2009.07415v1 [csLG] 16 Sep 2020

arxXiv

Meta-AAD: Active Anomaly Detection with
Deep Reinforcement Learning

Daochen Zha, Kwei-Herng Lai, Mingyang Wan, Xia Hu
Department of Computer Science and Engineering, Texas A&M University
{daochen.zha,khlai037,w1996,xiahu } @tamu.edu

Abstract—High false-positive rate is a long-standing challenge
for anomaly detection algorithms, especially in high-stake appli-
cations. To identify the true anomalies, in practice, analysts or
domain experts will be employed to investigate the top instances
one by one in a ranked list of anomalies identified by an
anomaly detection system. This verification procedure generates
informative labels that can be leveraged to re-rank the anomalies
so as to help the analyst to discover more true anomalies given a
time budget. Some re-ranking strategies have been proposed to
approximate the above sequential decision process. Specifically,
existing strategies have been focused on making the top instances
more likely to be anomalous based on the feedback. Then they
greedily select the top-1 instance for query. However, these
greedy strategies could be sub-optimal since some low-ranked
instances could be more helpful in the long-term. Motivated
by this, in this work, we study whether modeling long-term
performance can benefit active anomaly detection. This is a
challenging task because it is unclear how long-term performance
could be quantified. In addition, the query selection has a huge
decision space, which is difficult to model. To address these
challenges, we propose Active Anomaly Detection with Meta-
Policy (Meta-AAD), a novel framework that learns a meta-
policy for query selection. Specifically, Meta-AAD leverages deep
reinforcement learning to train the meta-policy to select the most
proper instance to explicitly optimize the number of discovered
anomalies throughout the querying process. Meta-AAD is easy to
deploy since a trained meta-policy can be directly applied to any
new datasets without further tuning. Extensive experiments on
24 benchmark datasets demonstrate that Meta-AAD significantly
outperforms the state-of-the-art re-ranking strategies and the
unsupervised baseline. The empirical analysis shows that the
trained meta-policy is transferable and inherently achieves a
balance between long-term and short-term rewards.

Keywords-Anomaly Detection, Active Learning, Deep Rein-
forcement Learning, Meta-Learning, Human-in-the-Loop

I. INTRODUCTION

Anomaly detection aims to identify the data objects or be-
haviors that significantly deviate from the majority. Anomaly
detection has essential applications in various domains, such
as fraud detection, cybersecurity attack detection, and med-
ical diagnosis [[1]. Numerous anomaly detection algorithms
have been proposed, but they are usually unsupervised with
assumptions on the anomaly patterns [2]], [3]]. The discrepancy
between the assumptions and the real-world scenarios can
lead to high false-positive rates since users may have different
interests and definitions of the anomalies.

In this work, we consider an alternative approach to reduce
false-positive rates by involving humans in the loop. In many
traditional anomaly detection scenarios, an analyst will be

asked to investigate the top instances from a ranked list of
anomalies to identify as many true anomalies as she can
until the time budget is used up. In practice, this human
feedback can be leveraged to help the analyst to identify more
anomalies. We consider a scenario where the anomaly detector
selects one of the instances at a time to query the analyst. Then
it adjusts the decision functions by leveraging the label from
the analyst. Figure [I] shows a toy example of how human
feedback is leveraged to improve the detector on the toy
data. We can see that human feedback can help the anomaly
detector to promote the instances of interest and discourage
the instances out of interest. As a result, the analyst will be
presented with more true anomalies under a time budget.

Some re-ranking strategies have been proposed to approx-
imate the above sequential decision process by greedily opti-
mizing the immediate performance [4], [Sl, [6], [7]. Specifi-
cally, they adjust the anomaly scores based on the human feed-
back, aiming to rank anomalous instances higher. Then they
greedily select the top-1 instance for the query, i.e., the one that
is most likely to be anomalous. This greedy choice may benefit
the immediate performance; however, it can be sub-optimal in
the long-term. For example, some uncertain instances could
be very helpful for correcting anomaly patterns [8]]. Although
these instances can be lower-ranked and harm the immediate
performance, they may benefit the anomaly detector and help
the analyst to discover more anomalies in future iterations.
Thus, we are motivated to study whether modeling long-term
performance can benefit active anomaly detection.

However, it is non-trivial to achieve this goal due to the fol-
lowing challenges. First, it is unclear how we can quantify the
long-term performance. In the current iteration, we can only
predict the intermediate outcome, i.e., whether the instances
are likely to be anomalous or not, but are not clear about future
benefits. Moreover, it is also difficult to balance long-term
and short-term performance in different scenarios. Second,
the decision space is very large since we need to examine
all the instances and select one of them for the query. This
makes it hard to design the selection strategy, particularly in
large or high-dimensional data. Third, different datasets have
various distributions of data and different sizes of decision
spaces. We need a simple and transferable selection strategy
that can be adopted across different datasets, which brings
further challenges in designing the strategy.

To address these challenges, we propose Active Anomaly
Detection with Meta-Policy (Meta-AAD), which learns a

A\ Labeled Anomaly //\ Unlabeled Anomaly Labeled Normality

Probability

. Unlabeled Normality

(a) Initial state

(b) 15 queries

(c) 30 queries

Fig. 1: Evolution of the decision of Meta-AAD on toy data. Data in blue area are more likely to be presented to the analyst.
In (a), the meta-policy prefers the instances that are far away from the majority, which is similar to an unsupervised anomaly
detector. In (b) and (c), with more queries, the decision pattern evolves. The probability decreases in the regions around the
normal instances (yellow). The probability increases for the regions around anomalies (red).

meta-policy to explicitly optimize the number of discovered
anomalies. Specifically, we formulate active anomaly detection
as a Markov decision process and leverage deep reinforcement
learning to train the meta-policy to select the most proper
instance in each iteration. The meta-policy is optimized to
maximize the discounted cumulative reward, which combines
short-term and long-term rewards. Extensive experiments
demonstrate the effectiveness of Meta-AAD, particularly in
the long-term. Moreover, Meta-AAD can be easily deployed
since the trained meta-policy can be directly applied to any
new datasets without further tuning. The main contributions
of this work are as follows.

o We identify the importance of optimizing long-term per-
formance for active anomaly detection.

« We propose Meta-AAD, a novel framework that leverages
deep reinforcement learning to train a meta-policy to
inherently optimize long-term performance.

o To enable the training of the meta-policy, we propose a
practical solution that extracts transferable meta-features
and optimizes the meta-policy on data streams.

« We instantiate our framework with Proximal Policy Gra-
dients (PPO) [9]. Extensive experiments on 24 benchmark
datasets demonstrate that Meta-AA]jH outperforms the
state-of-the-art alternatives and the unsupervised baseline.
Our empirical analysis shows that Meta-AAD can transfer
across various datasets and inherently achieve a balance
between long-term and short-term rewards.

II. PRELIMINARIES

In this section, we formulate the problem of active de-
tection with meta-policy. We then provide a background of
Markov Decision Process (MDP) and Deep Reinforcement
Learning (DRL). After that, we provide a naive approach to
training the meta-policy with DRL and discuss its limitations.
The main symbols used in this work are summarized in Table[l}

Code available at https://github.com/daochenzha/Meta- AAD

TABLE I: Main Symbols and definitions.

Symbol | Definition

n The number of instances.

d The feature dimension of each instance.

l The dimension of transferable features.

X € R™"%4 | A dataset with n instances and d features.

G e Rl Transferable features with dimension [.

y € R™ The n labels of dataset, where y, € {—1,1}.
yeR” The state vector, where §, € {—1,0,1}.

ceR” The anomaly scores by an unsupervised detector.
S The state space in Markov Decision Process (MDP).
A The action space in MDP.

R The reward function in MDP.

¥ The discount factor in MDP.

A. Problem Formulation

We consider anomaly detection problems represented by a
set of instances X = {X1,X2,...,Xp} € R”*4 where n denotes
the number of instances, and d denotes the feature dimension.
Each instance x; is an d-dimensional vector {X; 1,X; 2, ...X; d}
Feature X; ; can be real-valued or categorical. Let y € R"
be the ground-truths that correspond to the n instances in
the dataset, where y, € {—1,1}, —1 indicates that the
instance is anomalous, and 1 indicates that the instance is
normal. Anomaly detection aims at partitioning the instances
into a anomaly set A = {xy,Xs,...,X,} and a normality
set N = {x1,Xa,...,Xp}, where a and b are the number of
anomalous and normal instances, respectively. Usually, the set
A accounts for minority of the data, i.e., a < b.

Conventional unsupervised anomaly detectors assign
anomaly scores ¢ € R™ to all the instances based on X, i.e.,
learning a mapping f : X — ¢, such that the lower scores
indicate that the instances are more likely to be anomalous.
Given the anomaly scores, we can obtain an anomaly ranking,
where the anomalous instances are expected to be higher
ranked than the normal instances. However, such ranking is
usually not perfect since many of the higher-ranked instances

https://github.com/daochenzha/Meta-AAD

———————————————————————— , Query
T
) : el

B S o :
1 1 ! !

1 . Normal 1 : Reward !

1 ——-

1] H

1 1

[}]

-
®
=3
o
—

T ——
[%2]
o
1
=3
@

Meta-Policy

Training

A Labeled Anomaly Unlabeled Anomaly
. Labeled Normality Unlabeled Normality
: Top 1 :
e
i i
1 1
: ________ : [
1 : : Query : : 1 1 1
1 1 1 A 1
. , , . | ! Afterk _ ! !
] I Feedback , ' :IQ_ : :
R 1 | 1y Queries | I
A QT Al Al
1 1 1 1 1
Lol ' Analyst] Lo B
Lo : I 1o Detected
1 1 .
o i ' o Anomalies
[}]

Applying to unlabeled dataset

Fig. 2: An overview of Meta-AAD. In training, we shuffle the data and feed them to the meta-policy in a streaming manner.
The meta-policy is rewarded based on the labels. The trained meta-policy can then be directly applied to a new unlabeled
dataset. In each iteration, the meta-policy chooses one of the instances and queries an analyst (human).

may be actually normal, and some lower ranked instances
could also turn out to be anomalous. Therefore, in practice,
we usually require analyst (human) efforts to investigate the
higher-ranked instances and decide whether they are truly
anomalous or not.

Based on the notations and intuitions above, we formally
describe the problem of active anomaly detection with meta-
policy as follows. Given a dataset X, at each step, a meta-
policy will select one of the instances x; for query, and
a human will give a label indicating whether x; is truly
anomalous or not. Formally, let y € R™ be a state vector
that corresponds to the n instances in the dataset. Here,
y, € {—1,0,1}, where —1 indicates that the instance has been
selected for query and is indeed an anomaly, 1 indicates that
the instance has been selected for query but it turns out to be
normal, and 0 suggests that the instance has not been presented
to the analyst yet. The state vector y is initialized with zeros
for all the instances, i.e., no instance has been chosen for the
query at the initial state. The state of the selected instance
will be updated to 1 or —1 at each query step based on the
feedback of human. Given a budget of T queries, our goal
is to learn a meta-policy (trained from some other labeled
datasets) to decide the instance to query at each step, i.e. a
mapping 7 : {X x y} — {1,2,...,n}, such that the number
of discovered true anomalies among the chosen instances is
maximized until budget T is used up.

B. Markov Decision Process & Deep Reinforcement Learning

Markov Decision Process (MDP) describes a framework for
sequential decision making process. An MDP is defined as
M= (S, A, Pr,R,v), where S denotes the set of states, .4
denotes the set of actions, Pr : S x A xS — RT denotes the
state transition function, R : S — R denotes the immediate
reward function, and «y € (0, 1) is a discount factor to balance

the short-term and long-term reward. At each timestep ¢, the
agent takes action a; € A according to the current state s; €
S, and observes the next state s;11 as well as a reward r; =
R(s¢41). Our goal is to learn a policy 7 : S — A to maximize
the expected discounted cumulative reward E,[> ;= v r].

Deep reinforcement learning (DRL) describes a
family of algorithms for solving the MDP with
deep neural networks [10]. Contemporary @ DRL

algorithms often learn a state value function V(s;)
]Eat,sf+17,,,[2fiofth(stH)] [, 9] or state-action value
function Q(s¢,ar) = Egyani,...[Doeo V' R(se4py] [10],
[12] with deep neural networks to decide the most rewarding
action at each state.

C. Limitations of a Naive Approach

One may come up with a naive approach to train the
meta-policy with deep reinforcement learning. Specifically, the
active learning process could be naturally treated as an MDP
if we consider the state as the state vector and action as the
queried instance, ie., S = {X x ¥y}, A = {1,2,...,n}. Then
by appropriately defining a reward function, we can directly
model the process as an MDP and train a policy to optimize
performance with deep reinforcement learning algorithms.

However, this approach is infeasible because it has two
limitations. First, the state and action spaces are too large.
The state dimension and action dimension are O(nd) and
O(n), respectively, since at each iteration, we can observe the
information of all the n instances and need to select one of
the n instances for query. However, the state-of-the-art deep
reinforcement learning algorithms usually perform not well
on large state and action spaces [13], [14]. In our preliminary
experiments, we also observe that the above naive method
fails to train an effective meta-policy. Second, even if we can
train a meta-policy, it is difficult to transfer the meta-policy to

another dataset since the state and action spaces are different
in different datasets. The meta-policy will be of practical value
only when it can be transferred. Therefore, this naive approach
can not be directly applied to our problem. In the following
sections, we discuss how we can address the above issues to
enable stable meta-policy training.

III. METHODOLOGY

In this section, we elaborate on the Active Anomaly
Detection with Meta-Policy (Meta-AAD). An overview of
Meta-AAD is illustrated in Figure [2] In the training stage,
we extract transferable features as states (Section [[II-A). We
then shuffle the data and feed the data into meta-policy in
a streaming manner so that the state and action spaces can
be significantly reduced (Section [[II-B). The meta-policy is
trained with deep reinforcement learning based on some la-
beled datasets (Section [[lI-C). Finally, the trained meta-policy
can be directly applied to any new unlabeled datasets for active
anomaly detection without further tuning (Section [[II-D).

A. Extracting Transferable Meta-Features

In this subsection, we aim to extract transferable meta-
features that can be used across different datasets, i.e., we
aim at defining a mapping g : {X x y} — G € R™*!, where
[is the dimension of extracted features, such that G is less
dependent on the dataset.

Intuitively, there are three types of information that are
critical for deciding which instance to query. The first is
anomaly scores outputted by the anomaly detector. Anomaly
scores can provide information about which instances are far
away from the majorities to help the meta-policy to discover
more anomalous instances. Second, the labeled anomalous
instances are helpful. With several queries, we may be able
to identify some anomalous instances. Properly promoting the
instances that are similar to these known anomalous instances
will improve the performance. Third, labeled normal instances
are also useful. Similarly, discouraging the instances that are
similar to the known normal instancs may decrease the false
positives. Based on the intuitions above, we empirically extract
some features as follows, with a total of 6 features.

o Detector features: The anomaly scores ¢ outputted
by unsupervised anomaly detectors. Any off-the-shelf
anomaly detection algorithms can serve as detectors.

o Anomaly features: The features indicating the related-
ness to the labeled anomalous instances. In this work, we
extract three features for this purpose. We standardize the
original features X and calculate the minimum and the
mean Euler distances to the labeled anomalous instances.
In addition, we introduce a binary feature indicating
whether there exists an anomalous instance in the k-
nearest neighbors or not.

o Normality features: Similarly, we use the minimum and
the mean Euler distances to the labeled normal instances
as the normality features.

Note that our framework allows flexible choices of features.
For example, we may be able to improve the performance

by using an ensemble of unsupervised anomalous detectors or
more fine-grained anomaly and normality features. To make
our contribution focused, we adopt these simple features in
all our experiments, which lead to reasonable performance
based on our empirical results. How we can better model the
transferable information will be an interesting future work to
enhance the meta-policy.

By mapping the original features to the above transferable
features, we will have the same feature dimension in different
datasets, i.e., [is the same. However, the new features are
not ready to be used for training since different datasets
have a different number of instances n. We will address this
remaining issue in the next subsection.

B. Learning from Data Streams

The transferable features G € R™*Y obtained in the pre-
vious section and the action space A = {1,2,...,n} are still
too large for a learning algorithm. Moreover, the size of the
spaces is proportional to the size of the dataset, which makes
the meta-policy impossible to transfer.

To enable the training of transferable meta-policy, we pro-
pose to instead operate on data streams. Specifically, given
the transferable features of a training data G'"*™ and its
corresponding labels y*"®". In each episode, we randomly
shuffle G and y'"%" to obtain a perturbation, denoted as
G and yiein" Instead of giving all the data to the meta-
policy, we feed the meta-policy with one instance at a time.
In the streaming setting, the state, action and reward of the
Markov Decision Process (MDP) are defined as follows.

o State S: The transferable features of the current observed
instance Gfmm' € R, where i is the instance index.

o Action A: Actions can be 1 or 0, where 1 suggests that
the current instance should be selected, while 0 suggests
that current instance should be ignored.

¢ Reward R: If the meta-policy queries an instance, we
give a positive reward of 1 if the instance is indeed
anomalous, and a small negative reward of —0.1 if the
instance is normal. We give 0 reward if the meta-policy
ignores an instance. The reward function is critical to
describe the desired behaviors. We will empirically study
the impact of different reward choices in the experi-
ments (see the bottom of Figure [4)).

The above MDP describes an active learning procedure in a
streaming setting. Intuitively, the meta-policy is encouraged
to take action 1 if the queried instance is anomalous and take
action 0 if the queried instance is normal. In this sense, the
meta-policy will be taught to discover more anomalies under
a budget. We note that the meta-policy trained in a streaming
setting could be sub-optimal when applied to the batch setting
since the two MDPs have different objectives. Nonetheless,
we find in practice that this concern is greatly outweighed by
the benefits that the streaming setting brings. It significantly
reduces the state and action spaces to make the training of
transferable meta-policy feasible.

Algorithm 1 Training meta-policy with PPO

Algorithm 2 Application of trained meta-policy

Input: A set of features {X'} ¥ | and the corresponding labels
{y'}X,, rollout steps T
Output: The trained meta-policy
1: Initialize meta-policy 7y, 01q < 6
2: for iteration = 1, 2, ... until convergence do

3: if iteration = 1 or episode is over then

4 Randomly sample {X’,y’} from {X"}¥,, {y'} ¥,
5: end if

6: Runmy,,, with {X',y’} based on the MDP defined in

Section for T' timesteps.
7: Compute advantages Ay, ..., A; based on Equation H

8: Update 6 based on Equation
9: Oprqg < 0

10: end for

11: return 7y

C. Training Meta-Policy with Deep Reinforcement Learning

Given the MDP defined in Section we can train
the meta-policy with any deep reinforcement learning (DRL)
algorithms. In this work, we instantiate our framework with
Proximal Policy Optimization (PPO) [9]. We note that there
are more advanced algorithms, such as [15], which we will
explore in the future.

The meta-policy is described as a parametric policy
mg(als), where s is an [dimensional feature, a € {0, 1},
> ae{o,1y m(als) =1, and ¢ is the parameters of the network.
Our goal is to maximize the discounted cumulative reward
Er[Y = o7'r. PPO is an actor-critic algorithm, where the
critic approximates the state values and the actor is the policy.
Specifically, the critic of PPO trains a deep neural network to
approximate V' (s) through interacting with the environment.
Then a generalized advantage estimator [16]] is used:

T—1+1 /
Ay =5+ Z (7>\)t Ottt (D
t'=1

where 0; = 1 + YV (s¢41) — V(s¢), T is the total timesteps
in an episode, v is the discount factor, and A is a hyper-
parameter to control the bias-variance trade-off. Intuitively,
advantage values measure how much an action is better than
the other actions. Based on the estimated advantages, the actor

is updated by a clipped surrogate objective:

LELIP (9) = By [min(r(0) Ay, clip(ri(0),1 — €,1 + €) A,)],

2)
where 7(0) = %, mp,,, 1s the policy before the
update, clip(rt(ﬁ),ild— €,1 + ¢) will clip r(f) into range
[1 —€,1+ €, and € is a hyper-parameter to control the clip
range. The clipping objective makes sure that the new policy
will not deviate too much from the old policy, which enables
stable policy improvement. In training, we use a combined

loss to simultaneously update the value loss:

Ly(8) = E[LFHT(0) — et LY T(0) + 2 - entropy (o (-s.))],

3)

Input: Unlabeled dataset X € R™*<, trained meta-policy y
Qutput: The detected anomalies
1: Initialize state vector y = {0} ,, anomalous list A = {}
2: for iteration = 1, 2, ... until budget is used up do
3: Obtain transferable features G € R™*! from {X,y}

4: Compute 7(a = 1|s) based on G as p € R"

5: Query the instance with the highest probability
6: if the instance is anomalous then

7: Put the instance into A

8: end if

9: Update ¥ based on human feedback

10: end for

11: return A

where L} ¥(0) is a squared-error loss (Vy(s;) — Vtt‘”’get)2

V;}4r9¢t is estimated based on the collected data, entropy(-)
is a term to encourage exploration, ¢; and c, are hyper-
parameters. The expectation in Equation (3) can be approx-
imated by sampling data from the environment.

The training procedure of the meta-policy is summarized
in Algorithm [T} We assume the availability of several labeled
datasets. In each episode, we randomly choose a dataset, shuf-
fle the instances and traverse the dataset from the beginning
in a streaming manner.

i

D. Application of Meta-Policy

Once the meta-policy is trained, we can directly apply it to
any new unlabeled datasets without further tuning. However,
we note that there are some major differences between the
application and the training. First, instead of feeding one
feature to the meta-policy at a time, we give all the features
to the meta-policy to compute the probabilities for all the
instances. Specifically, when applying the meta-policy to an
unlabeled dataset X € R™*4 we first extract the transferable
features G € R™*! according to X and the current state vector
y € R™. Then we compute mp(a = 1|G;),Vi € {1,2,...,n}
and obtain the probabilities p € R™. Then we choose the
instance with highest probability for query, i.e., arg max; p,.
Intuitively, the instance that is very likely to be selected in the
streaming setting is also very likely to be chosen in this batch
setting. The above procedure is summarized in Algorithm

Note that 7y(a = 1|G;) is fundamentally different from the
adjusted anomaly scores. In previous methods [5]], [4], [6], [7],
the anomalous scores are adjusted to promote the anomalous
instances to the top. The main goal of the adjustment is to
make the top-1 instance more likely to be anomalous so as
to maximize the immediate performance. Whereas, the prob-
ability of the meta-policy plays a significantly different role.
The probability is learned with the objective of maximizing
the discounted cumulative reward, which is a combination
of immediate and long-term rewards. That is, the long-term
performance is inherently incorporated into the probabilities
and the top-1 selection strategy.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate Meta-AAD. We mainly focus on the following research
questions.

« RQ1: How does the meta-policy select the query and how
will the decision of the meta-policy evolve in different
stages (Section [[V-B))?

e RQ2: How does Meta-AAD compare with the state-
of-the-art alternatives and unsupervised baseline (Sec-
tion [TV-C)?

e« RQ3: How will Meta-AAD perform if using different
features, the number of labeled datasets and reward
functions (Section [[V-D))?

« RQ4: How many computational resources are needed to
train a meta-policy (Section [[V-E)?

e« RQS: How does Meta-Policy balance long-term and
short-term reward (Section [[V-E)?

A. Experimental Settings

Datasets and evaluation metric. To demonstrate the gen-
erality of Meta-AAD, we select 24 datasets with various sizes,
feature dimensions and anomaly ratios from ODDS?| Table
summarizes the statistics of the datasets. We also use a toy
dataset from [5] for better visualization. For the evaluation
metric, we use anomaly discovery curve [17], which plots the
number of discovered anomalies with respect to the number
of queries. A perfect result is a line with a slope 1, i.e., all the
queries are anomalous. The worst case is a line with a slope
0, i.e., all the queries are normal. Following [6], we set the
maximum budget to be 100 for all the datasets.

Baselines. We compare Meta-AAD with the state-of-the-art
methods as well as an unsupervised baseline as follows.

o AAD. Active Anomaly Detection [5] is a state-of-the-art

method based on node re-weighting.

o FIF. Feedback-Guided Isolation Forest [6] is a recently

proposed active anomaly detector via online optimization.

e SSDO. Semi-Supervised Detection of Outliers [18]] is a

recent semi-supervised point-wise anomaly detector. We
are interested in studying how semi-supervised methods
will perform in the active learning setting since they are
also designed to leverage label information.

o Unsupervised. We also include Isolation Forest (IF) [2]

as an unsupervised baseline.
While our Meta-AAD can be generally applied to any unsu-
pervised anomaly detectors or an ensemble of detectors, for
a fair comparison, we follow the previous work [5], [6] and
use Isolation Forest (IF) [2] with the same hyper-parameters
as in [5l], [6]. For SSDO and the unsupervised baseline, we
select the top-1 anomalous instance in each iteration.

Implementation details. For training the meta-policy, we
use the PPO implementation in OpenAl baselinesﬂ Following
the default settings, we set rollout steps 1° = 128, entropy
coefficient c; = 0.01, learning rate to be 2.5 x 104, value

Zhttp://odds.cs.stonybrook.edu/
3https://github.com/hill-a/stable-baselines

TABLE II: Statistics of the datasets.

Dataset | Points Dim. Anomalies Anomaly%
Annthyroid 7200 6 534 7.4
Arrhythmia 452 274 66 15.0
Breastw 683 9 239 35.0
Cardio 1831 21 176 9.6
Glass 214 9 9 42
Ionosphere 351 33 126 36.0
Letter 1600 32 100 6.3
Lympho 148 18 6 4.1
Mammography | 11183 6 260 2.3
Mnist 7603 100 700 9.2
Musk 3062 166 97 32
Optdigits 5216 64 150 3.0
Pendigits 6870 16 156 23
Pima 768 8 268 35
Satellite 6435 36 2036 32.0
Satimage-2 5803 36 71 1.2
Shuttle 49097 9 3511 7.0
Speech 3686 400 61 1.7
Thyroid 3772 6 93 2.5
Vertebral 240 6 30 12.5
Vowels 1456 12 50 34
Whbc 278 30 21 5.6
Wine 129 13 10 7.7
Yeast 1364 8 64 4.7

function coefficient ¢; = 0.5, A = 0.95, clip range € = 0.2.
Recall that v is hyper-parameters to balance long-term and
short-term rewards. We empirically set v = 0.6. We train the
meta-policy with the top 12 datasets (in alphabetical order) and
apply it to the bottom 12 datasets in Table[[I] We do it reversely
to evaluate the top 12 datasets. The meta-policy is trained
with 2 x 10° timesteps with the same hyper-parameters across
all the datasets. The episode length is set to 2,000. For the
base detector of Isolation Forest, we use the implementation in
sklearlﬂ with the default hyper-parameters setting. We use the
original implementations of FIFﬂ AA]f] and SSDCﬂ by their
authors. For FIF, we try both linear and log-likelihood losses,
and report the best result. For SSDO, we find it beneficial
to use Isolation Forest for the query at the beginning and
then switch to SSDO when we have hit at least one anomaly.
We report the results with this strategy since we observe that
it outperforms randomly selecting instances at the beginning.
All the experiments are run 5 times. The average results and
standard errors are reported.

B. A Case Study on the Toy Data

To study RQ1, we visualize the evolution of the decision of
Meta-AAD on a toy data [5] (see Figure [I)), which is a small
dataset with 2-dimensional features. We use the pre-trained
meta-policy on the top 12 datasets in Table [[II We visualize
the output of action 1 in the meta-policy, i.e., the probability of
being selected for the query. Note that the probability is similar
to the anomaly score, but it bases on a different objective. The
top instances are expected to not only have good immediate

4https://scikit-learn.org/
Shttps://github.com/siddigmd/FeedbacklIsolationForest
Shttps://github.com/shubhomoydas/ad_examples
7https://github.com/Vincent-Vercruyssen/anomatools

http://odds.cs.stonybrook.edu/
https://github.com/hill-a/stable-baselines
https://scikit-learn.org/
https://github.com/siddiqmd/FeedbackIsolationForest
https://github.com/shubhomoydas/ad_examples

e Meta-AAD FIF AAD SSDO Unsupervised
50 100 100 10
8o 40 80 80 8 80
%]
v
=60
© 30 60 60 6 60
€
g% 20 40 40 4 40 ~
20 10 20 20 2 20
0 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
queries queries queries queries queries queries
(a) Annthyroid (b) Arrhythmia (c) Breastw (d) Cardio (e) Glass (f) Ionosphere
6.25 90 100 100 100
40 6.00 80 i
0 5.75 70 80 80 80
830 ~ 5.50 60 60 60 60
g 5.25 50
20 : 40 40
% 5.00 40 40
10 4.75 gg 20 20
4.50 20
0 4.25 10 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
queries queries queries queries queries queries
(g) Letter (h) Lympho (1) Mammography () Mnist (k) Musk (1) Optdigits
100 100 70 100
70 60 8
80 60 80 80
] 50
9] 6
< 60 >0 60 60
= 40 40 4
g 40 30 40 30 40 —
2
20 20 20 20 20
0 10 10 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
queries queries queries queries queries queries
(m) Pendigits (n) Pima (o) Satellite (p) Satimage-2 (q) Shuttle (r) Speech
25 50 22 10
80 / 20 30
70 20 40 18 8 25
& 60
2 15 30 16 6 20
© 50
€10 14 15
e 10 20 12 4
© 30 5 10) 10
20 10 8 5
10 0 o 6 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
queries queries queries queries queries queries
(s) Thyroid (t) Vertebral (u) Vowels (v) Wbe (w) Wine (x) Yeast

Fig. 3: Performance comparison of Meta-AAD against the state-of-the-art alternatives and unsupervised baseline.

performance, i.e., it should be very likely to be anomalous,
but also benefit the performance in the long-term.

In the initial state, the meta-policy tends to choose the
instances that are far away from the majority, which is similar
to the behavior of unsupervised anomaly detectors. We expect
that the meta-policy have learned to give more weights to
detector features in the initial state when we do not have
labeled samples. We can also observe that, with more queries,
the decision pattern evolves. On the one hand, the probability
decreases in the regions around the normal instances (the
yellow instance on the bottom left corner). On the other hand,
the probability increases for the regions around anomalies (the
red triangles on the right-hand side). This behavior aligns with
previous active anomaly detectors [S]], [6]. Instead of adjusting
anomaly scores, the meta-policy is optimized to maximize
the discounted cumulative reward, which can better model the
long-term performance compared with the previous methods.

C. Performance on Benchmark Datasets

To answer RQ2, we compare Meta-AAD against the base-
lines in the 24 real-world datasets. The anomaly discovery
curves are illustrated in Figure [3] To better understand the
performance, we rank the discovered anomalies of the four
algorithms under 20, 40, 60, 80 and 100 queries, report the
average rankings, and highlight the improvement of Meta-
AAD over the second-best method in Table [Tl We make the
following observations.

First, all the active anomaly detectors perform significantly
better than the unsupervised baseline and the semi-supervised
method. Specifically, Meta-AAD, FIF and AAD can discover
more anomalies using the same number of queries in the 19 out
of 24 datasets and perform similarly in the other datasets. This
is expected since labeled instances provide useful information
that can help us discover more anomalies. We observe that
SSDO performs slightly better than the unsupervised baseline

TABLE III: Average rankings of the number of discovered
anomalies under different queries across 24 benchmarks, and
the improvement of Meta-AAD over the second best state-of-
the-art method. The improvement improves with more queries.
Meta-AAD delivers stronger performance in long-term. A
denotes the cases where Meta-AAD is significantly better than
the baseline w.r.t. the Wilcoxon signed rank test (p < 0.01).

Method ‘ 20 40 60 80 100
unsupervised [2] | 4.1884 4.146% 4.167A 4.3334 4.3754
SSDO [18] 3.3124 3.3964 3.5004 3.6254 3.4384
AAD [3] 3.2204 3.2084 3.2714 3.1674 3.1044
FIF [6] 2.208 2.333 2.312 2.3964 2.7084
Meta-AAD 2.062 1.917 1.750 1.479 1.375
Improvement \ 0.146 0.416 0.562 0.917 1.333

but is far behind the active methods. A possible explanation
is that SSDO optimizes a different objective and thus has sub-
optimal performance in the active learning setting.

Second, Meta-AAD consistently delivers better performance
than the state-of-the-art alternatives across all the datasets.
With very few exceptions, Meta-AAD improves upon the
baselines. For example, Meta-AAD achieves more than 25%
improvement on Letter and Speech, and more than 10% on
Arrhythmia, Ionosphere and Pima, compared with the best
alternative. In the other tasks, Meta-AAD also achieves better
or similar performance. Note that Meta-AAD achieve this
performance without any training or tuning on the target
datasets, and thus it is easy to use in applications. The above
results demonstrate the effectiveness of training a meta-policy
for active anomaly detection.

Third, Meta-Policy tends to be stronger in the long-term.
In Table we observe Meta-AAD is ranked higher and
higher with more queries. Specifically, with 20 queries, the
average rank of Meta-AAD is 2.062, which only has minor
improvement over FIF. Interestingly, with 100 queries, the
average ranking of Meta-AAD becomes 1.375. This suggests
that Meta-AAD can better model long-term rewards. We
speculate that deep reinforcement learning inherently models
and balances short-term and long-term performance, which
benefits the anomaly detector in the long-term.

D. Ablation Studies

To better understand where the performance comes from, we
answer RQ3 with ablation studies (see Figure [). We focus
on Annthyroid, Mammography, and Satimage-2.

First, we study the impact of using different features. Recall
that we have three types of features, i.e., detector feature,
anomaly features and normality features. We remove either of
them and plot the curves in the top of Figure] We obverse
that each type of feature contributes to the final performance.
Using all three types of features leads to the best performance.
This suggests the proposed three types of features may be
complementary for training a good meta-policy.

Second, we investigate the impact of using different number
of datasets. To study whether the performance will drop

— ALl w/o detector

—— w/0 normality

80
=~ &0
60 =
—— — 0
40

wjo anomaly

©
o

]
E 60
S 40
20
® 20 z 20
0 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
queries queries queries
—]2 6 —]
70
80 80 60
0
260 60 50
g 40
g 40 40 30
20 20 20
10
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
queries queries queries
—— () -0.1 -1 -5 -10
70 -
100 100 60
8 % & 50
E 60 60 40
% 40 40 30
20 20 20
0 10
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

queries

(a) Annthyroid

queries queries

(b) Mammography (c) Satimage-2

Fig. 4. Ablation study of Meta-AAD. We show the learn-
ing curves on Annthyroid, Mammography, Satimage-2 by
dropping different features (top row), using different number
of training datasets (mid row), and using different negative
rewards for a missed query.

if we train the meta-policy with fewer data, we report the
results with 6 and 1 training datasets (middle of Figure [4).
Specifically, we randomly drop some datasets and train the
meta-policy on the resulting subset. We repeat the process 20
times and report the average performance. We observe that
although the performance using more training datasets tends
to be more robust, we can train a strong meta-policy even with
just one dataset. This suggests that the proposed features are
indeed transferable, and the proposed training strategy of the
meta-policy is effective.

Third, we are interested in how the reward will impact
performance. Recall that we give a positive reward of 1 for
discovered anomalies, a negative reward of —0.1 for selecting
a normal instance, and a reward of O if not querying. Here,
we vary the negative rewards with other rewards fixed (bottom
of Figure [). Different negative rewards will lead to different
ratios between positive and negative rewards, which defines the
desired behaviors of the meta-policy. We argue that the choices
of the rewards should depend on the situations. For example, if
examining an instance requires lots of effort, a larger negative
reward is preferred. On the contrary, if we do not need many
efforts to check an instance, a small negative reward could
be better. As for anomaly discovery curves, we observe that
too large negative rewards will worsen the performance, and a
small negative reward of —0.1 works well across the datasets.

To summarize, we find that the default choices of work well
across different datasets, delivering good performance even
with few training data, which suggests that Meta-AAD could
be a general framework for various scenarios.

s Performance with 100 queries

o
=]
o
o
=)

a
o
o
iy
n

o
=)

anomalies
anomalies

o
>
o

IS
o
o
w
0

40
0 5000 10000

steps

15000 20000 0.0 0.2 0.4 0.6 0.8 1.0

gamma

Fig. 5: The average discovered anomalies across all the
datasets given 100 queries with respect to the number of
training steps (left) and different v values (right).

E. Analysis of the Meta-Policy

We study RQ4 by plotting the average performance with
100 queries across the 24 datasets with respect to the number
of training steps of the meta-policy in the left-hand side of
Figure [5] We observe that the policy converges very fast. We
note that in a personal computer, it usually takes less than 30
seconds to train 20, 000 steps with one process. Therefore, the
training of the meta-policy is computationally efficient.

We investigate RQS by showing the average performance
with 100 queries using different in the right-hand side of
Figure [5] Recall that 7 is a hyper-parameter to balance short-
term and long-term performance. In extreme cases, 0 suggests
that we only care short-term performance, and 1 suggests
that long-term performance matters (v can not be larger than
1 due to the nature of reinforcement learning algorithms).
We can observe that giving too much preferences for long-
term or short-term rewards will both harm the performance.
We suggest that v should be specified based on our needs,
i.e., whether we care more about long-term or short-term
performance. In the conducted experiments, we set v = 0.6
across all the datasets.

V. RELATED WORK

Anomaly detection. Anomaly detection has been exten-
sively studied in the past decades, e.g., density-based ap-
proach [3]], distance-based approach [19], [20], and ensem-
bles [2]], [21]], [22]]. Anomaly detection algorithms have also
been developed for various types of data, such as categorical
data [23]], multi-dimensional data [2], time-series data [24] and
graph data [25]. Most of these algorithms are unsupervised,
with strong assumptions about the anomaly patterns [26].
However, these algorithms may not work well when the
assumptions do not hold. On the contrary, our Meta-AAD
rarely relies on the assumptions. It instead aligns anomaly
patterns with human interests by leveraging human feedback

Semi-supervised anomaly detection. Semi-supervised
learning methods [27], [28] have been studied in the con-
text of anomaly detection. Semi-supervised anomaly detection
assumes that a small set of labeled instances can be used
to improve the performance [29]. In [30f], a small set of
anomalous instances are leveraged to re-weight the anomaly
scores with belief propagation. [31] improves representation

learning by using a few anomalous instances. [32] incorpo-
rates label information with support vector data description.
AI2 [33] ensembles unsupervised and supervised anomaly
detectors. AutoML methods use a set of labeled instances
to perform automated algorithm selection and neural archi-
tecture search [34], [35]. More recently, [36] proposes a
semi-supervised anomaly detection approach for deep neural
networks. However, these methods are designed for batch
setting, which could be sub-optimal in the active learning.

Active anomaly detection. Active learning in anomaly
detection is much more challenging than traditional active
learning [37], [38]] because of the imbalanced data. Instead
of assuming a batch of labeled data, active anomaly detection
interacts with humans and recomputes the anomaly scores
based on the feedback [4], [5], [39], [40]. These methods
usually define an optimization problem based on the hu-
man feedback and re-weight the instances at each iteration.
[41]] proposes to adaptively adjust the ensemble for active
anomaly detection. [[6] proposes to incorporate feedback by
leveraging online convex optimization to improve efficiency
and simplicity. [17] proposes to use contextual multi-armed
bandit and clustering techniques to identify the anomalies in
attributed networks in an interactive manner. OJRANK [7]
re-ranks the instances in each iteration based on the top-
1 feedback. While these prior methods incorporate humans
in the loop, they all adopt a greedy strategy to select the
top-1 anomalous instance in each iteration, which fails to
model long-term performance. Whereas, our Meta-AAD builds
upon deep reinforcement learning, which inherently models
and optimizes long-term performance. Moreover, the previous
methods require complicated optimization to re-weight the
instances in each iteration. On the contrary, the trained meta-
policy of meta-AAD is easy to use since it can be directly
applied to different datasets without further training or tuning.

Learning meta-policy. Deep reinforcement learning algo-
rithms have shown promise in various domains [10], [42]
The idea of meta-policy learning is to train a reinforcement
learning agent to make decisions with the objective of op-
timizing the overall performance of the task. Some recent
studies about deep reinforcement learning have demonstrated
the effectiveness of the meta-policy [43], [44], [45]. Some
related studies in graph neural networks [46] and natural
language processing [47] also show the effectiveness of meta-
policy learning. In addition to the difference of objectives,
these studies are limited to the same or parallel datasets.
Whereas, we demonstrate that the meta-policy in Meta-AAD
can be generally transferred across various datasets.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose Meta-AAD, a framework for
incorporating human feedback into anomaly detection. The
meta-policy in Meta-AAD is trained with deep reinforcement
learning to optimize long-term performance. We instantiate
our framework with PPO and evaluate it upon 24 benchmark
datasets. The empirical results demonstrate that Meta-AAD
outperforms state-of-the-art alternatives. We further conduct

an extensive analysis of our framework. We find that a single
configuration performs well across different datasets, and
Meta-AAD can inherently balance long-term and short-term
rewards, which suggests that Meta-AAD could be a general
framework for active anomaly detection.

For future work, we would like to conduct more studies on
how we can better extract transferable meta-features. In this
work, we empirically choose 6 features. We are interested in
exploring more features to improve Meta-ADD or make the
performance more robust. We would also like to try other deep
reinforcement learning algorithms. Finally, we will explore the
possibility of applying Meta-AAD on other tasks, such as time
series, graphs, and images.

ACKNOWLEDGEMENT

The work is, in part, supported by NSF (IIS-1750074, CNS-
1816497, 11S-1718840). The views and conclusions in this
paper are those of the authors and should not be interpreted
as representing any funding agencies.

REFERENCES

[1

—

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”

ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1-58, 2009.

[2] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM,
2008.

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying

density-based local outliers,” in SIGMOD, 2000.

S. Das, W.-K. Wong, T. Dietterich, A. Fern, and A. Emmott, “Incorpo-

rating expert feedback into active anomaly discovery,” in /ICDM, 2016.

S. Das, W.-K. Wong, A. Fern, T. G. Dietterich, and M. A. Siddiqui, “In-

corporating feedback into tree-based anomaly detection,” arXiv preprint

arXiv:1708.09441, 2017.

[6] M. A. Siddiqui, A. Fern, T. G. Dietterich, R. Wright, A. Theriault,
and D. W. Archer, “Feedback-guided anomaly discovery via online
optimization,” in KDD, 2018.

[71 H. Lamba and L. Akoglu, “Learning on-the-job to re-rank anomalies

from top-1 feedback,” in SDM, 2019.

B. Settles, “Active learning literature survey,” University of Wisconsin-

Madison Department of Computer Sciences, Tech. Rep., 2009.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-

imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,

2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski

et al., “Human-level control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529-533, 2015.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust

region policy optimization,” in /CML, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforcement

learning,” in ICLR, 2016.

G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,

J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-

inforcement learning in large discrete action spaces,” arXiv preprint

arXiv:1512.07679, 2015.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic

actor,” in ICML, 2018.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-

dimensional continuous control using generalized advantage estimation,”

arXiv preprint arXiv:1506.02438, 2015.

K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed

networks,” in WSDM, 2019.

V. Vercruyssen, M. Wannes, V. Gust, M. Koen, B. Ruben, and D. Jesse,

“Semi-supervised anomaly detection with an application to water ana-

lytics,” in ICDM, 2018.

[4

=

[5

=

[8

[t}

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

(38]
[39]

[40]

[41]

[42]

[43]
[44]
[45]
[46]

[47]

S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in SIGMOD, 2000.

F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional
spaces,” in ECML PKDD, 2002.

J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier detection with
autoencoder ensembles,” in SDM, 2017.

G. Pang, L. Cao, L. Chen, D. Lian, and H. Liu, “Sparse modeling-
based sequential ensemble learning for effective outlier detection in
high-dimensional numeric data,” in AAAI, 2018.

L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos, “Fast and reliable
anomaly detection in categorical data,” in CIKM, 2012.

M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for
temporal data: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 9, pp. 2250-2267, 2013.

L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: a survey,” Data mining and knowledge discovery, vol. 29,
no. 3, pp. 626-688, 2015.

Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable
outlier detection,” arXiv preprint arXiv:1901.01588, 2019.

X. J. Zhu, “Semi-supervised learning literature survey,” University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2005.

D. Zha and C. Li, “Multi-label dataless text classification with topic
modeling,” Knowledge and Information Systems, vol. 61, no. 1, pp. 137—
160, 2019.

Y. Zhao and M. K. Hryniewicki, “Xgbod: improving supervised outlier
detection with unsupervised representation learning,” in /JCNN, 2018.
A. Tamersoy, K. Roundy, and D. H. Chau, “Guilt by association: large
scale malware detection by mining file-relation graphs,” in KDD, 2014.
G. Pang, L. Cao, L. Chen, and H. Liu, “Learning representations of
ultrahigh-dimensional data for random distance-based outlier detection,”
in KDD, 2018.

N. Gornitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward supervised
anomaly detection,” Journal of Artificial Intelligence Research, vol. 46,
pp. 235-262, 2013.

K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li, “Ai"
2: training a big data machine to defend,” in BigDataSecurity, 2016.
Y. Li, D. Zha, P. Venugopal, N. Zou, and X. Hu, “Pyodds: An end-to-end
outlier detection system with automated machine learning,” in WWW,
2020.

Y. Li, Z. Chen, D. Zha, K. Zhou, H. Jin, H. Chen, and X. Hu,
“Autood: Automated outlier detection via curiosity-guided search and
self-imitation learning,” arXiv preprint arXiv:2006.11321, 2020.

L. Ruff, R. A. Vandermeulen, N. Gornitz, A. Binder, E. Miiller, K.-R.
Miiller, and M. Kloft, “Deep semi-supervised anomaly detection,” arXiv
preprint arXiv:1906.02694, 2019.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of artificial intelligence research, vol. 4, pp.
129-145, 1996.

H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,”
in ICML, 2004.

J. He and J. G. Carbonell, “Nearest-neighbor-based active learning for
rare category detection,” in NeurIPS, 2008.

D. Zhou, J. He, H. Yang, and W. Fan, “Sparc: Self-paced network
representation for few-shot rare category characterization,” in KDD,
2018.

S. Das, M. R. Islam, N. K. Jayakodi, and J. R. Doppa, “Active anomaly
detection via ensembles,” arXiv preprint arXiv:1809.06477, 2018.

D. Zha, K.-H. Lai, Y. Cao, S. Huang, R. Wei, J. Guo, and X. Hu,
“Rlcard: A toolkit for reinforcement learning in card games,” arXiv
preprint arXiv:1910.04376, 2019.

D. Zha, K.-H. Lai, K. Zhou, and X. Hu, “Experience replay optimiza-
tion,” in IJCAIL 2019.

Z. Xu, H. P. van Hasselt, and D. Silver, “Meta-gradient reinforcement
learning,” in NeurIPS, 2018.

K.-H. Lai, D. Zha, Y. Li, and X. Hu, “Dual policy distillation,” in IJCAI,
2020.

K.-H. Lai, D. Zha, K. Zhou, and X. Hu, “Policy-gnn: Aggregation
optimization for graph neural networks,” in KDD, 2020.

L. Duong, H. Afshar, D. Estival, G. Pink, P. Cohen, and M. Johnson,
“Active learning for deep semantic parsing,” in ACL, 2018.

	I Introduction
	II Preliminaries
	II-A Problem Formulation
	II-B Markov Decision Process & Deep Reinforcement Learning
	II-C Limitations of a Naive Approach

	III Methodology
	III-A Extracting Transferable Meta-Features
	III-B Learning from Data Streams
	III-C Training Meta-Policy with Deep Reinforcement Learning
	III-D Application of Meta-Policy

	IV Experiments
	IV-A Experimental Settings
	IV-B A Case Study on the Toy Data
	IV-C Performance on Benchmark Datasets
	IV-D Ablation Studies
	IV-E Analysis of the Meta-Policy

	V Related Work
	VI Conclusions and Future Work
	References

