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Abstract—As one of the most well-known artificial feature
sampler, the sliding window is widely used in scenarios where
spatial and temporal information exists, such as computer vision,
natural language process, data stream, and time series. Among
which time series is common in many scenarios like credit card
payment, user behavior, and sensors. General feature selection
for features extracted by sliding window aggregate calls for time-
consuming iteration to generate features, and then traditional
feature selection methods are employed to rank them. The
decision of key parameter, i.e. the period of sliding windows,
depends on the domain knowledge and calls for trivial. Currently,
there is no automatic method to handle the sliding window
aggregate features selection. As the time consumption of feature
generation with different periods and sliding windows is huge, it
is very hard to enumerate them all and then select them.

In this paper, we propose a general framework using Markov
Chain to solve this problem. This framework is very efficient
and has high accuracy, such that it is able to perform feature
selection on a variety of features and period options. We show the
detail by 2 common sliding windows and 3 types of aggregation
operators. And it is easy to extend more sliding windows and
aggregation operators in this framework by employing existing
theory about Markov Chain.

Index Terms—AutoML, Sliding Window Aggregate, Feature
Selection, Time Series

I. INTRODUCTION

The time series scenario can be simplified into an entity
table Te with an action table Ta, while the foreign key of Ta
is the primary key of Te, and columns in Ta are time series
of the action of each entity.

Sliding window aggregate operators scan the action records
in the time dimension and then aggregate them to extract
some periodic features. This process by given sliding window
aggregator on a given feature in Ta of a given entity can be
summarized as follows:
Step 1: Resample a new column, denoted as C, from the given

column of all the action records of a given entity in
Ta by a given sample frequency. Denote the count of
timestamps in C after resampling as `.

Step 2: Use a sliding window W with period w to scan C and
calculate the corresponding value in each timestamp,
and construct a new column.

Step 3: Use aggregation operator AGG to extract a value over
the constructed column.

Fig. 1. Example of sum sliding window with period 3 days. The left-top
table is Ta with foreign key ID and feature column A, while the right-top
table is Te whose primary key is ID. The left-bottom table is resampled with
frequency 1 day from Ta. The sliding window scans feature A by TIME
column for each entity. When it scans to timestamp 1970-01-02 of entity
001, all records in recent 3 periods, i.e. the red box, are summed. Then the
intermediate table (right bottom) is used for aggregate to extract feature of
each entity.

The extracted value is a feature of the given entity, and the
values extracted from the given column of all entities will then
form a feature column, while all feature columns extracted by
different periods, sliding windows and aggregate operators will
then form a feature table Tf . Tf and the label column in Te
are used to train a model. Intuitively, Fig. 1 shows the process
of a sum sliding window with period 3 days. We abuse the
below equation to represent this process:

Tf = AGG(W (Ta, w)) (1)

Sliding window aggregation is widely used in real-world
applications for its good interpretability, for example, max
aggregate on sum sliding window in the credit card scenario
can measure the maximum of total expenditure for a user in
a period. In practice Tf is always generated by brute-force
iteration while the period w are designed with intuition or
domain knowledge, and then general method is used to select
from Tf . Since automatic solution must try different w, and the
generation from original time series tables calls for massive
iteration, it must be quick enough to process variety of period
options.
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Our key thought to ameliorate this process is to contact
labels with Ta directly, which means the observation of Ta but
not Tf is used to select features. The key contributions are
summarized as follows:

1) We present a framework to optimize the automatic
selection of sliding window aggregate features. The speed
and accuracy are good enough to process massive period
options and sliding window aggregators. Thus it can
support the end-to-end AutoML solution for time series.

2) We set up a general model of sliding window aggregator
by stochastic process theory, and make detailed analysis
and derivation. The work is helpful when extending more
sliding window aggregators, and this probability model,
as well as its estimation method will be useful for further
research on similar scenarios.

In this paper we use 2 sliding windows, sum window, and
average window, as well as 3 aggregation operators, max
value, min value and average value. The combination of sliding
windows and aggregation operators then conducts 6 sliding
window aggregators. The design of sliding window aggregators
is not the main purpose of this paper, they can be extended
into this framework by similar methods.

The detail of this framework is in Section III and experiments
in Section IV will show its high accuracy and speed.

II. RELATED WORKS

AutoML is a hot spot in recent years, and receives some
significant progress. But most recent research focus on the
hyperparameters optimization, Network Architecture Search
and model selection methods in different scenarios, automatic
methods about feature extraction from the original database are
few. One Button Machine [1] and Deep Feature Synthesis [2]
enumerate transformations and aggregations on whole related
tables to extract features, but time series is not the topic of
them.

Feature selection is a well-discussed topic [3], many theories,
methods, and criteria are employed to it. Generally speaking,
supervised feature selection methods [4] evaluate features by
the contribution to the object function, while unsupervised
feature selection methods [5] evaluate them by the ability to
reconstruct feature space. Besides, some methods focus on
the elimination of the redundancy in streaming features [6],
[7]. The streaming feature scenario may be confused with
time series, but they are actually different, the input of this
scenario in time dimension is feature but not timestamp of
feature. Almost all feature selection methods only reponse to a
generated feature space, currently we have not found existing
methods on the end-to-end sliding window aggregate feature
selection from the original database.

The explicit feature space Tf can not be known before
iteration and calculation. Hellerstein et al. [8] proposed
some basic ideas about online aggregation, they estimate the
confidence bound of the result by the observation of original
table. Aggregation on the sliding window is more complex
than direct aggregation, but can still be handled with a similar
idea.

In addition, some theoretical research on stochastic process
and Markov Chain help us a lot. The aggregate operators we
use in this paper are related to the average and extreme value
of Markov Chain. Works on the distribution of average value of
Markov Chain, e.g. [9], [10] and [11], and the Extreme Value
Theory (EVT) of stochastic process, e.g. [12], [13], [14], [15],
[16] and [17], solve the problem we met in the derivation of
formulation.

III. FRAMEWORK

The proposed framework aims at automatic selection from
sliding window aggregate features with multi period setting.
In order to support the variety of period, this framework try to
estimate the distribution of Tf under different period setting
instead of generate it. This framework is divided into 3 steps
as follows:
Step 1: Fit some basic parameters from Ta. We will list them

in Section III-A1.
Step 2: Set up the stochastic process model with given param-

eters and estimate the confidence bound of aggregate
value on sliding windows.

Step 3: Sample from the estimated bound to form a fake Tf ,
train a model and get the feature importance. Repeat
it many times to get average feature importance.

The third step is an ensemble strategy, i.e. resample from
distribution to get better generalization ability. Even though we
have not constructed real Tf , the estimated feature importance
is gotten by observing Ta. In this section we describe the prob-
ability model of sliding window, the estimation of aggregate
on sliding window, as well as the complexity analysis of this
method.

Recall that C represents the given column of the given entity
in Ta. In this section, we show the detail of the proposed
framework on C. And it is easy to be promoted to whole Ta.

A. Sliding Window Model

In this section we describe the probability model of both
two sliding windows.

1) Basic Assumptions: In order to describe the model
mathematically, and set up a model with not that complex
properties, two assumptions are made as follows:
• The count of records in each timestamp of C is a sequence

notated by {Ai}1≤i≤` with i.i.d samples.
• The value of records in C is a sequence notated by
{Bi}1≤i≤` with i.i.d samples.

The basic distribution assumption for Ai is Binomial as-
sumption. In the situation that more than one record can exist
in a timestamp, i.i.d Poisson distribution is used to model Ai,
we call it Poisson assumption. And another common situation
is that there is always one record in each timestamp, which
is called Always assumption, and can be treated as a special
case of Binomial assumption. The selection of assumption can
be decided from C or set manually.

We model Ai by P (Ai) ∝ B(1, p) in Binomial assumption,
and P (Ai) ∝ P(1, p) in Poisson assumption. As we don’t have



Fig. 2. PDF of 500000-length Monte Carlo simulation sum sliding windows
with Binomial assumption, µ = 10, σ = 1, w = 10 and p = 0.3. Observations
when S(Wi) = 0 are droped.

a priori about the distribution of values in C, the value sequence
Bi is modeled by Gaussian distribution P (Bi) ∝ N (µ, σ2).

With the above assumptions, W (C, w) is described as
stochastic process. And AGG(W (C,w)) can be treated as
the estimation of a given stochastic process.

The min value C and max value C, mean value µ, standard
error σ, existence probability p are fitted from C as the first step.
They are the key parameters of those distribution assumptions.

2) Distribution: The sum window and average window with
period w can be modeled as

W sum
i =

w−1∑
n=0

Ai+n ·Bi+n (2)

W avg
i =

∑w−1
n=0 Ai+n ·Bi+n∑w−1

n=0 Ai+n
(3)

Denote the count of records in a window frame as

S(Wi) =
w−1∑
n=0

Ai+n (4)

Let m denotes the max appearance count of records that
can happen in each timestamp, i.e. S(Wi) ∈ [0,mw].

Take Binomial assumption as an example. Obviously m = 1
in Binomial assumption. Since Ai is i.i.d, the distribution
P (S(Wi)) ∝ B(w, p). S(Wi) can also be treated as a first-
order Markov Chain and the same conclusion can be gotten.
S(Wi) records occur in the observation range in timestamp

i, if S(Wi) 6= 0, the distribution of the sum of S(Wi)
i.i.d samples from N (µ, σ2) is N (S(Wi)µ, S(Wi)σ

2), and
the average is N (µ, σ2

S(Wi)
) since Bi is also i.i.d. Thus the

probability models of sum window and average window with
Binomial assumption are

P (W sum
i ) ∝

w∑
n=1

B(w, p) · N (nµ, nσ2) (5)

P (W avg
i ) ∝

w∑
n=1

B(w, p) · N (µ,
σ2

n
) (6)

If S(Wi) = 0, the sum and average are both N (0, 0). Similar
result can be gotten for other assumptions. Fig. 2 is the PDF
of Monte Carlo simulation with Binomial assumption.

In general, the sliding window model with our basic
assumptions is a stationary positive Harris Markov Chain,
whose stationary distribution is Gaussian Mixture Model [18]
with mw components.

3) Transition Kernel: As the assumptions about {Ai} are
all discrete distributions, we can separate the transition kernels
into different situations to make analysis easier.

Consider sum window in Binomial assumption as the
example, suppose S(Wi) = n, which means Wi is in the
n-th Gaussian component of GMM, the distribution of the n-th
Gaussian component is N (nµ, nσ2).

Since the next state Wi+1 contains records from the (i+1)-
th to (i + w)-th timestamps. the difference between Wi and
Wi+1 only depends on the first item of current state and the
newly-incoming item, i.e. the i-th and the (i+ w)-th records.
In this situation, S(Wi+1) can only be n − 1, n and n + 1.
The transition kernel of this situation can be separated into
four components as follows:

1) both the first item of current state and the newly-incoming
item exist, i.e. Ai = 1 and Ai+w = 1, then S(Wi+1) = n.

2) the first item of current state exists and the newly-incoming
item does not exist, i.e. Ai = 1 and Ai+w = 0, then
S(Wi+1) = n− 1.

3) the first item of current state does not exist and the newly-
incoming item exists, i.e. Ai = 0 and Ai+w = 1, then
S(Wi+1) = n+ 1.

4) both the first item of current state and the newly-incoming
item do not exist, i.e. Ai = 0 and Ai+w = 0, this situation
is special, the state will not transfer.

Abuse Bw(x) to represent the probability of v = x for a
random variable of v ∝ B(w, p) (where p is already given).
The probability Ai = 1 given S(Wi) = n is

P (Ai = 1|S(Wi) = n) =
B1(1)Bw−1(n− 1)

Bw(n)
=
n

w
(7)

and the probability Ai+w = 1 is independent with Wi

P (Ai+w = 1) = B1(1) = p (8)

The above two probabilities base on Binomial assumption
but not sum window.

Note that in the transition process,
∑w−1
n=1 Ai+n · Bi+n is

kept into the next state, we name it with kept value. Abuse
Nn(x) to represent the probability of v = x for a random



variable of v ∝ N (nµ, nσ2). When Wi = x, if Ai = 1, the
expectation of kept value is:

Ek(

w−1∑
n=1

Ai+n ·Bi+n|Ai = 1,Wi = x, S(Wi) = n)

=

∫ ∞
−∞

y
N1(x− y)Nn−1(y)

Nn(x)
dy

=
n− 1

n
x (9)

The result is intuitive since each of those n records are i.i.d.
Otherwise if Ai = 0, it is obvious that kept value is x.

The newly-incoming state Ai+w ·Bi+w is independent with
Wi as well as the kept value. For sum window the next state
is the sum of Ai+w ·Bi+w and kept value.

Now use the similar method to make a brief analysis of the
sum window with Poisson assumption. Since Ai+w ∈ [0,m],
there are (m + 1) ∗ (n + 1) situations in the transition from
Wi to Wi+1. The detail of there situations is omitted but can
be gotten easily.

Abuse Pw(x) to represent the probability of v = x for a
random variable of v ∝ P(w, p). Ai ∈ [0, n] given S(Wi) = n,
and the probability of each situation is

P (Ai = a|S(Wi) = n) =
P1(a)Pw−1(n− a)

Pw(n)

=
n!(w − 1)n−a

a!(n− a)!wn
(10)

where a ∈ [0, n]. And the probability Ai+w = b is independent
with Wi as

P (Ai+w = b) = P1(b) =
pb

b!
e−p (11)

Above two probabilities base on Poisson assumption but not
sum window. The expectation of kept value is correspondingly
n−a
n x.
The expectation of kept value for average window with both

assumptions can also be easily gotten with similar methods.
We will use them directly in the following sections without
proof.

Overall, the transition kernels of those Markov Chains are
very complex. But we do not need to give an analytical
expression of the transition kernel in this framework.

B. Aggregation Estimation
The aim of this Section is to estimate a possible area of

mentioned three aggregators on the sliding window model.
Since both the sliding windows are modeled as Markov

Chain with stationary distribution in GMM form, without
loss of generality, consider a stationary distribution π =∑mw
n=0 anN (bnµ, cnσ

2),
∑mw
n=0 an = 1 and an > 0. Let

b =
∑mw
n=0 anbn and the mean value of this distribution

µ = bµ.
Denote {Wn

i }, n ∈ [0,mw] as a subsequence which contains
all the elements in {Wi}1≤i≤` where S(Wi) = n, obviously
the distribution of {Wn

i } belongs to the n-th component of
given GMM. Note that Wn

i ∈ [bnC, bnC] holds for both sum
window and average window, we call it real bound.

1) Average Value: Special cases for average aggregation
that we are able to write the value directly are list as follows:
• The average aggregation for sum window with Always

assumption is wµ.
• The average aggregation for average window with Always

assumption is µ.
Only Binomial and Poisson assumptions are taken into account.

Take average window with Poisson assumption as an
example. Define τ , κ and φ as follows:

τ = |µ− C| ∨ |C − µ| (12)

κ =

mw∑
n=0

n∑
a=0

m∑
b=0

an
n!(w − 1)n−a

a!(n− a)!wn
pb

b!
e−p

(n− a)
n− a+ b

(13)

φ =

mw∑
n=0

n∑
a=0

m∑
b=0

an
n!(w − 1)n−a

a!(n− a)!wn
pb

b!
e−p

b

n− a+ b
(14)

and then let

λ =

√√√√∑mw
n=0 anκ

2
(
cnσ2 + (bn − b−φ

κ )2µ2
)

∑mw
n=0 an

(
cnσ2 + (bn − b)2µ2

) (15)

Now with a given p-value ρ the following inequality
mw∑
n=0

anbn`µ−
mw∑
n=0

bnτ

√
2α(λ)an` log

2

1− ρ

≤
∑̀
i=1

Wi ≤ (16)

mw∑
n=0

anbn`µ+

mw∑
n=0

bnτ

√
2α(λ)an` log

2

1− ρ

holds with probability at least ρ and α : λ 7→ (1 + λ)/(1− λ).
The derivation is in the Supplement. κ and φ of other

windows and assumptions can be derivated by similar method.
Recall that if S(Wi) = 0, this state will not be accounted

as there is no record in this timestamp. Thus we get

AGGavg(W (C, w)) =
∑`
i=1Wi∑mw
n=1 an`

(17)

Note that if an` is small enough to satisfy the inequality
an` < 2α(λ) log 2

1−ρ , the estimated bound in the n-th
component will exceed the real bound [anbn`C, anbn`C]. So
it is still necessary to use real bound to bound the estimated
bound in (16) for each component.

2) Max Value: A series of theoretical research focuses on the
EVT of stochastic process or Markov Chain. The asymptotic
property with the extreme value of corresponding i.i.d sequence
has been proved. Let {Xi}1≤i≤` denote a stationary sequence
with marginal distribution function F . For large ` and u, it is
typically the case that

P (max(X1, · · · , X`) ≤ u) ≈ F (u)nθ (18)

where θ ∈ [0, 1] is a constant for the process known as the
extremal index.



Some works like [19] and [20] focus on the calculation of
extremal index for general Markov Chain. For some specific
situations, θ has close-form solution. But to our case, the
calculation of θ depends on the iteration of integral and
convolution, it is too expensive to solve it. Even though we do
not apply the EVT for general Markov Chain, these works are
still useful for other types of sliding windows like max, which
can be modeled with Gumbel distribution.

Research on EVT of stationary Gaussian sequence is sum-
marized in [21]. As is proved in [22], for stationary Gaussian
sequence {Xi} with Gaussian distribution N (bnµ, cnσ

2) as its
stationary distribution, define {αi}, {βi} and {γi} as follows:

αi = (2 log i)−
1
2 (19)

βi = (2 log i)
1
2 − 1

2
(2 log i)−

1
2 (log log i+ log 4π) (20)

γi = EX0Xi (21)

below asymptotic holds if limi→∞ γi log i = 0:

P {max(X1, · · · , Xi) ≤ µ+ σ(αix+ βi)} → e−e
−x

(22)

Note that all {Wn
i }, n ∈ [0,mw] are stationary Gaussian

sequences, while the transition kernel of {Wn
i } is much more

complex than {Wi}. The length for {Wi} is asymptotic to be
`n → an`.

In our case, γi, i.e. the corelationship of {W0} and {Wi},
satisfies γi = 0,∀i > w since they are in fact independent.
Thus limi→∞ γi log i = 0 holds for all {Wn

i }.
An asymptotic bound for the max value of {Wn

i } can be
estimated with 2 given p-values ρl < ρr as:

bnµ+
√
cnσ(α`n log(1/ log

1

ρl
) + β`n)

≤ max({Wn
i }) ≤ (23)

bnµ+
√
cnσ(α`n log(1/ log

1

ρr
) + β`n)

The bound for the max value of {Wi} can be gotten by:

max({Wi}) = max(max({W 1
i }), · · · ,max({Wmw

i }))
(24)

And, of course, the max value for each {Wn
i } can only be

in [bnC, bnC].
3) Min Value: The min value can be converted into the

estimation of max value as −max({−Wi}). Simply use −bn
instead of bn to get the stationary distribution of {−Wi}. And
the real bound of max value of {−Wi} is [−bnC,−bnC].

C. Feature Selection

In this framework we simply use Random Forest as the
measure to rank and select features since it returns the
feature importance in percentage and runs rapidly. Another tree
learning models, e.g. XGBoost [23] and LightGBM [24], are
also competent. In fact, this framework does not make many
requests to the feature selection method.

The value bound, which can be treated as the distribution,
of each feature in Tf is estimated with the above steps.

Bagging [25] strategy strongly enhances the generalization
ability of learning algorithms by resampling from a given
distribution. As we finally get the estimated distribution but
not explicit value, similar thought is applied to improve the
accuracy of this method.

A fake Tf is sampled from the confidence bound and the
importance by percent of features is stored. Repeat this many
times and finally output the average importance as the basis to
select features.

D. Complexity

The major time cost in this scenario is to scan table Ta. The
first brute-force method to generate real Tf is to cut sub frames
by time and then perform calculation iteration. The iteration
increases linearly with `. The second method takes advantage
of the sparsity of Ta, Ta is sorted by foreign key and time,
the iteration only operates a few nearest samples in the current
scanning timestamp. [26] proposes some optimization on time
and space complexity about the iteration, the iteration only
increases linearly with the count of records.

In our proposed method, the count of records and timestamps
are parameterized into the close-form solution, so the complex-
ity of estimation is not related to them. In all the estimation
process of 3 aggregators, the calculation is separated into mw
components. Suppose there are f features in Ta and e entities
in Te. The time complexity of this method in given period w
and corresponding m is

O = O(efwm) (25)

But note the calculation of (13) and (14). These two equations
are both the sum of a tensor with mw∗mw2 ∗m elements, while
some intermediate results can be summed before multiplication
to reduce memory cost. The time complexity of this calculation
is O(efw2m3) while the space complexity is O(efw2m2).
Under normal circumstances, this operation only takes a small
part of time cost, but in some extreme cases, i.e. w and m are
very large, the time and memory consumption of this operation
will be quite large. In Supplement, we provide an alternative
approach and corresponding analysis to solve this problem.

IV. EXPERIMENTS

Recall that we have not found an existing approach to do
feature selection from original time series tables. As there is
no suitable baseline to compare with, the experiment focus on
the accuracy and speed comparison with the explicit generation
of real Tf .

A. Setting

We set up experiments with mentioned 6 sliding window
aggregators on 5 open datasets listed in Table I. Parameters
are set as ρ = 0.9, ρl = 0.05, ρr = 0.95. Given some periods,
we firstly wash the original datasets and drop some useless
features, and then estimate the importance of features by this
framework, finally, we generate real Tf to get the actual feature
importance.



TABLE I
DATASETS IN EXPERIMENTS.

Dataset Entities Records Classes
Tianchi1 20000 1830386 2
PLAsTiCC2 7848 1421705 14
NFL3 25043 1024164 751
MotionSense4 360 1412864 6
Gas Sensors5 100 928991 3

1https://tianchi.aliyun.com/competition/entrance/231607/information
2https://www.kaggle.com/c/PLAsTiCC-2018

3https://www.kaggle.com/zynicide/nfl-football-player-stats
4https://www.kaggle.com/malekzadeh/motionsense-dataset

5http:
//archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring

Fig. 3. Accuracy of output features selected by percentage. The accuracy is
calculated by the count of features whose actual rank and estimated rank are
both in the top n percent divided by the count of features whose actual rank
is in the corresponding place.

The period settings, assumptions, max appearance limit m
and the count of output features, timestamps are listed in
Table II. Tianchi dataset is special since it is an insurance
dataset, so the period is set to follow human behavior period,
i.e. week, half a month, one month and two months.

The implement of RandomForest in scikit-learn [27] is used
to do the final feature selection step. Note that the curse
of dimension [28] exists in MotionSense and Gas sensors
datasets, so the count of trees is set as 5000 to return a stable
feature importance list in these two datasets. While for other
datasets, the count of trees is 100 while the ensemble count is
10.

The platform is OSX laptop with 4C8T Intel Core i7@2.2
GHz CPU and 16GB RAM.

B. Accuracy

Fig. 3 shows the accuracy of features selected by importance
rank percentage. In Tianchi, NFL and Gas sensors datasets,
the accuracy increases quickly and achieves 0.8 in the top 20%
features. Performance in MotionSense is to some extent worse,
but still achieves 0.7 in the top 25% features. In PLAsTiCC
the result is worse but achieves more than 0.6 from the start.

As the count of features produced by PLAsTiCC is small, the
accuracy has obvious fluctuation.

Table III lists the metric of relative error between estimated
importance and actual importance by quartiles. The estimated
importance is very close to the actual importance in PLAsTiCC.
We think it is the count of features that reduce the accuracy
in this dataset.

We set up experiments in datasets from different domains,
with different features distribution, class distribution, different
sliding window periods, different assumptions, and among
which MotionSense and Gas sensors datasets are sensor data
series, which does not follow the basic assumption since the
records are strongly related in the time dimension. From the
metric, we can see this framework achieves a high accuracy,
the relative error of estimated importance is small for most
features. With this accuracy, we can easily use this framework
to estimate the importance and generate a bit more features
than expected count to cover the real important features.

C. Speed

We implement the two brute-force methods mentioned
in Section III-D. Method 1 is the cutoff time feature of
FeatureTools1, which is the implement of Deep Feature
Synthesis mentioned in Section II. Method 2 is implemented
with Pandas2. And our method is implemented with Numpy3

to keep the same iteration efficiency. The count of trees to
evaluate feature importance is 100 for all, while other settings
keep the same.

Table IV list the time cost of end-to-end evaluation of three
methods. Since the window related functions of Pandas do not
support duplicated time index, the time cost data in Tianchi
dataset is omitted.

The performance obeys the analysis in Section III-D, with the
increase of count of timestamps and records, the advance of our
proposed method grows. The major part of time consumption
of the estimation process is concentrated in sliding windows
with large w and m. If we remove the period setting w = 60,
the end-to-end time cost of our method in Tianchi dataset
reduces to 860 seconds.

For datasets with small e, f , w and m, the major time cost is
the feature selection. The estimation process of sliding window
aggregators only consumes 0.15 seconds in Gas sensors,
while the calculation process of feature importance takes 1.3
seconds. There is still some space for optimization about feature
importance algorithm.

D. Factor Analysis

We set up a control experiment to compare the effect of
ensemble. Due to lack of space, Fig. 4 only provide the
comparison in Gas sensors dataset, and appearance is similar
in other datasets. The total evaluation is same to be 5000
trees, while the ensemble count and the count of trees in each
ensemble is different.

1https://www.featuretools.com/
2https://pandas.pydata.org/
3https://numpy.org/

https://tianchi.aliyun.com/competition/entrance/231607/information
https://www.kaggle.com/c/PLAsTiCC-2018
https://www.kaggle.com/zynicide/nfl-football-player-stats
https://www.kaggle.com/malekzadeh/motionsense-dataset
http://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
http://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
https://www.featuretools.com/
https://pandas.pydata.org/
https://numpy.org/


TABLE II
DETAIL SETTINGS OF DATASETS IN EXPERIMENTS.

Dataset Resample Frequency Timestamps Assumption m Periods Features
Tianchi 1 day 352 Poisson 10 [7, 15, 30, 60] 984
PLAsTiCC 1 day 731 Poisson 3 [3− 10] 144
NFL 1 year 68 Poisson 20 [3− 10] 1776
MotionSense 1 second 16424 Always 1 [10, 20, ..., 100] 720
Gas Sensors 1 second 15393 Always 1 [10, 20, ..., 100] 600

TABLE III
QUARTILES OF RELATIVE ERROR∗ BETWEEN ESTIMATED AND ACTUAL

FEATURE IMPORTANCE.

Dataset 25% 50% 75%
Tianchi -13% 12% 32%
PLAsTiCC -13% -5% 7%
NFL 2% 19% 41%
MotionSense -17% -5% 7%
Gas Sensors -8% 19% 46%

∗The relative error is calculated by the difference between estimated
importance and actual importance divided by the actual importance.

TABLE IV
END-TO-END EXECUTION TIME COST.

Dataset Ours DeepFeatureSynthesis Brute Force
Tianchi 1629s 5586s
PLAsTiCC 26.6s 4492s 315s
NFL 938s 2410s 1590s
MotionSense 3.9s 23h 59s
Gas Sensors 1.9s 9h 24s

Obviously ensemble strategy enhances the accuracy to some
extent, and it follows the law of diminishing marginal utility. It
is better to do more ensembles when total evaluation is certain.
Compared with the performance of the original experiment (10
ensembles and 5000 trees), the performance when the ensemble
count is 10 or 50 is similar, we think it reaches the supermum.

In this framework, when dataset and periods are certain,
the only variables except for ensemble count are ρ, ρl and

Fig. 4. Accuracy of different ensemble settings in Gas sensors dataset.

ρr. From the behavior we think the supermum is certain with
certain ρ, ρl and ρr. Unfortunately, there is not enough theory
to describe the relationship between the supermum and those
variables. And the experiments with different ρ, ρl and ρr
have not reflect some intuitive rules. Thus we fail to propose
a simple and efficient strategy to determine the value of those
variables to optimize the supermum. Maybe research about the
influence on the separability of features by disturbance can
help this topic.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a framework to fill the gap of
the end-to-end automatic sliding window aggregate feature
selection for time series. This framework encodes the ac-
tions of entities into distributions and selects features from
distributions directly. Even though this framework depends
on some distribution assumptions, those assumptions are not
strong and they greatly simplify the theoretical derivation. The
employment of ensemble strategy guarantees the accuracy of
feature importance estimation. And the complexity of this
framework is low in most circumstances. The type of sliding
windows and aggregators are easy to extend with existing
theories about stochastic process. From the experiments, the
empirical performance of this framework is good enough to
be applied in real-world scenarios. With its low complexity, it
is able to process a mass of period settings and features.

But there are still some challenges call for further research.
The mistake bound is not guaranteed in theory, and how do the
factors and datasets influence the accuracy is also unknown.

VI. SUPPLEMENT

A. Derivation of Average Value Estimation

Fan et al. [11] have proved following Hoeffding’s lemma:

Pπ

(∣∣∣∣∣
n∑
i=1

fi(Xi)−
n∑
i=1

π(fi)

∣∣∣∣∣ > ε

)
≤ 2e

− α(λ)−1ε2

2
∑n
i=1

(ui−li)2/4

(26)
holds for general Markov Chain {Xi}1≤i≤n with invariant
measure π and spectral gap 1− λ > 0, fi : R 7→ [ui, li] is a
time-dependent bounded function, α : λ 7→ (1 + λ)/(1 − λ)
and

π(f) =

∫
f(x)π(dx) (27)

(27) can be viewed as the expectation of f(x), x ∝ π. Also it
is is the sharpest bound it can be in theory for general Markov
Chain



In our case, if the bound should be symmetry by the mean
value of a Gaussian distribution to make π(f) integrable. Let
τ = |µ−C|∨ |C −µ|, and design time-dependent map function
fn for the n-th component of given GMM as:

fn(x) =

 bnµ− bnτ x ≤ bnµ− bnτ
x bnµ− bnτ < x < bnµ+ bnτ
bnµ+ bnτ x ≥ bnµ+ bnτ

(28)
Thus

π(fn) =

∫
fn(x)N (bnµ, cnσ

2)dx = bnµ (29)

∑̀
i=1

π(fi) =

mw∑
n=0

an`bnµ = b`µ (30)

un − ln = 2bnτ (31)

And fn(Wi) = Wi holds in given samples from C since the
actual observations in the n-th Gaussian component Wn

i ∈
[bnµ− bnτ, bnµ+ bnτ ] for both sliding windows.

Transition kernel (from x to y) of our Markov Chain cannot
be transformed into a León-Perron operator (see Definition 3.4
in [11]). So the spectral gap λ can only be gotten by solving
the equation (see Definition 3.6 in [11]) as follows:

λ := sup

{
‖
∫
h(y)P (x, dy)‖π
‖h(x)‖π

}
(32)

where h is any real-valued B-measurable function h : R 7→ R,
π(h) = 0, h 6= 0. And the inner product of a function h on π
is defined as

‖h(x)‖π =

√∫
h(x)h(x)π(dx) (33)

The explicit value of λ can be calculated by following steps.
Use map function h : x 7→ x− µ to satisfy π(h) = 0, h 6= 0.
Firstly we calculate a useful integral∫ ∞

−∞
(x− kµ)(x− jµ)N (bnµ, cnσ

2)dx

=cnσ
2 + (bn − k)(bn − j)µ2 (34)

holds for arbitrary k and j. And it is easy to use (34) to
calculate ‖h(x)‖π:

‖h(x)‖π =

√√√√mw∑
n=0

an
(
cnσ2 + (bn − b)2µ2

)
(35)

and
∫
h(y)P (x, dy):∫
h(y)P (x, dy) =

∫
yP (x, dy)− µ

∫
P (x, dy)

=

∫
yP (x, dy)− µ (36)

The first term of (36) is the expectation of Wi+1 given Wi = x.
As analyzed before, this expectation can be separated into
discrete situations by Ai and Ai+w. It is composed with the

TABLE V
EXPECTATION OF Wi+1 GIVEN Wi = x WHEN S(Wi) = n WITH Binomial

ASSUMPTION.

Window Situation Coeffient Expectation
sum 1 n

w
p

(n−1)
n

x+ µ

sum 2 n
w
(1− p)

(n−1)
n

x
sum 3 (1− n

w
)p x+ µ

sum 4 (1− n
w
)(1− p) x

avg 1 n
w
p

(n−1)x+µ
n

avg 2 n
w
(1− p) x

avg 3 (1− n
w
)p nx+µ

n+1
avg 4 (1− n

w
)(1− p) x

expectation of kept value and the expectation of incoming
timestamp in each situation since they are independent.

The transition kernel is formed with four parts for Binomial
assumption, Table V lists the expectation of Wi+1 given Wi =
x when S(Wi) = n, while the Coefficient column is the
probability of the corresponding situation. And

∫
h(y)P (x, dy)

is the weighted sum of those four situations.
For Poisson assumption, take average window as an example.

Consider Ai = a and Ai+w = b with arbitary a ∈ [0, n] and
b ∈ [0,m] when S(Wi) = n, the expectation of Wi+1 given
Ai = a, Ai+w = b and Wi = x is

E(Wi+1|Ai = a,Ai+w = b,Wi = x, S(Wi) = n)

=
(n− a)
n− a+ b

x+
b

n− a+ b
µ (37)

The corresponding probability of this situation is described in
transition kernel section.

Define κ and φ to represent the final coefficient of x and µ
in (36) as ∫

h(y)P (x, dy) = κx− (b− φ)µ (38)

For average window with Poisson assumption

κ =

mw∑
n=0

n∑
a=0

m∑
b=0

an
n!(w − 1)n−a

a!(n− a)!wn
pb

b!
e−p

(n− a)
n− a+ b

(39)

φ =

mw∑
n=0

n∑
a=0

m∑
b=0

an
n!(w − 1)n−a

a!(n− a)!wn
pb

b!
e−p

b

n− a+ b
(40)

Other situations are similar. In fact, Binomial assumption can
be treated as special case with a ∈ [0, 1] and b ∈ [0, 1].

The inner product of
∫
h(y)P (x, dy) can now be gotten:

‖
∫
h(y)P (x, dy)‖π

=

√√√√mw∑
n=0

anκ2
(
cnσ2 + (bn −

b− φ
κ

)2µ2

)
(41)

And then λ is gotten by (41) and (35).



Fig. 5. Accuracy comparison between original and degenerated method in
NFL.

Rewrite (26) with given p-value ρ, (31) and (30), inequality
mw∑
n=0

anbn`µ−
mw∑
n=0

bnτ

√
2α(λ)an` log

2

1− ρ

≤
∑̀
i=1

Wi ≤ (42)

mw∑
n=0

anbn`µ+

mw∑
n=0

bnτ

√
2α(λ)an` log

2

1− ρ

holds with probability at least ρ.

B. Alternative Approach of λ

The fourth situation, i.e. Ai = 0 and Ai+w = 0, is special
since the state will not transfer. Let B be the Borel σ-algebra
over real space R, then we can write the transition kernel
directly for this situation as:

P4(Wi, X) = P (Wi+1 ∈ X|Wi),∀X ∈ B,∀i ≥ 0

= I(Wi ∈ X),∀Wi ∈ R,∀X ∈ B (43)

where I is the indicator operator, you can find further descrip-
tion in [11].

A degenerated method is to use the probability of the fourth
situation. For Binomial assumption, the spectral gap satisfies

λ > λ =

N∑
n=0

(1− n

N
)(1− p) (44)

(see Definition 3.4 in [11]). As the coefficient function α−1

of (26) is strictly decreasing with λ, a tighter bound is gotten
by replacing λ with λ. Since the product of big matrices is
omitted, this approach eliminates the high-order component of
the time and space complexity.

But in general, the closer λ is to 0, the closer λ is to 1 under
Binomial assumption and Poisson assumption. Which means λ
can be many times larger than λ when p is large, therefore the

estimated bound will be many times tighter than it should be.
So the influence of this approach can not be estimated simply.

We test the performance in three datasets whose assumption
is Poisson. P-value ρ = 0.999 to weaken the influence. The
metric of λ is similar to the original λ, while time cost decreases
by a some proportion. We show the result in NFL in Fig. 5.

REFERENCES

[1] H. T. Lam, J. M. Thiebaut, M. Sinn, C. Bei, T. Mai, and O. Alkan,
“One button machine for automating feature engineering in relational
databases,” 2017.

[2] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors,” in IEEE International Conference
on Data Science & Advanced Analytics, 2015.

[3] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A
review,” Documentación Administrativa, pp. 313–334, 2014.

[4] L. C. Molina, L. Belanche, and Àngela Nebot, “Feature selection
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