PROXSGD WITH ARBITRARY SAMPLING

We have stated the update of ProxSGD in main paper, here we restate the main results we may use in prove procedure:

xt+1 ∈ argmin
x∈Rd

{
r(x) +

1

2η
‖x− (xt − ηgt)‖2

}
= argmin

x∈Rd

{
r(x) + 〈gt, x− xt〉+

1

2η
‖x− xt‖2

}
, (22)

∇f(xt+1)− gt −
1

η
(xt+1 − xt) ∈ ∇f(xt+1) + ∂̂r(xt+1) = ∂̂F (xt+1), (23)

Lemma 4.1. [distance bound]

‖xt+1 − xt‖2 ≤
2η

1− 2L̃η
(F (xt)− F (xt+1)) +

η

L̃− 2L̃2η
‖gt −∇f (xt)‖2 .

Proof. Considering equality (22), we obtain:

r (xt+1) + 〈gt, xt+1 − xt〉+
1

2η
‖xt+1 − xt‖2 ≤ r (xt) (24)

Since f(·) is L̃-smoothness, we get:

f (xt+1) ≤ f (xt) + 〈∇f (xt) , xt+1 − xt〉+
L̃

2
‖xt+1 − xt‖2 (25)

Combining inequalities (24) and (25), we finally get:

〈gt −∇f (xt) , xt+1 − xt〉+
1

2
(1/η − L̃) ‖xt+1 − xt‖2 ≤ F (xt)− F (xt+1)

Then,

1

2
(1/η − L̃) ‖xt+1 − xt‖2 ≤ F (xt)− F (xt+1)− 〈gt −∇f (xt) , xt+1 − xt〉

≤ F (xt)− F (xt+1) +
1

2L̃
‖gt −∇f (xt)‖2 +

L̃

2
‖xt+1 − xt‖2 .

The last inequality holds due to −〈a, b〉 ≤ 1
2c‖a‖

2 + c
2‖b‖

2. Therefore we achieve the bound of distance of parameter x,

‖xt+1 − xt‖2 ≤
2η

1− 2L̃η
(F (xt)− F (xt+1)) +

η

L̃− 2L̃2η
‖gt −∇f (xt)‖2 .

Then we give the details of proof of our main results in Theorem 4.2.
Theorem 4.2. Considering Problem (1) under Assumption 1, if 0 < η < 1

2L̃
, then for all T ≥ 1, ProxSGD-AS (Algorithm 1)

will have,

E[dist(0, ∂̂F (xT ))2] ≤ C1

T

T∑
t=1

E[‖∇f(xt)− gt‖2] +
C2

T
∆,

where C1 = 1+4L̃η−2L̃2η2

L̃η−2L̃2η2
, C2 = 2+4L̃η+4L̃2η2

η−2L̃η2
, ∆ = F (x1)− F (x∗).

Proof. Let ξi = ∇fi(xt), then from Lemma D.1,

E[gt] = E

[∑
i∈St

ξi
npi

]
= ξ̃ = ∇f(xt), (26)

and

E[‖gt −∇f(xt)‖2] ≤ 1

n2

n∑
i=1

vi
pi
‖∇fi(xt)‖2. (27)



From the above analysis, in order to measure the sub-gradient of regularized non-smooth non-convex problem, we now
considering dist(0, ∂̂F (xt+1)). By Eq (23),

dist(0, ∂̂F (xt+1))2 ≤ ‖∇f(xt+1)− gt −
1

η
(xt+1 − xt)‖2

= ‖∇f(xt+1)− gt‖2 +
1

η2
‖xt+1 − xt‖2 −

2

η
〈∇f(xt+1)− gt, xt+1 − xt〉

Taking the expectation on both sides,

E[dist(0, ∂̂F (xt+1))2]

≤ E[‖∇f(xt+1)− gt‖2] +
1

η2
E[‖xt+1 − xt‖2]− 2

η
E[〈∇f(xt+1)− gt, xt+1 − xt〉]

= E[‖∇f(xt+1)−∇f(xt) +∇f(xt)− gt‖2] +
1

η2
E[‖xt+1 − xt‖2]

− 2

η
〈∇f(xt+1)−∇f(xt), xt+1 − xt〉

≤ 2E[‖∇f(xt+1)−∇f(xt)‖2] + 2E[‖∇f(xt)− gt‖2] +
1

η2
E[‖xt+1 − xt‖2]

+
2

η
‖∇f(xt+1)−∇f(xt)‖‖xt+1 − xt‖

≤ 2L̃2E[‖xt+1 − xt‖2] + 2E[‖∇f(xt)− gt‖2] +
1

η2
E[‖xt+1 − xt‖2] +

2L̃

η
‖xt+1 − xt‖2

= 2E[‖∇f(xt)− gt‖2] +
1 + 2L̃η + 2L̃2η2

η2
‖xt+1 − xt‖2

the second inequality holds due to ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 and −〈a, b〉 ≤ ‖a‖‖b‖, the third inequality holds due to
L̃−smoothness.

Put in the distance bound for ‖xt+1 − xt‖2 in Lemma 4.1, we get

E[dist(0, ∂̂F (xt+1))2]

≤ 2E[‖∇f(xt)− gt‖2] +
1 + 2L̃η + 2L̃2η2

η2

2η

1− 2L̃η
(F (xt)− F (xt+1))

+
1 + 2L̃η + 2L̃2η2

η2

η

L̃− 2L̃2η
‖gt −∇f (xt)‖2

≤ (
1 + 4L̃η − 2L̃2η2

L̃η − 2L̃2η2
)E[‖∇f(xt)− gt‖2] + (

2 + 4L̃η + 4L̃2η2

η − 2L̃η2
)(F (xt)− F (xt+1))

= C1E[‖∇f(xt)− gt‖2] + C2(F (xt)− F (xt+1))

where 0 < η < 1
2L̃

, let C1 = 1+4L̃η−2L̃2η2

L̃η−2L̃2η2
, C2 = 2+4L̃η+4L̃2η2

η−2L̃η2
, ∆ = F (x1)− F (x∗), where x∗ is the optimal of Problem (1).

Therefore, we get the final result,

E[dist(0, ∂̂F (xR))2] ≤ C1

T

T∑
t=1

E[‖∇f(xt)− gt‖2] +
C2

T
∆.

A. Mini-batch ProxSGD with uniform sampling

Corollary 4.2.1. Considering Problem (1) under Assumption 1, if 0 < η < 1
2L̃

, then for all T ≥ 1, ProxSGD (Algorithm 1)
with uniform sampling will have,

E[dist(0, ∂̂F (xT ))2] ≤ 1

b

1

n

n− b
n− 1

(

n∑
i=1

G2
i )C1 +

C2

T
∆,

where C1 = 1+4L̃η−2L̃2η2

L̃η−2L̃2η2
, C2 = 2+4L̃η+4L̃2η2

η−2L̃η2
, ∆ = F (x1)− F (x∗).

Proof. For uniform sampling,

vi =
n− b
n− 1



and

pi =
b

n

1

T

T∑
t=1

E[‖∇f(xt)− gt‖2]⇐⇒ 1

n2

n∑
i=1

vi
pi
‖∇fi(xt)‖2

≤ 1

n2

n∑
i=1

n− b
n− 1

n

b
G2
i

we can get the desired result.

Corollary 4.2.2. Considering Problem (1) under Assumption 1, if 0 < η < 1
2L̃

, T = 2C2∆
ε2 and a fixed batchsize b =

(2
∑n
i=1G

2
i )C1

nε2 , ProxSGD (Algorithm 1) with uniform sampling will have,

E

[
dist

(
0, ∂̂F (xR)

)2
]
≤ ε2.

Then, the computational complexity is

4(
∑n
i=1G

2
i )C1C2∆

nε4
.

Proof.

1

b

1

n

n− b
n− 1

(

n∑
i=1

G2
i )C1 ≤

ε2

2

n−b
n−1<1
=⇒ 1

b

1

n
(

n∑
i=1

G2
i )C1 ≤

ε2

2

=⇒ b =
(2
∑n
i=1G

2
i )C1

nε2

C2

T
∆ ≤ ε2

2
=⇒ T ≥ 2C2

ε2
∆

Then, we get E

[
dist

(
0, ∂̂F (xR)

)2
]
≤ ε2. And the total computational complexity is T ∗ b =

4(
∑n
i=1G

2
i )C1C2∆

nε4 with

0 < η < 1
2L̃

.

B. Mini-batch ProxSGD with independent sampling

Corollary 4.2.3. Considering Problem (1) under Assumption 1, if 0 < η < 1
2L̃

, then for all T ≥ 1, ProxSGD (Algorithm 1)
with independent sampling will have,

E[dist(0, ∂̂F (xT ))2] ≤ C1

n2

1

b+ k − n
(

k∑
i=1

Gi)
2 +

C2

T
∆,

where C1 = 1+4L̃η−2L̃2η2

L̃η−2L̃2η2
, C2 = 2+4L̃η+4L̃2η2

η−2L̃η2
, ∆ = F (x1)− F (x∗).



Proof.

E[dist(0, ∂̂F (xT ))2] ≤ C1

Tn2

T∑
t=1

n∑
i=1

vi
pi
G2
i +

C2

T
∆

=
C1

n2

n∑
i=1

1− pi
pi

G2
i +

C2

T
∆

=
C1

n2

n∑
i=1

1

pi
G2
i −

C1

n2

n∑
i=1

G2
i +

C2

T
∆

=
C1

n2

 1

b+ k − n

k∑
i=1

(

k∑
j=1

Gj)Gi −
k∑
i=1

G2
i

+
C2

T
∆

=
C1

n2

(
1

b+ k − n
(

k∑
i=1

Gi)
2 −

k∑
i=1

G2
i

)
+
C2

T
∆,

≤ C1

n2

1

b+ k − n
(

k∑
i=1

Gi)
2 +

C2

T
∆.

Corollary 4.2.4. Based on the above corollary, we further have that Gi are similar, k = n, T = 2C2∆
ε2 and a fixed batchsize

b =
2(

∑n
i=1Gi)

2C1

n2ε2 , ProxSGD (Algorithm 1) with independent sampling will have,

E

[
dist

(
0, ∂̂F (xR)

)2
]
≤ ε2.

Then, the computational complexity is
4(
∑k
i=1Gi)

2C1C2∆

n2ε4
.

Proof. Since k = n,

E[dist(0, ∂̂F (xT ))2] ≤ C1

n2

1

b
(

n∑
i=1

Gi)
2 +

C2

T
∆,

C1

n2

1

b
(

n∑
i=1

Gi)
2 ≤ ε2

2
⇒ b =

C1

n2

2

ε2
(

n∑
i=1

Gi)
2

Then, we get E

[
dist

(
0, ∂̂F (xR)

)2
]
≤ ε2. And the total computational complexity is T ∗ b =

4(
∑n
i=1G

2
i )C1C2∆

n2ε4 .

II. PROXSARAH WITH ARBITRARY SAMPLING

We then give the analysis of ProxSARAH with arbitrary sampling (Algorithm 2) under non-smooth non-convex regularized
problems. Before proving the main Theorem 5.4, we have some prepared lemmas.

Similar to ProxSGD, the update of x(j)
t+1 in ProxSARAH is:

x
(j)
t+1 ∈ argmin

x∈Rd

{
r(x) +

1

2η
‖x− (x

(j)
t − ηV

(j)
t )‖2

}
= argmin

x∈Rd

{
r(x) + 〈V(j)

t , x− x(j)
t 〉+

1

2η
‖x− x(j)

t ‖2
}

(28)

then by the definition of argmin, we have

0 ∈ ∂̂r(x(j)
t+1) + V(j)

t +
1

η
(x

(j)
t+1 − x

(j)
t ).

Hence,

−V(j)
t −

1

η
(x

(j)
t+1 − x

(j)
t ) ∈ ∂̂r(x(j)

t+1),



implying

∇f(x
(j)
t+1)− V(j)

t −
1

η
(x

(j)
t+1 − x

(j)
t ) ∈ ∇f(x

(j)
t+1) + ∂̂r(x

(j)
t+1)

= ∂̂F (x
(j)
t+1). (29)

Lemma 2.1. Considering updating formula in SARAH: V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1)) +V(j)
t−1, then ∀1 ≤ t ≤ m,

j ≥ 1, we have

E[‖V(j)
t −∇f(x

(j)
t )‖2] =

t∑
k=1

E[‖V(j)
k − V

(j)
k−1‖

2]−
t∑

k=1

E[‖∇f(x
(j)
k )−∇f(x

(j)
k−1)‖2].

Proof. Since V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1)) + V(j)
t−1, then

E[V(j)
t − V

(j)
t−1] = E[

∑
i∈S(j)

t

1

npi
(∇fi(x(j)

t )−∇fi(x(j)
t−1))] = ∇f(x

(j)
t )−∇f(x

(j)
t−1).

Let’s further bound E[‖V(j)
t −∇f(x

(j)
t )‖2],

E[‖V(j)
t −∇f(x

(j)
t )‖2] = E[‖V(j)

t − V
(j)
t−1 + V(j)

t−1 −∇f(x
(j)
t−1) +∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

= E[‖V(j)
t − V

(j)
t−1‖2] + E[‖V(j)

t−1 −∇f(x
(j)
t−1)‖2] + E[‖∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

+ 2E[〈V(j)
t − V

(j)
t−1, v

(j)
t−1 −∇f(x

(j)
t−1)〉]

+ 2E[〈V(j)
t − V

(j)
t−1,∇f(x

(j)
t−1)−∇f(x

(j)
t )〉]

+ 2E[〈V(j)
t−1 −∇f(x

(j)
t−1),∇f(x

(j)
t−1)−∇f(x

(j)
t )〉]

= E[‖V(j)
t − V

(j)
t−1‖2] + E[‖V(j)

t−1 −∇f(x
(j)
t−1)‖2] + E[‖∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

− 2E[‖∇f(x
(j)
t−1)−∇f(x

(j)
t )‖2]

= E[‖V(j)
t − V

(j)
t−1‖2] + E[‖V(j)

t−1 −∇f(x
(j)
t−1)‖2]− E[‖∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

=

t∑
k=1

E[‖V(j)
k − v

(j)
k−1‖

2]−
t∑

k=1

E[‖∇f(x
(j)
k )−∇f(x

(j)
k−1)‖2].

Lemma 2.2. Considering updating formula in SARAH: V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1)) +V(j)
t−1, then ∀1 ≤ t ≤ m,

j ≥ 1, we further have

E[‖V(j)
t −∇f(x

(j)
t )‖2] ≤ Q

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2],

where Q =
∑n
i=1

viL
2
i

pin2 .



Proof. Let ξi = 1
npi

(∇fi(x(j)
k )−∇fi(x(j)

k−1)), then

E[‖V(j)
k − V

(j)
k−1‖

2]− ‖∇f(x
(j)
k )−∇f(x

(j)
k−1)‖2

= E[‖
∑
i∈S(j)

1

npi
(∇fi(x(j)

k )−∇fi(x(j)
k−1)‖2]− ‖ 1

n

n∑
i=1

[∇fi(x(j)
k )−∇fi(x(j)

k−1)]‖2

Lemma D.1
= E[‖

∑
i∈S(j)

ξi‖2]− ‖ 1

n

n∑
i=1

ξi‖2

Lemma D.1
≤

n∑
i=1

vipi‖ξi‖2

=

n∑
i=1

vipi‖
1

npi
(∇fi(x(j)

k )−∇fi(x(j)
k−1))‖2

≤
n∑
i=1

vi
n2pi

L2
i ‖x

(j)
k − x

(j)
k−1‖

2 ∆
= Q‖x(j)

k − x
(j)
k−1‖

2

The last inequality holds due to Li-smoothness assumption. Then we use Lemma 2.1,

E[‖V(j)
t −∇f(x

(j)
t )‖2] =

t∑
k=1

E[‖V(j)
k − V

(j)
k−1‖

2 − ‖∇f(x
(j)
k )−∇f(x

(j)
k−1)‖2]

≤ Q
t∑

k=1

E[‖x(j)
k − x

(j)
k−1‖

2].

Lemma 2.3.

〈V(j)
t −∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t 〉+

1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2 ≤ F (x

(j)
t )− F (x

(j)
t+1).

Proof. From updating rule (28), we also have

r(x
(j)
t+1) + 〈V(j)

t , x
(j)
t+1 − x

(j)
t 〉+

1

2η
‖x(j)

t+1 − x
(j)
t ‖2 ≤ r(x

(j)
t ). (30)

By Lemma 2.1 that f(x) is L̃-smoothness, we further obtain that

f(x
(j)
t+1) ≤ f(x

(j)
t ) + 〈∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t 〉+

L̃

2
‖x(j)

t+1 − x
(j)
t ‖2. (31)

Combining these two inequalities, we obtain the result.

Lemma 2.4.
m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] ≤ 1

1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)],

where 1
2 ( 1
η − 2L̃)− mQ

2L̃
> 0.

Proof. By Lemma 2.3, we obtain that

F (x
(j)
t+1)− F (x

(j)
t ) ≤ −〈V(j)

t −∇f(x
(j)
t ), x

(j)
t+1 − x

(j)
t 〉 −

1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

≤ 1

2L̃
‖V(j)

t −∇f(x
(j)
t )‖2 +

L̃

2
‖x(j)

t+1 − x
(j)
t ‖2 −

1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

=
1

2L̃
‖V(j)

t −∇f(x
(j)
t )‖2 − 1

2
(
1

η
− 2L̃)‖x(j)

t+1 − x
(j)
t ‖2.

The second inequality holds due to −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2.



Taking expectation on both sides and plugging Lemma 2.2 in, we get:

E[F (x
(j)
t+1)− F (x

(j)
t )] ≤ 1

2L̃
E[‖V(j)

t −∇f(x
(j)
t )‖2]− 1

2
(
1

η
− 2L̃)E[‖x(j)

t+1 − x
(j)
t ‖2]

≤ Q

2L̃

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2]− 1

2
(
1

η
− 2L̃)E[‖x(j)

t+1 − x
(j)
t ‖2].

Re-adjust m and add one more term, we get

E[F (x
(j)
m+1)− F (x

(j)
1 )] ≤ Q

2L̃

m∑
t=1

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2]− 1

2
(
1

η
− 2L̃)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]

≤ Q

2L̃

m∑
t=1

t∑
k=1

E[‖x(j)
k+1 − x

(j)
k ‖

2]− 1

2
(
1

η
− 2L̃)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]

≤ mQ

2L̃

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]− 1

2
(
1

η
− 2L̃)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]

= (
mQ

2L̃
− 1

2
(
1

η
− 2L̃))

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]

By noticing that x(j)
0 = x

(j)
1 , we get

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] ≤ 1

1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)],

where 1
2 ( 1
η − 2L̃)− mQ

2L̃
> 0.

Theorem 5.1. Considering Problem (1) under Assumption 1, then ∀1 ≤ t ≤ m, j ≥ 1, ProxSARAH-AS (Algorithm 2) will
have,

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2] ≤ 1

mJ
(24L̃+

4mQ

L̃
)E[F (x̃1)− F (x∗)],

where Q =
∑n
i=1

viL
2
i

pin2 .

Proof. Let’s try to bound dist(0, ∂̂F (x
(j)
t+1)). By Eq (29),

dist(0, ∂̂F (x
(j)
t+1))2 = ‖∇f(x

(j)
t+1)− V(j)

t −
1

η
(x

(j)
t+1 − x

(j)
t )‖2

= ‖∇f(x
(j)
t+1)− V(j)

t ‖2 +
1

η2
‖x(j)

t+1 − x
(j)
t ‖2 −

2

η
〈∇f(x

(j)
t+1)− V(j)

t , x
(j)
t+1 − x

(j)
t 〉

Then by reorganizing inequality in Lemma 2.3 , we obtain:

−〈∇f(x
(j)
t )− V(j)

t , x
(j)
t+1 − x

(j)
t 〉 ≤ F (x

(j)
t )− F (x

(j)
t+1)− 1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

i.e.,

−〈∇f(x
(j)
t+1)− V(j)

t , x
(j)
t+1 − x

(j)
t 〉 ≤ F (x

(j)
t )− F (x

(j)
t+1)− 1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

− 〈∇f(x
(j)
t+1)−∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t 〉.



Plug in the above result,

dist(0, ∂̂F (x
(j)
t+1))2

≤ ‖∇f(x
(j)
t+1)− V(j)

t ‖2 +
L̃

η
‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1))

− 2

η
〈∇f(x

(j)
t+1)−∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t 〉

≤ ‖∇f(x
(j)
t+1)− V(j)

t ‖2 +
L̃

η
‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1))

+
2

η
‖∇f(x

(j)
t+1)−∇f(x

(j)
t )‖‖x(j)

t+1 − x
(j)
t ‖

≤ ‖∇f(x
(j)
t+1)− V(j)

t ‖2 +
L̃

η
‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1)) +

2L̃

η
‖x(j)

t+1 − x
(j)
t ‖2

= ‖∇f(x
(j)
t+1)− V(j)

t ‖2 +
3L̃

η
‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1))

≤ 2‖∇f(x
(j)
t )− V(j)

t ‖2 + 2‖∇f(x
(j)
t+1)−∇f(x

(j)
t )‖2 +

3L̃

η
‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1))

≤ 2‖V(j)
t −∇f(x

(j)
t )‖2 + (2L̃2 +

3L̃

η
)‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1)),

where the third inequality and the last inequality are due to ‖∇f(x
(j)
t+1)−∇f(x

(j)
t )‖ ≤ L̃‖x(j)

t+1 − x
(j)
t ‖, penultimate inequality

is due to Young’s inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.
By summing over t = 1, ...,m, using the result in Lemma 2.2, and taking the expectation,

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ (2Qm+ 2L̃2 +
3L̃

η
)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] +

2

η
E[F (x

(j)
1 )− F (x

(j)
m+1)]

= (2Qm+ 2L̃2 +
3L̃

η
)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] +

2

η
E[F (x

(j)
0 )− F (x

(j)
m+1)]

Next, plugging in Lemma 2.4 for the term
∑m
t=1E[‖x(j)

t+1 − x
(j)
t ‖2],

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)] +

2

η
E[F (x

(j)
0 )− F (x

(j)
m+1)]

= (
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

+
2

η
)E[F (x

(j)
0 )− F (x

(j)
m+1)].

Therefore:

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2] ≤ 1

mJ
(
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

+
2

η
)E[F (x̃1)− F (x∗)].



Let 1
2

1
η = 2L̃+ mQ

L̃
, then 1

2
1
η > L̃+ mQ

L̃
and we get

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2] =

1

mJ
(
(2Qm+ 2L̃2 + 3L̃

η )
1
4

1
η

+
2

η
)E[F (x̃1)− F (x∗)]

≤ 1

mJ
(16L̃+

2

η
)E[F (x̃1)− F (x∗)]

=
1

mJ
(24L̃+

4mQ

L̃
)E[F (x̃1)− F (x∗)]

where Q =
∑n
i=1

viL
2
i

pin2 .

A. ProxSARAH with uniform sampling

Corollary 5.1.2. In order to have E[dist(0, ∂̂F (xR))] ≤ ε, the number of

J =
1

mε2
(24L̃+

4m

L̃

1

b

1

n

n− b
n− 1

(

n∑
i=1

L2
i ))E[F (x̃1)− F (x∗)] (32)

epochs is required. The computational complexity (number of IFO calls) is

(n+mb)

mε2
(24L̃+

4m

L̃

1

b

1

n

n− b
n− 1

(

n∑
i=1

L2
i ))E[F (x̃1)− F (x∗)]. (33)

Proof. With uniform sampling, vi = n−b
n−1 and pi = b

n and further let it less or equal to ε2, we ge the desired result.

B. ProxSARAH with independent sampling

Corollary 5.1.3. In order to have E[dist(0, ∂̂F (xR))] ≤ ε, the number of

J =
1

mε2
(24L̃+

4m

L̃

C1

n2
(

1

b+ k − n
(

k∑
i=1

Li)
2 −

k∑
i=1

L2
i ))E[F (x̃1)− F (x∗)]

epochs is required. The computational complexity (number of IFO calls) is

(n+mb)

mε2
(24L̃+

4m

L̃

C1

n2

1

b+ k − n
(

k∑
i=1

Li)
2 −

k∑
i=1

L2
i ))E[F (x̃1)− F (x∗)].

III. PROXSPIDER WITH ARBITRARY SAMPLING

Besides ProxSARAH, we are also interested in studying ProxSPIDER method. Similar to ProxSARAH, the following formula
still holds for ProxSPIDER:

∇f(x
(j)
t+1)− V(j)

t −
1

η
(x

(j)
t+1 − x

(j)
t ) ∈ ∇f(x

(j)
t+1) + ∂̂r(x

(j)
t+1)

= ∂̂F (x
(j)
t+1).

Lemma 3.1. Considering updating formula in SPIDER: V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1))+V(j)
t−1, then ∀1 ≤ t ≤ m,

j ≥ 1, we have

E[‖V(j)
t −∇f(x

(j)
t )‖2] =

t∑
k=1

E[‖V(j)
k − V

(j)
k−1‖

2]−
t∑

k=1

E[‖∇f(x
(j)
k )−∇f(x

(j)
k−1)‖2]

+ E[‖V(j)
0 −∇f(x

(j)
0 )‖2].

Proof. Since V(j)
t =

∑
i∈S(j)

t

1
npi

(∇fi(x(j)
t )−∇fi(x(j)

t−1)) + V(j)
t−1, then

E[V(j)
t − V

(j)
t−1] = E[

∑
i∈S(j)

t

1

npi
(∇fi(x(j)

t )−∇fi(x(j)
t−1))] = ∇f(x

(j)
t )−∇f(x

(j)
t−1).

Let’s further bound E[‖V(j)
t −∇f(x

(j)
t )‖2], notice that the full gradient calculated in SPIDER is a bit different from SARAH,



E[‖V(j)
t −∇f(x

(j)
t )‖2] = E[‖V(j)

t − V
(j)
t−1 + V(j)

t−1 −∇f(x
(j)
t−1) +∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

= E[‖V(j)
t − V

(j)
t−1‖2] + E[‖V(j)

t−1 −∇f(x
(j)
t−1)‖2] + E[‖∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

+ 2E[〈V(j)
t − V

(j)
t−1,V

(j)
t−1 −∇f(x

(j)
t−1)〉]

+ 2E[〈V(j)
t − V

(j)
t−1,∇f(x

(j)
t−1)−∇f(x

(j)
t )〉]

+ 2E[〈V(j)
t−1 −∇f(x

(j)
t−1),∇f(x

(j)
t−1)−∇f(x

(j)
t )〉]

= E[‖V(j)
t − V

(j)
t−1‖2] + E[‖V(j)

t−1 −∇f(x
(j)
t−1)‖2] + E[‖∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

− 2E[‖∇f(x
(j)
t−1)−∇f(x

(j)
t )‖2]

= E[‖V(j)
t − V

(j)
t−1‖2] + E[‖V(j)

t−1 −∇f(x
(j)
t−1)‖2]− E[‖∇f(x

(j)
t−1)−∇f(x

(j)
t )‖2]

=

t∑
k=1

E[‖V(j)
k − V

(j)
k−1‖

2]−
t∑

k=1

E[‖∇f(x
(j)
k )−∇f(x

(j)
k−1)‖2] + E[‖V(j)

0 −∇f(x
(j)
0 )‖2].

Lemma 3.2.

E[‖V(j)
t −∇f(x

(j)
t )‖2] ≤ Q

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2] +Q′.

where Q =
∑n
i=1

viL
2
i

pin2 and Q′ =
∑n
i=1

v′iG
2
i

p′in
2 .

Proof. Follow the same line of proof with Lemma 2.2, but have one more last term E[‖V(j)
0 −∇f(x

(j)
0 )‖2], which can be

bounded correspondingly.

Lemma 3.3.

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] ≤ 1

1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)],

where 1
2 ( 1
η − 2L̃)− mQ

2L̃
> 0.

Proof. For ProxSPIDER, Lemma 2.3 still holds, and we can obtain that

F (x
(j)
t+1)− F (x

(j)
t ) ≤ −〈V(j)

t −∇f(x
(j)
t ), x

(j)
t+1 − x

(j)
t 〉 −

1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

≤ 1

2L̃
‖V(j)

t −∇f(x
(j)
t )‖2 +

L̃

2
‖x(j)

t+1 − x
(j)
t ‖2 −

1

2
(
1

η
− L̃)‖x(j)

t+1 − x
(j)
t ‖2

=
1

2L̃
‖V(j)

t −∇f(x
(j)
t )‖2 − 1

2
(
1

η
− 2L̃)‖x(j)

t+1 − x
(j)
t ‖2.

Taking expectation on both sides and plugging Lemma 3.2 in, we get:

E[F (x
(j)
t+1)− F (x

(j)
t )] ≤ 1

2L̃
E[‖V(j)

t −∇f(x
(j)
t )‖2]− 1

2
(
1

η
− 2L̃)E[‖x(j)

t+1 − x
(j)
t ‖2]

≤ Q

2L̃

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2]− 1

2
(
1

η
− 2L̃)E[‖x(j)

t+1 − x
(j)
t ‖2] +

Q′

2L̃
.



Re-adjust m and add one more term, we get

E[F (x
(j)
m+1)− F (x

(j)
1 )] ≤ Q

2L̃

m∑
t=1

t∑
k=1

E[‖x(j)
k − x

(j)
k−1‖

2]− 1

2
(
1

η
− 2L̃)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] +

mQ′

2L̃

≤ Q

2L̃

m∑
t=1

t∑
k=1

E[‖x(j)
k+1 − x

(j)
k ‖

2]− 1

2
(
1

η
− 2L̃)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] +

mQ′

2L̃

≤ mQ

2L̃

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2]− 1

2
(
1

η
− 2L̃)

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] +

mQ′

2L̃

= (
mQ

2L̃
− 1

2
(
1

η
− 2L̃))

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] +

mQ′

2L̃

By noticing that x(j)
0 = x

(j)
1 , we get

m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] ≤ 1

1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)]− 1

1
2 ( 1
η − 2L̃)− mQ

2L̃

mQ′

2L̃

≤ 1
1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)]

where 1
2 ( 1
η − 2L̃)− mQ

2L̃
> 0.

Theorem 6.3. Considering Problem (1) under Assumption 1, then ∀1 ≤ t ≤ m, j ≥ 1, ProxSPIDER-AS (Algorithm 3) will
have,

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2] ≤ 1

mJ
(24L̃+

4mQ

L̃
)E[F (x̃1)− F (x∗)] + 2Q′,

where Q =
∑n
i=1

viL
2
i

pin2 and Q
′

=
∑n
i=1

v
′
iG

2
i

p
′
in

2
.

Proof. Let’s try to bound dist(0, ∂̂F (x
(j)
t+1)). Similar with the analysis of ProxSARAH,

dist(0, ∂̂F (x
(j)
t+1))2 ≤ 2‖V(j)

t −∇f(x
(j)
t )‖2 + (2L̃2 +

3L̃

η
)‖x(j)

t+1 − x
(j)
t ‖2 +

2

η
(F (x

(j)
t )− F (x

(j)
t+1)),

By summing over t = 1, ...,m, using the result in Lemma 3.2, and taking the expectation,
m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ (2Qm+ 2L̃2 +
3L̃

η
)
m∑
t=1

E[‖x(j)
t+1 − x

(j)
t ‖2] +

2

η
E[F (x

(j)
1 )− F (x

(j)
m+1)] + 2mQ′

Next, plugging in Lemma 3.3 for the term
∑m
t=1E[‖x(j)

t+1 − x
(j)
t ‖2],

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

E[F (x
(j)
0 )− F (x

(j)
m+1)] +

2

η
E[F (x

(j)
1 )− F (x

(j)
m+1)] + 2mQ′

= (
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

+
2

η
)E[F (x

(j)
0 )− F (x

(j)
m+1)] + 2mQ′.

Therefore:

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2] ≤ 1

mJ
(
2Qm+ 2L̃2 + 3L̃

η

1
2 ( 1
η − 2L̃)− mQ

2L̃

+
2

η
)E[F (x̃1)− F (x∗)] + 2Q′.



Let 1
2

1
η = 2L̃+ mQ

L̃
,then 1

2
1
η > L̃+ mQ

L̃
and we get

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2] ≤ 1

mJ
(
(2Qm+ 2L̃2 + 3L̃

η )
1
4

1
η

+
2

η
)E[F (x̃1)− F (x∗)] + 2Q′

≤ 1

mJ
(16L̃+

2

η
)E[F (x̃1)− F (x∗)] + 2Q′

=
1

mJ
(24L̃+

4mQ

L̃
)E[F (x̃1)− F (x∗)] + 2Q′.

A. ProxSPIDER with uniform sampling

With uniform sampling, we obtain the computational complexity:
Corollary 6.1.1. Considering Problem (1) under Assumption 1 and same setup with Theorem 6.1, B = 2

nε2 (
∑n
i=1G

2
i ),

m = b =
√
B, the computational complexity to achieve E[dist(0, ∂̂F (xR))] ≤ ε for uniform sampling of ProxSPIDER is

2B

m
(24L̃+

4m

L̃

1

b

1

n
(

n∑
i=1

L2
i ))E[F (x̃1)− F (x∗)] = O(

1

ε3
).

Proof.

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ 1

mJ
(24L̃+

4m

L̃

1

b

1

n
(

n∑
i=1

L2
i ))E[F (x̃1)− F (x∗)] +

1

B

1

n
(

n∑
i=1

G2
i )

Then,

1

B

1

n
(

n∑
i=1

G2
i ) ≤

ε2

2
⇒ B =

2

nε2
(

n∑
i=1

G2
i )

1

mJ
(24L̃+

4m

L̃

1

b

1

n
(

n∑
i=1

L2
i ))E[F (x̃1)− F (x∗)]

⇒ J ≥ 2

mε2
(24L̃+

4m

L̃

1

b

1

n
(

n∑
i=1

L2
i ))E[F (x̃1)− F (x∗)]

Then, we get the final result by (B ∗mb) ∗ J .

B. ProxSPIDER with independent sampling

With independent sampling and further assume there is no significant difference in Gi’s and Li’s, we obtain the computational
complexity:
Corollary 6.1.2. Considering Problem (1) under Assumption 1 and same setup with Theorem 6.1, B = 2

n2ε2 (
∑n
i=1Gi)

2,
m = b =

√
B, the computational complexity to achieve E[dist(0, ∂̂F (xR))] ≤ ε for independent sampling of ProxSPIDER is

2B

m
(24L̃+

4m

L̃

1

b

1

n2
(

n∑
i=1

Li)
2)E[F (x̃1)− F (x∗)] = O(

1

ε3
).

Proof.

1

mJ

J∑
j=1

m∑
t=1

E[dist(0, ∂̂F (x
(j)
t+1))2]

≤ 1

mJ
(24L̃+

m

L̃

1

n2

1

b
(

k∑
i=1

Li)
2)E[F (x̃1)− F (x∗)] +

1

n2

1

B
(

k∑
i=1

Gi)
2.

Similar line of proof, we get the desired results.



IV. TECHNIQUE LEMMA

For completeness, we include the proof for Lemma D.1 here.
Lemma D.1. [19] Let ξ1, ξ2, ..., ξn be a vectors in Rd and let ξ̃ = 1

n

∑n
i=1 ξi. Let S be a proper sampling ( i.e., assume that

pi = Prob(i ∈ S) > 0 for all i). Assume that there is v ∈ Rn such that

P− ppT � Diag(p1v1, p2v2, ..., pnvn). (34)

Then

E

[∑
i∈S

ξi
npi

]
= ξ̃, (35)

E

[
‖
∑
i∈S

ξi
npi
− ξ̃‖2

]
≤ 1

n2

n∑
i=1

vi
pi
‖ξi‖2, (36)

where the expectation is taken over sampling S. Moreover, inequality (34) can always be satisfied by

vi =

{
n(1− pi) i ≤ k(S)
0 otherwise

where constant k(S) = |{i ∈ [n] : pi < 1}| = max {i : pi < 1}. More specifically, the standard uniform sampling admits
vi = n−b

n−1 and the independent sampling admits vi = 1− pi.

Proof. First, let’s define indicator functions:

Ii∈S :=

{
1 if i ∈ S
0, if otherwise

Ii,j∈S :=

{
1 if i, j ∈ S
0, if otherwise

Then, we have the expectation:

E

[∑
i∈S

ξi
npi

]
= E

[
n∑
i=1

ξi
npi

Ii∈S

]
=

n∑
i=1

ξi
npi

E [Ii∈S ] =
1

n

n∑
i=1

ξi = ξ̄

and the variance:

E

[
‖
∑
i∈S

ξi
npi
− ξ̃‖2

]
= E

[
‖
∑
i∈S

ξi
npi
‖2
]
− ‖ξ̃‖2

= E

[∑
i,j

ξTi
npi

ξj
npj

Ii,j∈S
]
− ‖ξ̃‖2

=
∑
i,j

pi,j
ξTi
npi

ξj
npj
− ‖ξ̃‖2

=
∑
i,j

pi,j
ξTi
npi

ξj
npj
−
∑
i,j

ξTi
n

ξj
n

=
1

n2

∑
i,j

(pi,j − pipj)
ξTi
pi

ξj
pj

=
1

n2
e>
((
P− pp>

)
◦ ΞTΞ

)
e,

where e is the vector all of ones in Rn, Ξ = [ ξ1p1 ,
ξ1
p1
, ..., ξnpn ] ∈ Rd×n and ◦ is element-wise production operator.

Since we assume P− pp> � Diag(p ◦ v), we have

e>
((
P− pp>

)
◦ Ξ>Ξ

)
e ≤ e>

(
Diag(p ◦ v) ◦ Ξ>Ξ

)
e =

1

n2

n∑
i=1

vi
pi
‖ξi‖2



Therefore, we have

E

[
‖
∑
i∈S

ξi
npi
− ξ̃‖2

]
≤ 1

n2

n∑
i=1

vi
pi
‖ξi‖2
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