
Simplifying Reinforced Feature Selection via
Restructured Choice Strategy of Single Agent

Xiaosa Zhao∗, Kunpeng Liu†, Wei Fan†, Lu Jiang∗, Xiaowei Zhao∗, Minghao Yin∗, Yanjie Fu†
∗ Northeast Normal University, Changchun

† Department of Computer Science, University of Central Florida, Orlando
∗{zhaoxs686, jiangl761, zhaoxw303, ymh }@nenu.edu.cn,

†{kunpengliu, weifan}@knights.ucf.edu, †{Yanjie.Fu}@ucf.edu

Abstract—Feature selection aims to select a subset of features
to optimize the performances of downstream predictive tasks.
Recently, multi-agent reinforced feature selection (MARFS) has
been introduced to automate feature selection, by creating agents
for each feature to select or deselect corresponding features.
Although MARFS enjoys the automation of the selection process,
MARFS suffers from not just the data complexity in terms of
contents and dimensionality, but also the exponentially-increasing
computational costs with regard to the number of agents. The
raised concern leads to a new research question: Can we simplify
the selection process of agents under reinforcement learning con-
text so as to improve the efficiency and costs of feature selection?
To address the question, we develop a single-agent reinforced
feature selection approach integrated with restructured choice
strategy. Specifically, the restructured choice strategy includes:
1) we exploit only one single agent to handle the selection
task of multiple features, instead of using multiple agents. 2)
we develop a scanning method to empower the single agent
to make multiple selection/deselection decisions in each round
of scanning. 3) we exploit the relevance to predictive labels
of features to prioritize the scanning orders of the agent for
multiple features. 4) we propose a convolutional auto-encoder
algorithm, integrated with the encoded index information of
features, to improve state representation. 5) we design a reward
scheme that take into account both prediction accuracy and
feature redundancy to facilitate the exploration process. Finally,
we present extensive experimental results to demonstrate the
efficiency and effectiveness of the proposed method.

Index Terms—feature selection, reinforcement learning, convo-
lutional auto-encoder

I. INTRODUCTION

Feature selection is a classic and one of the most impor-
tant problems in machine learning and data mining field,
aiming to remove irrelevant and redundant features from
the original feature set. With effective and efficient feature
selection algorithms, we can achieve low computation cost,
good performance of the machine learning pipeline as well as
good interpretation of the learning process.

Traditional feature selection methods include filter methods,
wrapper methods and embedded methods [1]. Filter methods
evaluate features based on their statistical characteristics, e.g.,
Fisher score [2], correlation coefficient [3] and information

• Kunpeng Liu is co-first author.
• Yanjie Fu is corresponding author.

gain (IG) [4]. Filter methods are independent of the down-
stream machine learning model, and the representative meth-
ods are maximum relevance minimum redundancy (mRMR)
[5], fast correlation based filter algorithm (FCBF) [6], and
univariate feature selection [7]. Wrapper methods evaluate the
quality of the selected features with a predetermined classifier,
and the representative methods are recursive feature elimina-
tion (RFE) [8] [9], sequential forward selection (SFS) [10],
and evolutionary algorithms [11]–[14]. Embedded methods
incorporate feature selection as a part of classification model
in the training phase, and the typical methods are LARS
[15], LASSO [16], and decision tree [17]. These methods
usually suffer from locality and can not achieve very good
performance.

Recently, reinforcement learning (RL) methods are intro-
duced to the field of feature selection. Model-free reinforce-
ment learning can obtain long-term optimal decisions in an
unknown environment by interacting with dynamic environ-
ment, keeping the exploration-exploitation trade-off, and re-
ceiving a reward signal as feedback [18]. These advantages
enable reinforcement learning the ability of globally automat-
ing feature subspace exploration and thus can achieve better
performance than traditional methods. Liu et al. proposed a
multi-agent reinforcement learning framework (MARLFS) for
feature selection problem by regarding each feature as an
agent, where the agent can exchange information in the dy-
namically selected feature subspace [19]. Sharing experience
can help agent to capture the interaction between features
and greatly benefits the feature subspace exploration process.
However, the complexity of the MARLFS increases with the
number of agents, as each agent has to maintain its own policy
network, training strategy and memory storage [20]. When
the feature number in the dataset is large, this algorithm puts
much pressure to the computational platform. It is naturally
promising to investigate if we can solve the feature selection
problem with a single-agent framework which essentially
requires less computational resources and meanwhile can still
maintain the benefits of the reinforcement learning framework.
However, several challenges arise.

The first challenge is to formulate the feature selection prob-
lem with the single-agent reinforcement learning framework.
Intuitively, we can design a single agent which determines

ar
X

iv
:2

00
9.

09
23

0v
1

 [
cs

.L
G

]
 1

9
Se

p
20

20

the selection and deselection once for all the N features [21]
[22]. However, the action space of these methods are 2N ,
making the feature selection NP-hard and can only achieve
local optima. In this paper, we propose a scanning strategy,
where the agent scans the features one by one to decide
the selection. After scanning one feature, we derive the state
representation as well as the reward scheme, which comprises
prediction accuracy and feature redundancy. With new policy
network, the agent goes to the next feature to decide its
selection/deselection. After scanning all the features, we have
a selected feature subset. With more and more scanning
episodes, the policy network will be better and better and thus
can select more reasonable feature subsets.

The second challenge is to decide the scanning order.
Different scanning order of the features may bring on different
selected feature subset. For example, suppose we have the
feature space including {f1, f2, f3}. If the scanning order is
f1 → f2 → f3, the actions could be ’selection’, ’deselection’
and ’selection’, and the final selected feature subset is {f1, f3}.
However, if the scanning order is f3 → f1 → f2, the
actions could be ’deselection’,’selection’ and ’selection’, and
the final selected feature subset is {f2,f3}. This is because
with different scanning order, the agent will receive different
reward and thus get its policy network trained to different
directions. In this paper, to achieve an optimal scanning order,
we propose a relevance-based scanning strategy. To be more
specific, we calculate the relevance of each feature with the
label. The higher the relevance is, the earlier the related feature
will be scanned.

The third challenge is to accurately represent the environ-
ment. We need to derive the state representation from the
selected feature subset, which is dynamically changing in
the feature selection process. However, the policy network of
reinforcement learning requires a fixed-length state represen-
tation vector. To solve this problem, existing studies proposed
three methods, i.e., meta descriptive statistics, auto-encoder
based deep representation and dynamic-graph based graph
convolutional network (GCN) [19]. The limitation of Meta de-
scriptive statistics method is unsatisfactory performance, while
the limitation of GCN method is the strong assumption of full-
connected graph. In this paper, we further extend the auto-
encoder based method with convolutional neural network and
propose a convolutional auto-encoder representation method.
In order to solve the multi-size input in the encoder layer, we
replace the pooling layer after the last convolutional layer with
the spatial pyramid pooling layer [23]. So, in this convolutional
auto-encoder, the encoder layer contains convolutional layers,
pooling layers and a spatial pyramid pooling layer, and then
the decoder layer contains an inverse spatial pyramid pooling
layer, unsampling layers and convolutional layers. In addition,
to identify the feature which the agent is scanning, we incor-
porate its index information into the state representation.

To summarize, in this paper, we propose a scanning based
single-agent reinforcement learning feature selection method.
Our major contributions are: (1) we formulate the feature
selection problem by incorporating a scanning strategy into

the single-agent reinforcement learning framework, where the
agent scans and selects features one by one (2) we pro-
pose a relevance-based scanning strategy which regulates the
scanning order to improve the learning performance; (3) we
propose a convolutional auto-encoder representation method
to derive accurate state vector; (4) we design comprehensive
experiments to show the superiority of the propose method.

II. PROBLEM FORMULATION

We begin this section by introducing some basic notations.
A data set of n samples X = (x1, x2, ..., xn). Here, a
sample xi is a vector with D dimensions (features) xi =
(f1, f2, ..., fD)T . Let f1, f2, ..., fD denote the D features of
X . The class label y = (y1, y2, ..., yn) are given. Feature
selection is defined as selecting a subset of m features from a
set of D features with the condition m ≤ D, that maximizes
the predictive accuracy of the learning algorithm.

Automatic feature selection can be regard as a scanning
process, where we can sequentially scan the features and
decide whether the feature should be selected or deselected.
However, the scanning scheme can lead to local optima
because of the ”nesting effect”, where a feature that is selected
or discarded can’t be selected or discarded in later stages. i.e.,
sequential forward selection [10]. Reinforcement learning can
maximize the long-term cumulative reward by interacting with
the dynamic selected feature subset and keeping exploitation
and exploration trade-off. The nature of reinforcement learning
can help to avoid the nesting effect and globally explore the
feature space in the scanning scheme. So, in this paper, we
design a scanning-based single-agent reinforcement learning
framework for feature selection task. The common elements
in reinforcement learning are reformulated as follows:

• Environment. The environment is a key element in
reinforcement learning, which interacts with the agent and
provides reward as feedback. In this paper, the environ-
ment is responsible for observing the selected features
from original features and the current scanning position.
In other word, the selected feature subset and the current
scanning position are regarded as the environment, where
the environment changes dynamically with the action
execution of selecting or deselecting feature.

• Agent. The agent is also called the scanning agent, which
sequentially scans features and makes a decision.

• State space. The optimal actions for feature selection is
determined by observing the current state of environment.
The state (s) is to describe the selected feature subset
and the current scanning position. Here, we explore a
deep representation learning method, convolutional auto-
encoder to represent the selected feature subset. For the
current scanning position, we use index information of
the feature, which is scanned by the agent. In this way,
the agent identifies which feature it is selecting. Here, we
incorporate the one-hot encoded vector of current feature
index into state space.

• Action space. The actions of the scanning agent sig-
nificantly impacts the performance of the overall envi-

𝑓1

𝑓2

𝑓𝐷

𝑓𝑖

Scan

DQN

𝑓𝑘2𝑓𝑘1 𝑓𝑘𝑡…

Sample 1

Sample 1

Sample 𝑛

Sample 𝑖

Feature index

Control

Accuracy Redundancy

Reward scheme

One-hot encoder

CAE State
vector

State representation

Feature order Environment Memory

Train

Q-network

Policy

Fig. 1. Framework. Agent scans every feature in feature order. According to the state representation of current environment, agent controls the selection or
deselection of the feature. DQN train the policy network.

ronment. For feature selection problem, the action a is
to make the selection decision for the current feature.
So, possible actions are selecting (a = 1) or deselecting
(a = 0) the current feature.

• Reward. The reward gives the scanning agent a feedback
about how good its action is. It is necessary to provide an
immediate reward (r) generated by the current selected
feature subset. In this paper, we incorporate the predictive
accuracy of the selected feature subset and the global
redundancy of current feature into the reward function.

III. PROPOSED METHOD

In this section, we first introduce the overview of proposed
feature selection framework. Next, we show how to decide
the scanning order, how to design reward scheme, and how to
employ proposed convolutional auto-encoder for the state rep-
resentation. Finally, we introduce the scanning-based single-
agent reinforcement learning feature selection algorithm in
details.

A. Framework Overview

Fig. 1 presents the overview of our proposed feature
selection framework, where a scanning based single-agent
reinforcement learning automatically explores feature space to
find the optimal feature subset.

This framework mainly includes several steps. At first, we
use a relevance-based scanning strategy to decide the scanning
order. Then, agent scans features one by one in this scanning
order and decides to select or delete this feature according to
current state. Here, we use selected feature subset and index

information of scanning feature to describe environment. In
addition, a proposed convolutional auto-encoder and the one-
hot encoding method are utilized to represent the environment.
After executing this action, we employ a novel reward scheme
which integrates predictive accuracy of selected feature subset
with feature redundancy to calculate the reward of this action.
Finally, we use Deep Q-learning Network (DQN) [24] to train
the policy for feature selection.

B. Relevance-Based Scanning Strategy

In classification problem, the relevancy of features to target
class has a great impact on predictive performance. Consid-
ering this, we develop a relevance-based scanning strategy,
where we employ feature relevance to decide the scanning
order. In other words, we use the ranking based feature
relevance to primarily explore relevant feature. Specifically, we
calculate the relevance between features and the target class.
Then, according to the scores of feature relevance, we sort
features in descending order. Finally, the feature ranking is
used as the scanning order of the agent. Here, feature relevance
are quantified by information gain [4], which measures the
amount of information obtained for category prediction by
knowing the presence or absence of a feature. Information gain
is calculated based on the information-theoretical concept of
entropy, a measure of the uncertainty of a random variable.
Let c ∈ {ci}Li=1 denote the class variable taking on values
from the set of the class categories. The entropy of the class
is defined as:

H(c) = −
∑
i

p(ci) log2 (p(ci)), (1)

𝑓𝑘1 𝑓𝑘2 … 𝑓𝑘𝑡
Sample 1

Sample 2

Sample 𝑖

Sample 𝑛

Data matrix with selected features

Reconstruction matrix

Convolutional layer
+
Average pooling

Convolutional layer
+
Unsampling pooling

Convolutional layer
+
Unsampling pooling

Convolutional layer
+
Average pooling

Convolutional layer

Convolutional layer spatial pyramid pooling layer

Inverse spatial pyramid pooling layer

1 2 … 𝑘𝑡
1

2

𝑖

𝑛

State
vector

Fig. 2. The architecture of proposed convolutional auto-encoder.

where p(ci) is the prior probability of the class value ci. The
conditional entropy of class given the feature fk is calculated
as

H(c|fk) = −
∑
j

p(f jk)
∑
i

p(ci|f jk) log2 (p(ci|f
j
k)), (2)

where p(ci|f jk) is the posterior probability of ci given the value
f jk of feature fk. Information gain (IG) can be given by:

IG(fk) = H(c)−H(c|fk). (3)

C. Reward Scheme

To capture the interaction between features and the perfor-
mance of selected feature subset in automatic feature selection
process, our reward scheme integrates global redundancy of
the feature with the predictive accuracy.

Predictive accuracy. For the selected feature subset E, the
predictive accuracy ACE are calculated based on a predefined
classifier. The predictive accuracy can guide the scanning agent
to explore high-quality feature subsets by giving it a positive
feedback.

Feature redundancy. The redundancy of a feature is quanti-
fied by global redundancy of this feature, which is the average
value of the redundancy of this feature and other features. The
feature redundancy can guide the agent to select the lowly re-
dundant features by giving the agent a negative feedback. Here,
we use the absolute value of Pearson correlation coefficient to
quantify the redundancy between features. Pearson correlation
coefficient [3] is a correlation statistic to calculate the linear

correlation between two features. Formally, the redundancy
Rdfk of a feature fk is defined as:

Rdfk =

∑
j |ρ(fk, fj)|

n
(4)

where ρ(fk, fj) denotes the pearson correlation coefficient [3]
between two features fk and fj , which is given by:

ρ(fk, fj) =
cov(fk, fj)

σfkσfj
(5)

where cov(fk, fj) denotes the covariance between two fea-
tures, and σfk and σfj are standard deviations of the feature.

D. Convolutional auto-encoder

Auto-encoder has been widely used for representation learn-
ing in an unsupervised manner [25], where it takes a high
dimensional data as input, and outputs a low-dimensional
representation vector by minimizing the reconstruction loss
between the input and the output. An auto-encoder consists of
an encoder which maps the input data to the latent represen-
tation vector and a decoder which reconstructs the input data
with the latent representation vector.

Considering that the policy network of reinforcement learn-
ing requires a fixed-length state representation vector, we need
to further extend auto-encoder to represent the selected feature
subset, which is dynamically changing in feature space ex-
ploring process. Recently, convolution neural network (CNN)
[26] with spatial pyramid pooling layers has shown powerful
ability in feature extraction for the multi-size images [23].
Specifically, the spatial pyramid pooling layer divides every

feature map obtained by the last convolutional layer of CNN
into multi-level spatial bins with size proportional to the image
size. So, the number of bins is fixed regardless of the feature
map size. Then, this layer concatenates these bins to generate
the fixed-length vector. In this paper, we combine the CNN
and auto-encoder named convolutional auto-encoder (CAE)
to obtain accurate environment state representation of fixed
length.

The architecture of proposed convolutional auto-encoder is
shown in Fig. 2. Here, we regard the dataset X (a data matrix
of n samples with the selected m features) as an image. In
proposed CAE network structure, the last layer of encoder is
replaced with the spatial pyramid pooling layer to generate
the fixed-length representation. In the meantime, we design
an inverse spatial pyramid pooling layer as the first layer of
decoder. The detail operation of the symmetric convolutional
auto-encoder is shown as follows:

a) Encoder: the input image X is subjected to the oper-
ation of the convolution layers to obtain a set of convolution
feature maps, and sequentially passed through the average
pooling layers. Here, suppose that the last convolutional layer
of the encoder obtain H feature maps. They are the input to a
spatial pyramid pooling layer, where it pools every feature map
in multi-level local spatial bins, i.e., 1×1, 2×2, and 3×3 bins
of sizes proportional to the feature map size. Then, the spatial
pyramid pooling layer performs average pooling on each bin,
and concatenates these bins to form a fixed-dimensional latent
representation vector z1. Note that all convolutional layers
in this paper have zero-padding added to ensure that each
convolutional layer outputs the same size as the input.

b) Decoder: based on the latent representation vector z1,
the decoder reconstructs as closely as possible the original
input data. The decoder architecture is a reverse mirror of the
encoder. In this paper, we design an inverse spatial pyramid
pooling layer. Specifically, the fixed-length latent represen-
tation vector z1 will be reshaped into H feature maps of
size 1 × 1, H feature maps of size 2 × 2, and H feature
maps of size 3 × 3. Then, upsample feature maps of every
size back to the same size as the input of spatial pyramid
pooling layer. The average value of the i-th expansion feature
maps from three sizes is regarded as a feature map. Finally,
the H feature maps from the inverse spatial pyramid pooling
layer are inputted into the upsampling layers followed by the
convolutional layers. The filters of Convolutional layers of the
decoder correspond the filters of Convolutional layers of the
encoder. Here, upsampling layers are used to upsample the
feature maps back to original size. Therefore, the size of output
of the decoder is the same as that of input image of encoder.

Finally, the fixed-length latent representation vector z1
learned by proposed convolutional auto-encoder is used to be
part of the state representation in reinforcement learning.

E. Scanning Based Single-Agent Reinforcement Learning Fea-
ture Selection

As algorithm 1 shows, we propose a scanning based single-
agent reinforcement learning feature selection method. The

Algorithm 1 Scanning Based Single-Agent Reinforcement
Learning Feature Selection

1: Initialize replay memory M with capacity P ;
2: Initialize policy network Q and target network Q̂ with random

parameters θ and θ̂ respectively with respect to the normal
distribution;

3: initialize the selected feature subset E and the scanning pointer
i;

4: Construct the scanning order F by the relevance-based scanning
strategy;

5: while episode ≤ K do
6: for i = 1 to D do
7: Scanning the feature fi one by one in F ;
8: Choose a selection or deselection action at for current state

st based on ε-greedy policy strategy;
9: if at == 1 then

10: Update the feature subset: E = E ∪ fi;
11: end if
12: Calculate the reward: rt = ACE −Rdfi
13: Learning the latent representation vector z1 for data matrix

X with new selected feature subset;
14: Use one-hot encoded vector z2 to represent the scanning

pointer i;
15: Update the next state vector: st+1 = (z1, z2)
16: Store transition (st, at, rt, st+1) in replay memory M ;
17: Randomly sample a mini-batch Dt of transitions

(st, at, rt, st+1) from memory M ;
18: Set yt = rt + γmaxat+1 Q(st+1, at+1|θ̂);
19: Perform a gradient decent step on (yt − q(st, at))2 with

respect to network parameters θ;
20: Update the target network parameters θ̂ after every C steps:

θ̂ = θ;
21: end for
22: end while

detailed process is explained as follows:
At first, from line 1 to 3 in algorithm 1, we initialize the

parameters of deep Q-network, the selected feature subset and
the scanning pointer, which points the current scanning feature.

Next, the relevance-based scanning strategy decides the
scanning order. Specifically, the relevance-based scanning
strategy employs information gain to calculate the correlation
between feature and target class (feature relevance), and then
constructs the feature scanning order by ranking feature rele-
vance in descending order.

Thirdly, the agent begins to scan feature space one by
one in this feature scanning order. When scanning a feature,
agent needs to make a decision about selecting or deselecting
this feature based on its policy network, where the inputs
are provided by the state vector, and each separate output
represents the Q-values for selection or deselection action.
With ε-greedy policy strategy, the agent chooses a selection
or deselection action to execute. Specifically, with the policy
ε ∈ [0, 1], the agent chooses the greedy action with the highest
Q-values. With the probability of 1 − ε, the agent chooses
a random action. This way helps the agent to balance the
exploration and exploitation in automatic feature selection
process.

Fourthly, after executing a selection or deselection action
on current selected feature subset, environment will transform

to the next state st+1 and give agent a reward value rt.
At first, environment state st+1 include two parts, e.g., new
selected feature subset and the position information of current
scanning feature. For the selected feature subset, we adopt
our proposed convolutional auto-encoder to generate a fixed-
length latent representation vector z1. For current scanning
position, we use the one-hot encoded vector z2 of the feature
index to represent. Then, we concatenate the fix-length latent
representation vector and one-hot encoded vector to generate
the final state vector st+1. The reward value is measured by
the predictive accuracy of selected feature subset and feature
redundancy. In the reward scheme, agent can search an optimal
subset of lowly redundant features for the classification model.

Finally, after accumulating more and more transition tuple
(st, at, rt, st+1) in memory M . Agent will train the neural
networks via experience replay independently. The agent ran-
domly samples mini-batches of experiences from memory M .
Then, based on the mini-batch samples, the agent trains its
policy network to obtain the maximum expected long-term
return by the Bellman Equation [18]:

Q(st, at|θ) = rt + γmaxQ(st+1, at+1|θ) (6)

where θ is the parameter set of Q-network, and γ is the
discount factor.

IV. EXPERIMENT

In this section, we validate our proposed method and
analyze the performance on the real world data.

A. Datasets
The effectiveness of our proposed method is evaluated on

four publicly available real datasets.
Forest Cartographic shows some cartographic variables

to classify forest categories that range from 1 to 7, which
is download from Kaggle 1. It is comprised of 15120 samples
with 54 features.

Amazon Employee Access is to predict whether employees
have access to resources taken from Kaggle 2. It consist of
32769 samples characterized by 9 integer-valued features, 2
classes.

UCI Nomao collects location data (name, phone, etc.) from
many sources to detect what data refer to the same place. It
includes 34465 samples with 118 features, 2 classes. Available
on the UCI Machine Learning Repository 3.

Protein Lysine Glycation is to predict protein lysine gly-
cation sites by some sequence information, which is collected
from the Compendium of Protein Lysine Modifications 4. In
this study, we refer to the configuration in [12]. Finally, this
dataset contain 630 samples with 402 features, 2 classes.

We present details about the four datasets in Table I. The
Cartographic, AmazonEA, Nomao and Glycation in Table I
represent Forest cartographic, Amazon Employee Access, UCI
Nomao and Protein Lysine Glycation dataset, respectively.

1https://www.kaggle.com/c/forest-cover-type-prediction/data
2https://www.kaggle.com/c/amazon-employee-access-challenge/data
3https:www.openml.org/d/1486
4http://cplm.biocuckoo.org/

TABLE I
DATASET DESCRIPTION

Dataset Samples Features Classes
Cartographic 15120 54 7
AmazonEA 32769 9 2

Nomao 34465 118 2
Glycation 630 402 2

B. Evaluation Metrics

For the comparison of the predictive performance on the
benchmark datasets, four widely used indicators were used,
i.e., Accuracy (ACC), precision, recall and F -measure. Pre-
cision is the ratio of true positives to true positives plus
false positives. Recall is the ratio of true positives to true
positives plus false negatives. F -measure is the harmonic mean
of precision and recall [19].

ACC =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F −measure = 2 ∗ P ∗R
P +R

(10)

where TP , TN , FP , FN represent the number of true
positives, true negatives, false positives and false negatives
respectively.

C. Baselines

We compare our proposed method with seven baselines,
including both traditional feature selection methods and re-
inforcement learning framework for feature selection

• ReliefF. The idea of ReliefF is to estimate the quality
of features based on their values to distinguish between
the samples that are close with each other [27]. In this
study, we select the K highest ReliefF scores, where K is
equal to the number of selected features in our proposed
method.

• Maximum Relevance Minimum Redundancy
(mRMR). The mRMR method selects features that
have the highest relevance with the class label and are
also maximally dissimilar to each other [5]. In this
experiments, we select the K highest mRMR scores.

• Chi-square Scores. Chi-square scores [28] try to measure
the degree of independence between the feature and target
class. In this experiments, we select the K highest chi-
square scores.

• Sequential Forward Selection (SFS). Sequential for-
ward selection (SFS) algorithm [10] is a bottom-up search
procedure which begin from an empty set and iteratively
add the next best features to the set until a predefined
number of features are selected. In this experiment, we
select the feature subset of the highest accuracy.

TABLE II
COMPUTATION COST

Cartographic AmazonEA Nomao Glycation
CPU Memory(MB) CPU Memory(MB) CPU Memory(MB) CPU Memory(MB)

MARLFS 74% 1525 97% 1485 82% 1649 70% 1579
SADRLFS 56% 1516 42% 1458 48% 1612 30% 1478

TABLE III
OVERALL ACCURACY ON DIFFERENT CLASSIFIERS

Cartographic AmazonEA Nomao Glycation
RF XGB DT RF XGB DT RF XGB DT RF XGB DT

ReliefF 0.6164 0.6052 0.6402 0.9005 0.9426 0.9277 0.8468 0.7508 0.8468 0.6825 0.7302 0.6824
mRMR 0.5291 0.5569 0.5423 0.9027 0.9426 0.9282 0.8689 0.8587 0.8724 0.55556 0.6825 0.5873

Chi-square 0.7090 0.6131 0.7586 0.8953 0.9426 0.9270 0.8886 0.8587 0.8840 0.6825 0.6825 0.6508
SFS 0.7368 0.6190 0.7579 0.9200 0.9429 0.9286 0.9101 0.8616 0.9156 0.6508 0.6984 0.7460

BDEFS 0.7169 0.6409 0.7685 0.9335 0.9426 0.9362 0.9449 0.9269 0.9442 0.6825 0.6190 0.5556
SARLFS 0.7989 0.6356 0.7619 0.9381 0.9411 0.9212 0.9605 0.9298 0.9475 0.6825 0.6508 0.6667
MARLFS 0.8102 0.6138 0.7679 0.9463 0.9423 0.9219 0.9620 0.9283 0.9510 0.7619 0.6667 0.6349
SADRLFS 0.8697 0.7725 0.7606 0.9512 0.9426 0.9478 0.9707 0.9579 0.9527 0.7778 0.7619 0.7460

• Binary Differential Evolution Algorithm for Feature
Selection (BDEFS). Binary differential evolution algo-
rithm search the optimal feature subset by a binary mu-
tation operator and a binary crossover operator. Here, we
refer to the algorithm framework and parameter settings
of the paper [12].

• Single-Agent Reinforcement Learning for Feature Se-
lection (SARLFS). SARLFS [22] is a model-based rein-
forcement learning, where the agent learns a model of the
environment, represented as a dynamic Bayesian network
that describes rewards and state transitions, and efficiently
computes a policy using dynamic programming.

• Multi-Agent Reinforcement Learning for Feature Se-
lection (MARLFS). MARLFS [19] automatically ex-
plores feature subsets by regarding each feature as an
agent. A feature agent decide to select or deselect a
feature. The reward scheme guides the cooperation and
competition between agents by integrating feature-feature
mutual information with accuracy.

D. Overall Performances

In this experiment, we compare our proposed method
(SADRLAFS) with different baseline methods based on ran-
dom forest (RF) [29] with 100 decision trees. For proposed
convolutional auto-encoder network, we use epochs of 10, and
a learning rate of 0.005. The inputs of convolutional auto-
encoder are scaled [−1, 1]. The convolutional layers are set to
16, 32, 16, 32, 16, and 1 filters with 3×3 convolution kernel,
sequentially. Tanh function is used as the activation function
in the convolution layers. The pooling layers perform average
pooling with 2× 2 kernel. The spatial pyramid pooling layer
performs 4-level pyramid: {1× 1, 2× 2, 3× 3, 4× 4} (totally
30 bins). The reinforcement learning algorithm performs with
discount factor γ of 0.9, a learning rate of 0.01, and mini-batch
size of 32. For experience replay, we use memory size of 400.
Then, we set the Q network as a one-layer ReLU with 100
nodes in the hidden layer. The Adam Optimizer is adopted to
optimize the parameters of all neural network structure. In this

paper, 90% of sample instances are used for training sets and
10% of sample instances are used for validation sets.

At first, we compare our proposed single-agent reinforce-
ment learning framework (SADRLFS) with multi-agent rein-
forcement learning (MARLFS). From Table II, we can see
that proposed single-agent reinforcement learning takes less
computation cost than multi-agent reinforcement learning for
feature selection. This is because for multi-agent reinforcement
learning, the exponential growth of state-action space in the
number of state and action variables leads directly to the high
computational complexity. In addition, comparison with seven
baselines, the classification performance on four real-world
datasets are shown in Fig. 3, where D1, D2, D3 and D4
represent the Cartographic, AmazonEA, Nomao and Glycation
datasets. Our proposed method obtains better performance on
four datasets.

Aside from feature selection, it is known that Classifiers
play an import role in classification accuracy. So, in this exper-
iment, we also adopt another two most popular classifiers, i.e.,
XGBoost [30] and Decision Tree (DT) [31] to investigate the
robustness of our selected feature subset. Table III shows the
results of comparison on different classifiers. The bold values
indicate the best performance in the table. For Gartographic
dataset, the accuracy (0.7606) of our algorithm is slightly
lower than BDEFS (0.7685) on DT classifier. For AmazonEA
dataset, the accuracy (0.9426) of our method also slightly
lower than SFS (0.9429) on XGBoost classifier. In general,
our method obtains better performance on most datasets in
terms of overall accuracy.

E. Study of incorporating relevance and redundancy

In this experiment, we further study the impact of incorpo-
rating feature relevance and redundancy. Here, incorporating
relevance is realized by the scanning order, which is the
ranking of information gain scores between features and class.
Incorporating redundancy is realized by integrating pearson
correlation coefficient between features into the reward func-
tion. We investigate four cases: (i) Nvd that doesn’t incorporate
feature relevance in the scanning order, and feature redundancy

D1 D2 D3 D4

a
c
c
u

ra
c
y

0.5

0.6

0.7

0.8

0.9

1.0
ReliefF

mRMR

chi−square

SFS

BDEFS

SARLFS

MARLFS

SADRLFS

(a) Accuracy

D1 D2 D3 D4

P
re

c
is

io
n

0.5

0.6

0.7

0.8

0.9

1.0
ReliefF

mRMR

chi−square

SFS

BDEFS

SARLFS

MARLFS

SADRLFS

(b) Precision

D1 D2 D3 D4

R
e

c
a

ll

0.5

0.6

0.7

0.8

0.9

1.0
ReliefF

mRMR

chi−square

SFS

BDEFS

SARLFS

MARLFS

SADRLFS

(c) Recall

D1 D2 D3 D4

F
−

M
e

a
s
u

e
r

0.5

0.6

0.7

0.8

0.9

1.0
ReliefF

mRMR

chi−square

SFS

BDEFS

SARLFS

MARLFS

SADRLFS

(d) F-Measure
Fig. 3. Performance comparison of different feature selection algorithms.

D1 D2 D3 D4

a
c
c
u

ra
c
y

0.6

0.7

0.8

0.9

1.0
Nvd

Rv

Rd

Rv+Rd

(a) Accuracy

D1 D2 D3 D4

p
re

c
is

io
n

0.6

0.7

0.8

0.9

1.0
Nvd

Rv

Rd

Rv+Rd

(b) Precision

D1 D2 D3 D4
re

c
a

ll

0.6

0.7

0.8

0.9

1.0
Nvd

Rv

Rd

Rv+Rd

(c) Recall

D1 D2 D3 D4

F
−

M
e

a
s
u

re

0.6

0.7

0.8

0.9

1.0
Nvd

Rv

Rd

Rv+Rd

(d) F-Measure
Fig. 4. Study of incorporating relevance and redundancy.

in reward function; (ii) Rv that only incorporates feature
relevance in the scanning order; (iii) Rd that only incorpo-
rates feature redundancy in reward function; (iv) Rv+Rd that
incorporates feature relevance and redundancy. The experiment
performance on four cases are shown in Fig. 4. We can see
that the combination between feature relevance with feature
redundancy can improve the predictive performance. This
might be explained by complex multi-way interaction among
features, where a lowly relevant feature could significantly
improve the predictive performance if it is used together
with other complementary features, and a highly relevant
feature may become redundant when used together with some
features.

F. Study of Environment Representation

In order to widely study the performance of our proposed
algorithm, this part shows the comparative results with envi-
ronment representation.

At first, we investigate the first part of environment state,
which is the representation of data matrix with selected
feature subsets. We investigate four representation learning
method, i.e., (i) MDS: meta descriptive statistics including
the standard deviation, minimum value, maximum value, the
first quartile, the second quartile, and the third quartile;
(ii) AE: auto-encoder based representation learning method,
which applies two-step auto-encoder learning to representa-
tion dynamic data matrix; (iii) GCN: Graph convolutional
network (GCN) based representation learning, which adopts
GCN to embedding graph node of dynamic feature correlation
graph; (iv) CAE: Proposed convolutional auto-encoder based

representation learning. The representation learning methods
of MDS, AE, GCN refer to [19]. The results are shown in
Fig. 5. From this figure, CAE obtains the best performance.

Next, we study the impact of the second part of environment
state, which is the index information of the current scanning
feature. We consider three cases: i.e., (i) Nindex that doesn’t
consider the feature index in environment state space; (ii)
Integer that incorporating integer encoding of the feature index
into environment state space; (iii) One-hot that adds one-hot
encoding of the feature index into environment state space.
From Fig. 6, we see that although the one-hot encoding of
feature index has the lower recall value and F -measure value
than integer encoding, it can perform best for other three
datasets. In other word, the one-hot encoding can describe
the current scanning position very well.

V. RELATED WORK

We illustrate the related work in terms of feature selection
and reinforcement learning for feature selection.

A. Feature selection

Feature selection is an essential problem in the field of
machine learning and data mining, aiming to select an optimal
feature subset by removing irrelevant and redundant features.
Traditional feature selection methods can be broadly divided
into three categories: filter methods, wrapper methods and
embedded methods. Filter methods rank the features based
on some evaluation measures, e.g., fisher score [2], ReliefF
[27], information gain [4], Chi-square score [28], and Pearson
correlation coefficient [3], and then select top-ranking features

D1 D2 D3 D4

a
c
c
u

ra
c
y

0.6

0.7

0.8

0.9

1.0
MDS

AE

GCN

CAE

(a) Accuracy

D1 D2 D3 D4

p
re

c
is

io
n

0.6

0.7

0.8

0.9

1.0
MDS

AE

GCN

CAE

(b) Precision

D1 D2 D3 D4

re
c
a

ll

0.6

0.7

0.8

0.9

1.0
MDS

AE

GCN

CAE

(c) Recall

D1 D2 D3 D4

F
−

M
e

a
s
u

re

0.6

0.7

0.8

0.9

1.0
MDS

AE

GCN

CAE

(d) F-Measure
Fig. 5. Study of first state representation.

D1 D2 D3 D4

a
c
c
u

ra
c
y

0.6

0.7

0.8

0.9

1.0
Nindex

integer

one−hot

(a) Accuracy

D1 D2 D3 D4

p
re

c
is

io
n

0.6

0.7

0.8

0.9

1.0
Nindex

integer

one−hot

(b) Precision

D1 D2 D3 D4
re

c
a

ll

0.6

0.7

0.8

0.9

1.0
Nindex

integer

one−hot

(c) Recall

D1 D2 D3 D4

F
−

M
e

a
s
u

re

0.6

0.7

0.8

0.9

1.0
Nindex

integer

one−hot

(d) F-Measure
Fig. 6. Study of second state representation.

as an optimal feature subset. The typical filter methods are
Maximum Relevance Minimum Redundancy (mRMR) [5], fast
correlation based filter algorithm (FCBF) [6], and univariate
feature selection [7]. Due to be independent of any learning
algorithm, filter methods have low computational cost and are
suitable for high-dimensional data. However, filter methods
ignore interactions between features and the classification
performance of selected features. Wrapper methods search
feature space and employ a predetermined learning algorithm
to evaluate the selected feature subset directly. Therefore, they
are more accurate than filter methods. The typical wrapped
methods include Recursive Feature Elimination (RFE) [8], se-
quential Feature Selection [10], [32], [33], branch-and-bound
search [34] and evolutionary algorithms for feature selection
[11]–[14]. However, with the increasing of feature dimension,
wrapper methods need to explore a feature space of 2N feature
subsets and are likely to suffer from local optima. Embedded
methods simultaneously optimize classification performance
and feature subset by integrating feature selection with clas-
sification model, e.g., LARS [15], LASSO [16], and decision
tree [17]. Although these methods make a tradeoff between the
efficiency and the predictive accuracy, their selected features
might not be suitable for other classifiers.

B. Reinforcement learning for feature selection

Model-free reinforcement learning was born to make long-
term optimal decisions with no or little prior knowledge of
the dynamic environment [35] [36]. This can provide the
outstanding capability in feature selection field. Some feature
selection methods via reinforcement learning are proposed.

Reference [21] [22] formulate the single agent to make de-
cisions. The actions of this agent include the selection or
deselection of all n features. The 2n size of action space is
too large to globally explore the feature subspace. In other
words, the action space of this agent is 2n. Such formulation
is similar to the evolutionary algorithms [37], which are likely
to obtain local optima. Fang et al. also developed a single-
agent reinforcement learning for feature selection in malware
detection, where the action space represents the feature index
that is selected and a terminal action [38]. Although the action
space is D + 1, this formulation is similar to SFS, where
a feature that is selected cannot be removed in later stages
and is likely to obtain local optima. Liu et al. proposed a
multi-agent reinforcement learning framework (MARL) for
feature selection problem by regarding each feature as an agent
[19]. However, the complexity of the MARL increases as the
number of agents, because each agent assigned to each feature
adds its own variables. So, multi-agent demand high computer
configuration for the high dimensional data. At the same time,
the nonstationarity arises in MARL because of all the agents
are learning simultaneously [39].

VI. CONCLUSION AND FUTURE WORK

In this study, we present a novel deep reinforcement learning
framework for feature selection. By modeling feature selec-
tion with the scanning scheme, we can not only limit the
action space of the agent, but also solve feature selection
problem with single-agent reinforcement learning framework.
That allows the proposed reinforcement learning to work on a
low configuration computer. In addition, we incorporate two

important factors, i.e., feature relevance calculated by infor-
mation gain and redundancy calculated by Pearson correlation
coefficient to guide the automatic feature subspace exploration
and improve the quality of selected features. In order to better
represent the environment state, we design a convolutional
auto-encoder with spatial pyramid pooling layer to handle the
dynamic environment, which is the selected feature subset.
Finally, comprehensive experiments on real-world datasets
demonstrate the effectiveness of proposed algorithm.

ACKNOWLEDGMENT

This research was partially supported by the National
Science Foundation (NSF) via the grant numbers: 1755946,
I2040950, 2006889.

REFERENCES

[1] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[3] J. F. P. Da Costa, H. Alonso, and L. Roque, “A weighted princi-
pal component analysis and its application to gene expression data,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 8, no. 1, pp. 246–252, 2009.

[4] J. Wang, J.-M. Wei, Z. Yang, and S.-Q. Wang, “Feature selection by
maximizing independent classification information,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 4, pp. 828–841, 2017.

[5] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on pattern analysis and machine intel-
ligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[6] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance
and redundancy,” Journal of machine learning research, vol. 5, no. Oct,
pp. 1205–1224, 2004.

[7] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Journal of machine learning research, vol. 3, no.
Mar, pp. 1289–1305, 2003.

[8] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, “Recursive fea-
ture elimination with random forest for ptr-ms analysis of agroindustrial
products,” Chemometrics and Intelligent Laboratory Systems, vol. 83,
no. 2, pp. 83–90, 2006.

[9] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389–422, 2002.

[10] A. W. Whitney, “A direct method of nonparametric measurement selec-
tion,” IEEE Transactions on Computers, vol. 100, no. 9, pp. 1100–1103,
1971.

[11] R. Leardi, “Genetic algorithms in feature selection,” in Genetic algo-
rithms in molecular modeling. Elsevier, 1996, pp. 67–86.

[12] X. Zhao, L. Bao, Q. Ning, J. Ji, and X. Zhao, “An improved binary
differential evolution algorithm for feature selection in molecular signa-
tures,” Molecular informatics, vol. 37, no. 4, p. 1700081, 2018.

[13] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “Deap: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, no. 70, pp. 2171–2175, 2012.

[14] J. Yang and V. Honavar, “Feature subset selection using a genetic
algorithm,” in Feature extraction, construction and selection. Springer,
1998, pp. 117–136.

[15] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., “Least angle
regression,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[17] V. Sugumaran, V. Muralidharan, and K. Ramachandran, “Feature se-
lection using decision tree and classification through proximal support
vector machine for fault diagnostics of roller bearing,” Mechanical
systems and signal processing, vol. 21, no. 2, pp. 930–942, 2007.

[18] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
2011.

[19] K. Liu, Y. Fu, P. Wang, L. Wu, R. Bo, and X. Li, “Automating
feature subspace exploration via multi-agent reinforcement learning,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 207–215.

[20] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforcement
learning: An overview,” in Innovations in multi-agent systems and
applications-1. Springer, 2010, pp. 183–221.

[21] S. M. H. Fard, A. Hamzeh, and S. Hashemi, “Using reinforcement
learning to find an optimal set of features,” Computers & Mathematics
with Applications, vol. 66, no. 10, pp. 1892–1904, 2013.

[22] M. Kroon and S. Whiteson, “Automatic feature selection for model-
based reinforcement learning in factored mdps,” in 2009 International
Conference on Machine Learning and Applications. IEEE, 2009, pp.
324–330.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[25] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in neural information
processing systems, 2007, pp. 153–160.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[27] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analy-
sis of relieff and rrelieff,” Machine learning, vol. 53, no. 1-2, pp. 23–69,
2003.

[28] H. Liu and R. Setiono, “Chi2: Feature selection and discretization of nu-
meric attributes,” in Proceedings of 7th IEEE International Conference
on Tools with Artificial Intelligence. IEEE, 1995, pp. 388–391.

[29] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[30] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[31] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE transactions on systems, man, and cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[32] T. Marill and D. Green, “On the effectiveness of receptors in recognition
systems,” IEEE transactions on Information Theory, vol. 9, no. 1, pp.
11–17, 1963.

[33] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in
feature selection,” Pattern recognition letters, vol. 15, no. 11, pp. 1119–
1125, 1994.

[34] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for
feature subset selection,” IEEE Transactions on computers, no. 9, pp.
917–922, 1977.

[35] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 2496–2505.

[36] P. Wang, K. Liu, L. Jiang, X. Li, and Y. Fu, “Incremental mobile
user profiling: Reinforcement learning with spatial knowledge graph for
modeling event streams,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2020, pp. 853–861.

[37] Y. Xue, B. Xue, and M. Zhang, “Self-adaptive particle swarm optimiza-
tion for large-scale feature selection in classification,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 13, no. 5, pp. 1–27,
2019.

[38] Z. Fang, J. Wang, J. Geng, and X. Kan, “Feature selection for malware
detection based on reinforcement learning,” IEEE Access, vol. 7, pp.
176 177–176 187, 2019.

[39] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS one, vol. 12, no. 4, 2017.

	I Introduction
	II Problem formulation
	III Proposed Method
	III-A Framework Overview
	III-B Relevance-Based Scanning Strategy
	III-C Reward Scheme
	III-D Convolutional auto-encoder
	III-E Scanning Based Single-Agent Reinforcement Learning Feature Selection

	IV Experiment
	IV-A Datasets
	IV-B Evaluation Metrics
	IV-C Baselines
	IV-D Overall Performances
	IV-E Study of incorporating relevance and redundancy
	IV-F Study of Environment Representation

	V Related Work
	V-A Feature selection
	V-B Reinforcement learning for feature selection

	VI Conclusion and Future Work
	References

