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Abstract—As they carry great potential for modeling complex
interactions, graph neural network (GNN)-based methods have
been widely used to predict quantum mechanical properties
of molecules. Most of the existing methods treat molecules as
molecular graphs in which atoms are modeled as nodes. They
characterize each atom’s chemical environment by modeling its
pairwise interactions with other atoms in the molecule. Although
these methods achieve a great success, limited amount of works
explicitly take many-body interactions, i.e., interactions between
three and more atoms, into consideration. In this paper, we
introduce a novel graph representation of molecules, heteroge-
neous molecular graph (HMG) in which nodes and edges are of
various types, to model many-body interactions. HMGs have the
potential to carry complex geometric information. To leverage
the rich information stored in HMGs for chemical prediction
problems, we build heterogeneous molecular graph neural net-
works (HMGNN) on the basis of a neural message passing
scheme. HMGNN incorporates global molecule representations
and an attention mechanism into the prediction process. The
predictions of HMGNN are invariant to translation and rotation
of atom coordinates, and permutation of atom indices. Our model
achieves state-of-the-art performance in 9 out of 12 tasks on the
QM9 dataset.

Index Terms—Heterogeneous molecular graphs, many-body in-
teractions, graph neural networks, molecular property prediction

I. INTRODUCTION

Predicting quantum mechanical properties of molecules
based on their structures is important for molecule screening
and drug design. We can compute exact molecular properties
by solving the many-body Schrddinger equation. However,
closed form solution to this equation is only available for
simple systems. Although researchers developed methods such
as Density Functional Theory (DFT) [1] to approximate the
solution, the computational cost of these methods scales poorly
and is worse than O(n?) w.r.t. the number of electrons.

Recently, researchers have been developing machine learn-
ing methods that are orders of magnitude faster with a
moderate compromise in prediction accuracy. Among the
machine learning approaches, graph neural network (GNN)-
based methods attract a lot of research attention as their ability
to model complex interactions among atoms. These methods
treat molecules as molecular graphs (e.g., distance graphs [2]-
[5], chemical graphs [6]], K -nearest neighbor graphs [7]) in
which atoms are modeled as nodes. They compute an atom’s
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low-dimensional representation as a function of its feature and
characteristics of its graph neighbors. The low-dimensional
representations are then used to estimate the local contribution
of the atoms to the desired property, or to compute a global
representation of the molecule for downstream predictions.

The many-body expansion (MBE) [8[|-[|10]] is an important
scheme that computes the energy of an N-particle system as
the sum of the contributions of many-body terms

E=Y E+Y Ej+ Y Eyi+-+Ea.n, (1)
i i<j i<j<k

where F; is the local energy contribution of a single atom,
E;; is the energy contribution of a two-body (a group of two
atoms), L) is the energy contribution of a three-body, and
eventually E1s... 5 is the contribution of the body formed by all
the atoms in the molecule. Note that, the local contribution to
the total energy decreases fast with the number of atoms in the
many-body. As most of the existing GNN-based methods are
developed on molecular graphs, they focus mainly on model-
ing atom-based representations, interactions, and predictions
which correspond to the first two terms of the series and
do not have an explicit characterization of the higher order
terms. This may compromise their accuracy in the chemical
prediction problems.

In this paper, we introduce a novel graph representation
of molecules, heterogeneous molecular graph (HMG), to
explicitly model many-body interactions. A p-body (the value
of p is called the order of the many-body) is a group of p
atoms that functions as a whole entity. In HMGs, a p-body
is modeled as a node of order p. Nodes connect to nodes
of the same or different order via different types of edges.
This heterogeneous structure allows us to explicitly model
interactions, representations, and predictions associated with
many-bodies. Moreover, edges between nodes of the same
order carry the potential of incorporating complex geometric
information (e.g., bond angles and dihedral angles) into node
embeddings.

To leverage the rich information stored in HMG for tasks
of molecular property predictions, we design heterogeneous
molecular graph neural networks (HMGNN) by following a
message passing framework. In the message passing frame-
work [|6]], nodes send and receive messages from their neigh-



bors and update their low-dimensional representations using
the received messages. HMGNN is a multi-task learning
[11] model whose design is inspired by the MBE of energy
surfaces. In HMGNN, each many-body order possesses its own
set of parameters and shares computations with other orders.
In the prediction phase, HMGNN computes one estimation for
each many-body and aggregates them based on their orders.
It uses an attention-based model that takes into account a
global representation of the molecule to fuse the prediction
of different orders, which correspond to different terms in
Eq [I] We design a multi-task learning loss that enforces the
prediction of each order and the fused prediction to be close
to the true target. Experimental results show that the fused
prediction is better than any of the standalone predictions. The
fusing weight of the predictions are also consistent with the
convergence assumption in the many-body expansion.

The main contribution of this work lies in two folds.
First, we propose HMG which allows graph learning methods
to explicitly model many-body representation, interaction,
and prediction. Second, we develop a multi-task learning
method HMGNN for the task of molecule property prediction.
HMGNN explicitly incorporates many-body interaction and a
global molecule representation into the prediction process and
achieves state-of-the-art performance on the QM9 dataset [|12]],
[13]]. The code of HMGNN is available online{ﬂ

II. REVIEW OF RELEVANT PRIOR WORKS

Traditionally, prediction of many important molecular prop-
erties such as atomization energies relies on methods that ap-
proximate the solution of the many-body Schrodinger equation
such as density function theory (DFT) and its variants [[14]].
This class of methods involves solving complex linear systems
and has a computational complexity worse than O(n?) where
n is the number of atoms.

Recent years have seen a surge in data-driven methods that
train machine learning models to learn patterns from molecule
databases. The learned patterns are assumed to be general
in chemical space and can be used to estimate properties of
unknown compounds. These attempts started from [15]], [[16]]
which feed hand-crafted molecule descriptors (e.g., Coulomb
matrix, bag of bonds) into regression models such as linear
regression and random forests. These methods rely heavily
on the quality of the crafted descriptors and have limited
representation power.

Recently, graph neural networks (GNN) have been achiev-
ing a great success in graph-related applications [17]-[20].
In chemistry, researchers developed GNN-based method for
learning tasks over graph represented molecules. The authors
of [6]] introduced a generic framework over chemical graphs
that models interactions between atoms in a message passing
fashion. In [3]], [4]], [21], the authors designed neural network
structures that have no dependency on hand-crafted features
but learn molecule representations from only atom types and
coordinates. Since GNNs possess a hierarchical structure, i.e.,
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they iteratively apply GNN layers on graphs to encode each
node’s multi-hop neighbors into its embedding, GNN-based
methods [22] and [2|] further decompose atom-wise prediction
to layer-wise atom prediction to fit in the MBE framework.
Although these methods include many-body contributions
into final predictions, they do not have an explicit mod-
eling of many-body representations and interactions. Some
recent works have incorporated many-body interactions and
representations by updating edge embeddings along message
passing [7] or by passing messages on line graphs of the
corresponding molecular graphs [23]]. However, these methods
capture only partial many-body interactions and lack many-
body predictions.

Equivariant neural network is another class of neural net-
work methods that has been applied in chemical prediction
problems. The notion of group equivariant neural network was
first introduced by [24] in the domain of image processing.
Later, researchers developed neural network methods that are
equivariant to continuous rotations for learning representations
for 3D objects, including molecules [25[]-[27]. These methods
achieve rotation invariance by transforming objects from Eu-
clidean space to Fourier space and conducting computations
in Fourier space. In these methods, each many-body interacts
only with itself but not other many-bodies. Thus, they are not
optimal in predicting molecule properties.

III. NOTATIONS AND DEFINITIONS

We denote matrices by bold upper-case letters (e.g., W),
and vectors by bold lower-case letters (e.g., x). We denote
entries of a matrix/vector by lower-case letter with subscripts
(e.g., x45/x;). We use superscripts to indicate variables at the
t-th message passing layer (e.g., h(*)). We denote molecular
graphsby G = (V, &) where V and € represent the set of nodes
(atoms) and edges, respectively. Two atoms are connected in
a molecular graph when the Euclidean distance between them
is less than a cutoff threshold ¢ > 0. Each edge in the graph
is associated with a distance to store the geometric structure
of the molecule. We define a p-body in a molecular graph G
as a p-clique of the graph. We refer to the value of p as the
order of the many-body.

IV. HETEROGENEOUS MOLECULAR GRAPH AND
MANY-BODY INTERACTIONS

In this section, we illustrate the construction of hetero-
geneous molecular graphs (HMG) and how we leverage
the heterogeneous structure of HMGs to model many-body
representations and interactions.

A. Heterogeneous Molecular Graph

An HMG is a graph in which nodes are many-bodies
and edges are defined by various types of geometric and
set relations. HMGs are constructed from molecular graphs.
We denote an HMG of order NV of a molecular graph G as
Hn(G) = ({Vp},{&pq}) where 1 < p < ¢ < N, V, is the
set of p-bodies in G (i.e., all p-cliques of G), and &, is the
set of edges between V, and V,. We denote the order p of
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(a) A formaldehyde molecule.
molecule.

Fig. 1: An example of heterogeneous molecular graph (HMG). Figure is

(b) A molecular graph of the formaldehyde (c) A heterogeneous molecular graph of the molecular

graph.

a spatial structure of a formaldehyde (CH30O)

molecule. Each atom in the molecule is associated with a three-dimensional coordinates in the Euclidean space. Figure [I(b)]
is the molecular graph of the methanol molecule with a cutoff distance ¢ = 2. We convert atom coordinates to pair-wise
distances to guarantee translation and rotation invariance of the representation. We denote edges whose distances are less than
c using black solid lines, and edges that are broke by the cutoff using black dotted lines. Figure is a HMG of order
two constructed from the molecular graph. There are two types of nodes (1-bodies and 2-bodies denoted by yellow and blue
circles, respectively) and three types of edges (1-1 and 2-2 denoted by yellow and blue lines, respectively, 1-2 denoted by
black dashed lines) in the HMG. Edges between nodes of the same order are associated with features that depict the geometric
relation between the nodes (distance for 1-1 edges, angle for 2-2 edges).

p-bodies as the node type and p-g as the type of the edges
that connect nodes of order p and nodes of order g. Given
two nodes ¢ € V, and j € V,, when they are of the same
order, i.e., p = ¢, ¢ and j are connected if they share p — 1
atoms. A special case is when p = ¢ = 1, instead of building a
complete graph, we use the edge set £ of the molecular graph
to define connections. When the two nodes are of different
orders, presumably p < g, (i,7) € &pq if ¢ is a sub-graph of j.
An example HMG is shown in Figure[I] With this formulation,
we can explicitly model up to N-body representations by node
embeddings and N + 1-body interactions by message passing.

In an HMG, each node ¢ of order p is associated with a
discrete feature Z,, ; that indicates its atomic composition, and
a continuous feature x,, ; that describes aspects of its geometry.
Note that, nodes of order 1 do not have continuous features
since they are points in the Euclidean space and do not have
geometric structure. Each edge (i, j) is associated with an edge
feature e, ;; when ¢ and j are of the same order p. The edge
feature characterizes the geometric relation between the two
nodes, e.g., distance between atoms, angles between bonds. In
this paper, we use a hash function to map the set of atomic
numbers of the atoms to Z,;. Construction of continuous
node features and edge features requires feature engineering
especially when order of the many-bodies are high. We will
illustrate how we convert geometric information to feature
vectors up to the second order in Section

B. Message Passing on Heterogeneous Molecular Graphs

The message passing framework consists of two phases,
message passing and node update. On molecular graphs, each
node (atom) ¢ sends/receives messages to/from its neighbors

and uses the received messages to update its embedding
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In Eq N (@) is the set of neighbor nodes of 1, hz(-t) is the node

(atom) embedding of 4, m; "’ is the aggregation of messages
from ¢’s neighbor nodes, e;; is the edge feature associated
with the edge between ¢ and j, f(-) is a message function
that maps embeddings of the sender and the receiver and the
corresponding edge feature to a message vector, g(-) is a node
update function that combines the incoming message and the
old embedding to be the new node embedding. Both f(-) and
g(-) are learnable. Message passing on HMGs is different
from that on molecular graphs due to the heterogeneous
property of HMGs. Nodes in HMGs are of different orders
and they pass messages through edges of different types. A
message passing framework needs to learn edge type specific
message functions and order specific node update functions to
capture this heterogeneous structure. Moreover, the framework
should allow inter-order message passing such that the node
embeddings can capture information from other orders. For
example, by passing messages from 2-bodies, 1-bodies can
encode edge angle information into their embeddings. Let
i € V, be a node of order p in a HMG and hz(jf)z» be its
embedding at the ¢-th layer, we design the message passing
framework as
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where N (4) the set of nodes of order ¢ that are connected to 1,
m,(;z denotes the aggregated messages from nodes i’s neighbor
nodes of order ¢, e;; denotes the edge feature between 4 and
j if they are of the same order, f,,(-) and g,(-) are learnable
functions specific to edge type pg and node type (order)
p, respectively. Compare to the message passing framework
on molecular graphs which has two functions to learn, this
framework possesses larger model capacity and is able to
model many-body interactions explicitly.

V. HETEROGENEOUS MOLECULAR GRAPH NEURAL
NETWORKS.

We present Heterogeneous Molecular Graph Neural Net-
works (HMGNN) for the purpose of predicting molecule
properties. An HMGNN contains four types of modules,
input module, interaction module, output module, and fusion
module. All the modules except the fusion module are order
specific. HMGNNSs learn functions for message passing on
heterogeneous molecular graphs to compute local node repre-
sentations, and uses a readout function to combine the repre-
sentations to form a global molecule representation. HMGNNs
compute node-wise contributions to the target property and
aggregates them based on their orders. The final prediction is
a weighted combination of the predictions of all orders where
the weights are computed by an attention mechanism from
the global molecule representation. An HMGNN is learned
by optimizing a loss function which forces predictions of
each order and the fused prediction to be close to the true
target. Since the construction of heterogeneous molecular
graphs and associated features rely on atom pairwise distances
and atomic numbers but not atom coordinates, HMGNNs are
invariant under both translations and rotations. HMGNNs are
also permutation invariant to atom indices as the message
aggregation function in Eq{3] and the readout function are
permutation invariant [28]. Figure [J] shows an overview of
the architecture of HMGNN.

A. Input Module

The input module of HMGNN converts raw features of
nodes to latent embeddings. As we described in Section
IV-Al each node 7 € V, in a HMG is associated with a
discrete feature Z,; and a continuous feature x, ;. We use
an embedding lookup table to map the discrete feature 7, ; to
a real value vector ez, , and apply a fully connected layer to
the concatenation of the latent vector ez, ; and the continuous
feature x, ; to get the initial node embedding

=0 (Wy (ez,. || xp.) +by) “

where W;‘,‘ and biz‘,‘ are learnable parameters for nodes of order
p (p-bodies), ¢(-) is an element-wise activation function, ||
denotes concatenation of vectors.

1)
h,

B. Interaction Module

HMGNN stacks T' interaction modules to encode infor-
mation across far reaches of the heterogeneous molecular
graph into node embeddings. Each interaction module takes

the output embeddings of the previous module and update
the embeddings. Note that, edges between nodes of the same
orders have features while other edges do not. As a result, we
paramatrize the message functions between nodes of the same

order as
Y. Glei; 06 (
JEN(1)
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and the message functions along edges without features as

ml) = > o (WEn + b)), (©6)
JENG (1)
In Eq{5|and Eq{6l ;. (i) and V(i) denotes the set of neighbor

nodes of order p and order g of node 7, respectively, ® denotes
the Hadamard product G ‘W, and b are learnable parameters.
A node embedding h") i 1s then updated as a function of its
old embedding and the incoming messages,

| my,) + b)),
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where || denotes concatenation of vectors. The interaction
module then refines the node embeddings with two consecutive
fully connected layers with residual connections [29].

C. Output Module

Each many-body order p possesses a specific output module
that passes the output of its interaction module, final node
embeddings h( +1) , through a sequence of linear mappings
and a aggregatlon process to compute the estimated value of
the target property. First, we use a fully connected layer to
convert the node embeddings to node predictions

. T+1
Ty = WO o, ®)
where wo" and %" are learnable parameters for nodes of order

p. Then we follow [2] and scale the predictions with scaling
parameters that are specific to the discrete feature Z, ; of the
nodes

Upyi = 82, ,Upi + 72, )

where s and r are learnable embedding lookup tables that map
Zyp,; to the corresponding scaling factors and shifts. The goal
of the scaling layer is to adapt the magnitude of the predictions
to different unit systems of the target property.

D. Fusion Module

The fusion module computes a global molecule represen-
tation out of the final node embeddings and uses the global
representation to weigh the prediction of different orders. We
sum the final node embeddings h(TH) of each p-body to form
an order specific representation and concatenate them to be an
intermediate representation

o Z h T+1).

= h T+1 H h(T+1)
Z Z i€VN

i€V i€V

(10)

Since node embeddings of different orders are computed by
different parameters and the number of nodes of the orders also
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Fig. 2: Computation flow of heterogeneous molecular graph neural networks (HMGNN) for many-bodies up to order two.
We use [ to represent the input to the function. The activation function is set to be the shifted softplus function, i.e.,
¢(x) = In(0.5e” + 0.5). Each many-body order p owns its input module, interaction module, and output module. For each

node ¢ of order p, an input module converts the discrete and continuous feature of the node to an initial node embedding h,,

)
Dy

HMGNN passes the initial embeddings through a stack of 7" interaction modules to encode information from its neighbor nodes

of different orders to the node embedding. The outputs of the

(T+1)

last interaction module, the final node embedding hp’i

, are

then fed into a fusion module and an output module to compute a weight vector v and prediction g, ;, respectively. HMGNN

sums the predictions per many-body order and computes the fi

varies, the distributions of the order specific representations
could be dramatically different from each other. In order to
unify the distributions of the representations and to accelerate
training, we apply batch normalization [30] followed by a fully
connected layer on the intermediate representation to obtain
the global representation

v = BatchNorm (V)
z=¢(Wv+b).

Then we pass the global representation through an attention
layer to compute the weight «y, that measures the importance
of the predictions of order p

_exp (LeakyReLU (zTap))
Z,]JV:1 exp (LeakyReLU (z7a,))

(1)

12)

where a are learnable vectors, and Zp oy, = 1. We can under-
stand the global representation as a query to the knowledge-
base distilled in a for assigning contributions to predictions
of different orders. This gives the model better flexibility and
explainability in dealing with different molecules.

E. Final prediction

Inspired by the many-body expansion, we decompose the
final prediction as a weighted sum of the prediction of different
orders

:0:061Z?)l,ri-oe2292,1'4-0632?)3,14-"'

i€V1 1€V i€V3

13)

nal prediction as a weighted sum of these summed predictions.

where the weights «;, are computed by the fusion module.

FE. Model Training

Since all the modules in HMGNNs except for the fu-
sion module are order specific, and the final prediction is
a weighted average of the predictions per order, training
HMGNNSs by optimizing objective functions that only depend
on the final prediction (the fused prediction) may cause
gradient vanishing issues for parameters of some orders so that
these parameters do not learn enough and lose their prediction
utilities. To avoid this issue, we treat the computation of
each order as a separate prediction task and propose a multi-
task objective function that forces the prediction of all orders
together with the final prediction to be close to the true target

N
=yl + Y i —yl | + A0l (14)

T N+1
p=1

where g, Zievp Up,i 1s the node order specific prediction,
© denotes all trainable parameters of the model, A > 0 is a
hyper-parameter that controls the strength of Ly normalization
to prevent the model overfits. This objective function preserves
gradient flow for parameters of each order and gives higher
training importance to orders that the fussing module assigning
larger weights to.



G. Complexity Analysis

The time and space complexity of HMGNN depends lin-
early on the number of nodes and edges in a HMG. The
number of nodes determines the complexity of the input
module and the output module while the number of edges
determines the complexity of message passing.

Let G be a molecular graph with N atoms and Hp(G) be
its HMG that explicitly models up to P-bodies. We assume G
is a complete graph for the worst case scenario. The number
of nodes of order p in Hp(G) is (];7) Let i € V, be a node
of order p (i.e., a ¢-body), ¢ is connected to nodes that are
of order ¢ where ¢ € {1,---,P}. When ¢ < p, the number
of ¢ order neighbors of node ¢ is (p ) as ¢ is connected to all
g-bodies who are sub-graphs of ¢; when ¢ = p, the number
of order p neighbors of i is p(N — p) since ¢ is connected
to p-bodies who share p — 1 atoms with i; When ¢ > p, the
number of g-body neighbors of i is (];[:;’). As a result, the
complexity of message passing is

P p—1 P
N P N-—p
S (S0 3 (V7)) vwor-n)
p=1 4 q=1 9 q=p+1 a-»p
15)
and the complexity of the input/output module of HMGNN is

P (N
Zp:l ( p ) : .

In this paper, we experiment with HMGs and HMGNNs for
up to 2-bodies, consequently, the time complexity and space
complexity of our model are both O(N?3). Modern computing
architectures such as graphics processing unit (GPU) and
tensor processing unit (TPU) are optimized to accelerate this
computation. Empirically, HMGNNs can generate property
predictions for 10000 randomly drawn molecules from the
QM9 dataset in 4 seconds.

VI. EXPERIMENTS

We conduct experiments to investigate three research prob-
lems in regards of many-body modeling and the HMGNN
model

o How does HMGNN perform in the molecule property

prediction tasks compared against the current state-of-
the-art methods?

o« How does many-body representation, interaction, and

prediction contribute to the prediction?

o What is the utility of the components of HMGNN?

A. Implementation Details

We experiment with HMGs and HMGNNSs for many-bodies
up to order two. There are two types of nodes (1-bodies and
2-bodies), two types of edges with edge features (1-1 and 2-2
edges), and one type of edge without edge features (1-2 edges).
Since 1-bodies are atoms, they only have discrete features.
Each 2-body i is determined by its two end atoms and the
distance between them dg ;.

There are three types of geometries that we need to model,
distance d;; € (0,c) between 1-bodies ¢ and j, length Iy, €
(0,¢) of 2-bodies, and angle 6;; € [0, 7] between 2-bodies
i and j. We use a set of K radial basis functions (RBF) to

TABLE I: Target properties in the QM9 dataset.

Target | Description

“w Dipole moment

a Isotropic polarizability

egomo | Energy of Highest occupied molecular orbital (HOMO)
ecumo | Energy of Lowest occupied molecular orbital (LUMO)

Ae Gap, difference between LUMO and HOMO

(R2) Electronic spatial extent
ZPVE | Zero point vibrational energy
Uo Internal energy at 0 K

U Internal energy at 298.15 K
H Enthalpy at 298.15 K

G Free energy at 298.15 K

Cy Heat capacity at 298.15 K

convert the scalar geometries to real valued vector features.
Let z € [a,b] be a scalar input and x € R¥ be the real
valued output of the RBFs, the k-th entry of x is computed as

i = exp (B (exp (—2) = i)’

where p and [ specify the center and width of zj. For
distance d;; between 1-bodies, we multiply its feature vector
by a continuous monotonic decreasing function t(d;;) that
has 1(0) = 1 and t(c) = 0. With this formulation, an 1-
body node will have less influence to/from its distant order
1 neighbors. We follow [2] and set the value of uj to be
equally spaced between exp (—a) and exp (—b) while 8 =
(2K~1(exp (—a) — exp (—b))) 2. The goal of using RBFs is
to decorrelate the scalar features to accelerate training [3]]. We
apply three different sets of RBFs to convert the distance d;;,
the length I5 ;, and the angle 6;; to the corresponding features
€15, X2, and ey ;;, respectively.

We set the latent dimension to be 128 and use 5 interaction
modules for our experiments. We use the shifted softplus
function as the activation function. For ZPVE, U, Uy, H, G
and C,, the cutoff distances ¢ = 3 while for other targets
¢ = 5. We initialize the weights of fully connected layers with
random orthogonal matrices scaled by the glorot initialization
scheme [31]] and the bias to zero. For learning the parameters
of HMGNN, we run the AMSGrad algorithm [32] with a batch
size of 32 for up to 3000000 steps and set the Lo regularizer A
to be 1 x 1075, We initialize the learning rate to be 1 x 1073
and multiply it with 0.1 every 2000000 gradient steps. The
training algorithm stops if the MAE on the validation set does
not decrease for 1000000 steps. We implement HMGNN using
the Deep Graph Library (DGL) [33]], [34].

(16)

B. Experimental Setting

We evaluate the performance of the proposed model on the
QMO dataset [12]], [13]. QM9 is a widely used benchmark
for evaluating models that predict molecule properties. It
consists of around 130K equilibrium molecules associated
with 12 geometric, energetic, electronic, and thermodynamic
properties. The properties are described in Table [ These
molecules contain up to nine heavy atoms (C, O, N, and F).
We randomly select 110000 molecules for training, 10000



molecules for validation, and 10831 molecules as the test
set. We conduct model selection for different targets on the
validation set and report the mean absolute error (MAE) of the
best performing models. For properties with atomic reference
values (Uy, U, H, G, C,), we subtract the original value by
the per-atom-type reference values to be the target. Since Ae
is defined as the gap between e ymo and egomo, we predict it
as Ae = eLymo — €Homo- In our experiments, we convert the
units of egomo, €LUMO, Ae, ZPVE, Uy, U, H, G to eV.

We compare the performance of HMGNN with six state-
of-the-art methods, enn-s2s [|6], SchNet [3]], neural message
passing with edge updates (NMP-edge) [7]], Cormorant [25]],
PhysNet [2], and directional message passing neural network
(DimeNet) [23]]. Results of enn-s2s, SchNet, NMP-edge, Cor-
morant, and DimeNet are from the corresponding papers. We
take the results of PhysNet from [23].

C. Prediction Performance

We show the prediction performance of HMGNN and the
competing methods on the 12 properties of QM9 in Table
Our proposed method sets the new state-of-the-art on
9 out of the 12 target properties. HMGNN’s performance
aligns with the best results on the remaining targets with
an exception of (R?). We also present the performance of
summing over predictions over 1-bodies (HMGNN-1) and 2-
bodies (HMGNN-2), respectively. Although the performance
of HMGNN-2 is consistently worse than HMGNN-1, their
weighted combination outperforms any of the standalone
prediction. This demonstrates the effectiveness of the fusion
module driven by the global molecule representations and
the attention mechanism, and that explicitly modeling and
computing predictions of many-bodies can be beneficial for
chemical prediction tasks.

We analyze the effect of a critical hyper-parameter, the
cutoff distance ¢, on prediction performances of four types
of properties. We choose U, to represent properties related
to atomization energies (Uy, U, H, G), C, to represent
thermodynamic properties (C',), ZPVE to represent properties
related to fundamental vibrations of the molecule (ZPVE), and
1 to represent electronic properties (14, @, €gomo, €LuMO, A€,
(R?)) [6]. We present the training and test mean absolute error
(MAE) of HMGNNs on HMGs constructed with ¢ € {2,3,5}
in Figure 3]

When constructing molecular graphs as well as HMGs,
the larger the cutoff distance we choose, the less geometric
information about the molecules that we lose. However, a large
cutoff value does not always lead to better performance. In
Figure [3] despite the training error decreases across all the
four targets as the cutoff value increases, the test error shows
an increasing trend for three properties. This is a signal that
the model over-fits the training set on the three properties.
This is because of the large model capacity of HMGNNSs as
they have one set of parameters for each many-body order.
An HMGNN of order NV possesses N times the number of
parameters of a normal GNN-based model.

D. Ablation Study

In this section, we conduct ablation study on two targets
(i.e., Uy, Cp) to demonstrate the importance of the multi-
task learning loss, inter-order message passing, and explicit
modeling of high-order bodies in improving the performance
of molecular property prediction. We propose three variants
of the HMGNN model and show their results in Table

1) Remove MTL (Multi-Task Learning loss): This variant
has the same specification with the default model. It differs
with the default model in that it is trained by minimizing the
naive loss | —y| instead of the multi-task learning loss that we
proposed in Eq{I4} As shown in Table [[I} the 2-bodies of this
variant lose their prediction power while the fusion module
gives all attention weights to the 1-bodies, and as a result, the
performance of this variant is worse than the default HMGNN.
Furthermore, the prediction of 1-bodies (i.e., HMGNN-1) is
also less accurate than the default model.

2) Remove IOMP (Inter-Order Message Passing): This
variant removes edges/messages between 1-bodies and 2-
bodies, as a result, information of the two orders are not
shared. We can see that the performance of HMGNN-1 and
HMGNN drops in the prediction of both Uy and C,. This
demonstrates the importance of inter-order message passing.
However, the prediction accuracy of HMGNN-2 on Uj is
better than models with inter-order message passing. This
might because 2-bodies (both distance and angle) contain more
geometric information than 1-bodies (only distance).

3) Remove HO (High-Order modeling): This variant re-
moves high-order related modeling (2-body interaction, repre-
sentation, and prediction) and is similar to existing GNN-based
prediction methods (i.e., PhysNet). As shown in Table this
method performs worse than HMGNN-1 of the variant that
removes multi-task learning loss. This shows another evidence
of the effectiveness of inter-order message passing.

E. Visualization of Attention weights

In Figure [l we show the attention scores of the 1-body
predictions generated by the fusion module for predicting Uy,
Cy, i, and ZPVE on the test set. Since we only experiment
with many-bodies up to the second order, the attention weights
of the 2-bodies is one minus that of the 1-bodies. On the four
types of chemical properties, 1-body contribution dominates
the prediction of most of the molecules. However, 2-body
predictions also take a considerable amount of attention.

VII. CONCLUSION

We propose a novel heterogeneous graph based molecule
representation, heterogeneous molecular graph (HMG), to
model many-body representations and interactions. Inspired
by the many-body expansion of energy surfaces, we design
a heterogeneous molecular graph neural network (HMGNN)
to leverage the rich information stored in HMGs for molec-
ular prediction tasks. HMGNN follows a message passing
paradigm and leverages global molecule representations using
an attention mechanism. We propose to train HMGNNs by



TABLE II: Mean absolute error on QM9 with 110K training molecules. In each row, we use boldface for the best performance
method. Column HMGNN-1 and HMGNN-2 correspond to the performance of summing over predictions of 1-bodies and

2-bodies, respectively.

Target | Unit | enn-s2s  SchNet NMP-edge Cormorant PhysNet DimeNet | HMGNN-1 HMGNN-2 HMGNN
m D 0.030 0.033 0.029 0.038 0.0529 0.0286 0.0276 0.0283 0.0272
a ag 0.092 0.235 0.077 0.085 0.0615 0.0469 0.0571 0.0647 0.0561
egomo | meV 43 41 36.7 34 329 27.8 24.94 26.31 24.78
ecumo | meV 37 34 30.8 38 27.4 19.7 20.72 21.42 20.61
Ae meV 69 63 58.0 61 425 34.8 33.44 35.02 33.31
(R?) a% 0.180 0.073 0.072 0.961 0.765 0.331 0.43 0.6 0.416
ZPVE | meV 1.5 1.7 1.49 2.03 1.39 1.29 1.24 1.34 1.18
Uo meV 19 14 10.5 22 8.15 8.02 6.19 9.06 5.92
U meV 19 19 10.6 21 8.34 7.89 7.22 11 6.85
H meV 17 14 11.3 21 8.42 8.11 6.35 8.37 6.08
G meV 19 14 12.2 20 9.40 8.98 7.95 11.06 7.61
cv mff]‘IK 0.040 0.033 0.032 0.026 0.0280 0.0249 0.0241 0.025 0.0233
12 0.25
—— Train —— Train —— Train —— Train
10{ 968 — Test 003 0317 o Test L7571, o9 — Test 02002012 D
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Fig. 3: Effect of the cutoff distance c¢ on prediction performance on four target properties.
TABLE III: Ablation study on Up and C. are grateful to Mingjian Wen for his fruitful comments,
corrections and inspiration.
Target  Architecture HMGNN-1 HMGNN-2 HMGNN
REFERENCES
Default 6.19 9.06 5.92
Remove MTL 822 9716.95 822 [1] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical
Uo Remove IOMP 10.26 8.18 7.88 review, vol. 136, no. 3B, p. B864, 1964.
Remove HO 10.08 - - [2] O. T. Unke and M. Meuwly, “Physnet: a neural network for predicting
- energies, forces, dipole moments, and partial charges,” Journal of
Default 0.0241 0.0250 0.0233 chemical theory and computation, vol. 15, no. 6, pp. 3678-3693, 2019.
Co Remove MTL 0.0247 1.4022 0.0247 [3] K. Schiitt, P.-J. Kindermans, H. E. S. Felix, S. Chmiela, A. Tkatchenko,
Remove IOMP 0.0297 0.0275 0.0244 and K.-R. Miiller, “Schnet: A continuous-filter convolutional neural
Remove HO 0.0289 - -

optimizing a multi-task learning loss. HMGNN achieves state-
of-the-art performance on 9 out of 12 properties on the QM9
dataset. Experiments also show that the multi-task learning
loss improves the generalization of the model. In this paper, we
only model many-bodies up to the second order, future works
should aim to model many-bodies of higher than third orders
and also to enable HMGNNs for another important chemical
prediction tasks, molecular dynamics simulations.
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