
Hide and Mine in Strings: Hardness and Algorithms

Giulia Bernardini1, Alessio Conte2, Garance Gourdel3, Roberto Grossi2,4, Grigorios Loukides5

Nadia Pisanti2,4, Solon P. Pissis4,6,7, Giulia Punzi2, Leen Stougie4,6,7, Michelle Sweering6

1University of Milano - Bicocca, Italy
2Università di Pisa, Italy

3Inria Rennes, École normale supérieure, ENS Paris-Saclay, France
4ERABLE Team, France

5King’s College London, United Kingdom
6CWI, The Netherlands

7Vrije Universiteit, The Netherlands
1giulia.bernardini@unimib.it, 2{alessio.conte,roberto.grossi,nadia.pisanti}@unipi.it, giulia.punzi@phd.unipi.it

3garance.gourdel@ens-paris-saclay.fr, 5grigorios.loukides@kcl.ac.uk, 6{solon.pissis,leen.stougie,michelle.sweering}@cwi.nl

Abstract—We initiate a study on the fundamental relation
between data sanitization (i.e., the process of hiding confidential
information in a given dataset) and frequent pattern mining, in
the context of sequential (string) data. Current methods for string
sanitization hide confidential patterns introducing, however, a
number of spurious patterns that may harm the utility of
frequent pattern mining. The main computational problem is
to minimize this harm. Our contribution here is twofold. First,
we present several hardness results, for different variants of this
problem, essentially showing that these variants cannot be solved
or even be approximated in polynomial time. Second, we propose
integer linear programming formulations for these variants and
algorithms to solve them, which work in polynomial time under
certain realistic assumptions on the problem parameters.

Index Terms—data privacy, data sanitization, knowledge hid-
ing, frequent pattern mining, string algorithms

I. INTRODUCTION

A string is a sequence of letters over some alphabet Σ.

Strings are commonly used to represent individuals’ data in

domains ranging from transportation to web analytics and

bioinformatics. For example, a string can represent a user’s

location profile, with each letter corresponding to a visited

location [28], a user’s purchasing history, with each letter cor-

responding to a purchased product [2], or a patient’s genome

sequence, with each letter corresponding to a DNA base [20].

Mining patterns from such strings is thus useful in a gamut of

applications, including route planning [8], marketing [2], and

clinical diagnostics [20]. To support these applications while

preserving privacy, strings representing individuals’ data are

often being disseminated after sanitization [1], [27].

In this paper, we study the fundamental relation between

data sanitization [1], [4], [27] (also known as knowledge
hiding) and frequent pattern mining [19], [22], [25]. The

objective of frequent pattern mining in strings is to obtain

all patterns occurring frequently enough in a string, or in

a collection of strings. There may also be constraints for

the mined strings (e.g., to be of fixed length k [3], [9]).

In string sanitization, the privacy objective is to transform a

string to ensure that a given set of sensitive patterns, modeling

confidential knowledge, does not occur in the sanitized version

of the string; sensitive patterns are selected based on domain

expertise [4], [15], [27]. This transformation may incur some

utility loss that should be minimized. Recent methods achieve

this using combinatorial algorithms [4], [5]. Let W be the

input string over Σ, k > 0 be an integer, and S be the set of

sensitive length-k substrings. These methods construct a string

X such that: (I) X contains no element of S as a substring;

(II) the total order and thus the frequency of all non-sensitive

length-k substrings of W is preserved in X; and (III) the

length of X is minimized [4], or the edit distance between

W and X is minimized [5]. These methods work by copying

carefully selected substrings of W into X and separating them

by a special letter # /∈ Σ.

Example 1. Let W = GACAAAAACCCAT, k = 3, and the

set of sensitive patterns S = {ACA,CAA,AAA,AAC,CCA}.
Further, let XTR = GAC#ACC#CCC#CAT, XMIN =
GACCC#CAT and XED = GAC#AA#ACCC#CAT be three

sanitized strings. All three strings contain no sensitive pattern
and preserve the total order and thus the frequency of all non-

sensitive length-3 patterns of W : XTR is the trivial solution

of interleaving the non-sensitive length-3 patterns of W with

#; XMIN is the shortest possible such string [4]; and XED is

a string closest to W in terms of edit distance [5].

Unfortunately, as noted in [4], the occurrences of # reveal

the locations of sensitive patterns and thus must be ultimately

replaced by letters of the original alphabet Σ. This replacement

gives rise to another string over Σ, which we denote by Z.

However, this replacement may create spurious patterns that

could not be mined from X at a minimum frequency threshold

τ but would be mined from Z at the same frequency threshold.

These patterns are referred to as τ -ghosts.

We investigate the crucial interplay between # replacements

and τ -ghosts, posing here the following question that, to the

best of our knowledge, has not been addressed: Given a
string X containing #’s, a positive integer k, and a positive
integer τ , how should we replace the #’s in X with letters in
Σ, so that the number of length-k τ -ghosts in the resulting
string Z is minimized? This question helps preserving the

924

2020 IEEE International Conference on Data Mining (ICDM)

2374-8486/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDM50108.2020.00103

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on May 26,2022 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

accuracy of frequent pattern mining and tasks based on it (e.g.,

pattern-based clustering [17] and classification [24], as well as

sequential rule mining [26]) that we may not know a priori.

The above question is also of quite general interest, as it

applies to sequential datasets that may have occurrences of a

special letter for a variety of reasons beyond data sanitization.

This special letter, denoted here by # for consistency, rep-

resents some information that is missing from these datasets.

For instance, in genome sequencing data, # corresponds to

an unknown DNA base [18]; in databases, # represents a

value that has not been recorded [7], [12]; and in masked

data outputted by other privacy-preserving methods [6], # is

introduced deliberately to achieve their privacy goal.

Like in data outputted by sanitization methods, the oc-

currences of # in other string datasets often have to be

replaced. For example, since the DNA alphabet consists of four

letters (A, C, G, and T), off-the-shelf algorithms for processing

DNA data use a two-bits-per-base encoding to represent the

DNA alphabet. In order to use these algorithms with input

strings containing unknown bases, we would have to amend

them to work on the extended alphabet {A,C,G,T,#}. This

solution may have a negative impact on the time efficiency of

the algorithms or the space efficiency of the data structures

they use. Thus, instead, in several state-of-the-art DNA data

processing tools (e.g., [21]), the occurrences of # are replaced

by an arbitrarily chosen letter from the DNA alphabet, so

that off-the-shelf algorithms can be directly employed. This,

however, may introduce a large number of spurious patterns,

negatively affecting the accuracy of DNA analyses.

Replacing the occurrences of # in a database is often

needed to be able to perform frequent pattern mining with off-

the-shelf algorithms [12]. To this end, the occurrences of # are

commonly replaced by some statistical estimate, such as the

most frequent value [12], [16]. However, such a replacement

does not generally maintain the accuracy of frequent pattern

mining, since it may introduce many spurious patterns [12].

Example 2. Let again W =GACAAAAACCCAT, k = 3, and

S = {ACA,CAA,AAA,AAC,CCA}. Further, let the frequency

threshold be τ = 2. Note that the frequency of all non-sensitive

length-3 patterns in W is preserved in all three sanitized strings

XTR = GAC#ACC#CCC#CAT, XMIN = GACCC#CAT, and

XED = GAC#AA#ACCC#CAT. Replacing, however, all #’s

with G would create τ -ghost GAC both in XTR and in XED.

Contributions. To our knowledge, there does not exist a

general solution to the question we pose here that simultane-

ously guarantees effectiveness and efficiency. In this work, we

provide compelling evidence as to why this is the case. Within

the string sanitization context, we also provide algorithms for

answering this question. Specifically:

1) We embark on a theoretical study to understand the relation

between replacing #’s and creating τ -ghosts. In particular, we

define the following problems and examine their hardness:

• HMD (Hide and Mine decision): This is the core decision

version of the problem asking whether or not we can

replace all #’s in X , so that no sensitive pattern and

no τ -ghost occurs in Z. Deciding this may allow for

sanitizing X with no utility loss in frequent pattern

mining. We show that HMD is strongly NP-complete
via a reduction from a variant of the well-known Bin

Packing problem [14] (see Section III). This is the most

technically involved part of the paper, as the provided

reduction is highly non-trivial.

• HM (Hide and Mine): This is the optimization version of

HMD asking how we can replace all #’s, while ensuring

that no sensitive patterns and a minimal number of τ -

ghosts occur in Z. This would minimize the utility loss

in frequent pattern mining. HM is clearly NP-hard as a

consequence of HMD being NP-complete, but we also

show that it is hard to approximate.

• HMMT (Hide and Mine minimum threshold): Given a pa-

rameter τ , this problem asks for the minimum frequency

threshold τ1 ≥ τ for which no sensitive pattern and no τ1-

ghost occurs in Z. Solving HMMT would imply no utility

loss in frequent pattern mining at a higher frequency

threshold τ1 that is as close as possible to τ . We show

that HMMT is (NP-hard and) hard to approximate.

The hardness (see Section III) and inapproximabilty (see

Section IV) results for our problems provide solid evidence for

the lack of polynomial-time exact or approximation algorithms

for these problems and motivate our next contribution.

2) We develop exact algorithms for HMD and HM (see

Section V) that require polynomial time, under certain realistic

assumptions on the problem parameters:

• Exact algorithms based on an Integer Linear Program-

ming (ILP) formulation of HMD. The main idea is to

identify all length-k strings over Σ in X that may po-

tentially become τ -ghosts in Z, and then decide whether

each of the #’s can be replaced by a letter in Σ without

creating any sensitive pattern or any τ -ghost pattern in

Z. We prove that HMD is fixed-parameter tractable [11]

in most cases encountered in practice (e.g., when the

number of distinct letters in the string and the length k
of sensitive patterns are upper bounded by a constant).

• Exact algorithms based on an ILP formulation of HM.

This ILP formulation differs from the HMD formulation

in that it takes into account the number of τ -ghosts

created by replacing #’s, so as to minimize their number.

We prove that HM is fixed-parameter tractable in many

cases encountered in practice (e.g., when the length k of

sensitive patterns and the number of distinct patterns that

may become τ -ghosts are upper bounded by a constant).

II. PRELIMINARIES AND PROBLEM STATEMENT

An alphabet Σ is a finite nonempty set whose elements are

called letters. We also consider an alphabet Σ# = Σ ∪ {#},
where # is a special letter not in Σ. We fix a string X =
X[0] · · ·X[n − 1] of length |X| = n over Σ#. The set of

length-k strings over Σ is denoted by Σk. For two indices

0 ≤ i ≤ j < n, X[i . . j] = X[i] · · ·X[j] is the substring of X
that starts at position i and ends at position j of W . FreqX(U)
denotes the number of occurrences (starting positions) of string

925

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on May 26,2022 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

U as a substring of X . A prefix of X is a substring of X of the

form X[0 . . j], and a suffix of X is a substring of X of the form

X[i . . n−1]. A dictionary over Σ is a set of strings over Σ. The

dictionary used in our work is a set of length-k strings that do

not occur in X; we refer to these strings as sensitive patterns.

Any element of Σk that is not in this dictionary is referred to

as a non-sensitive pattern. In combinatorics on words, such a

dictionary is known as antidictionary and the sensitive patterns

are known as forbidden patterns (e.g., see [10]).

Problem 1 (HIDE & MINE (HM)). Given an integer k > 0, a

string X = X0#X1# · · ·#Xδ of length n over an alphabet

Σ#, with |Xi| ≥ k− 1, for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ > 0,

compute a function g : [δ] → Σ such that the following hold

for string Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I The number of strings U ∈ Σk, with FreqX(U) < τ and

FreqZ(U) ≥ τ in Z, is minimized.

II No S ∈ S occurs in Z.

Note that function g replaces each # by exactly one letter

from Σ. Condition |Xi| ≥ k − 1 means that any two #’s in

X are at least k positions apart. Thus, any length-k substring

X[i . . i+k−1] of X is affected by at most one # replacement.

The sanitization method of [4, Lemma 1] produces an X
satisfying this condition, for any set S ⊆ Σk, to guarantee

that the frequency of every non-sensitive pattern is preserved

in X . Thus, HM is directly applicable to the output of [4].

A string U ∈ Σk with FreqX(U) < τ and FreqZ(U) ≥ τ is

referred to as τ -ghost. To prove NP-completeness, we consider

the decision variant HMD of HM, which asks to decide if there

exists any function g : [δ]→ Σ such that the following hold:

I No τ -ghost occurs in Z.

II No S ∈ S occurs in Z.

III. HMD IS NP-COMPLETE

Problem HMD is clearly in NP. In this section, we show it

to be strongly NP-complete via a reduction from a variant of

Bin Packing [14].

A. The UNIQUE-WEIGHTS BIN PACKING problem

The BIN PACKING (BP) problem is defined as follows.

Given three positive integers, M (number of bins), B (ca-

pacity of every bin), and N (number of items), and a vector

[w1, . . . , wN] of positive integers (the weights of the items),

BP asks whether we can partition the items into M subsets

(bins) without exceeding the capacity of any bin.

BP is strongly NP-complete [14], i.e., it is NP-complete

even when weights and bin capacities are bounded by a

polynomial function of N and M . We can thus use gadgets

whose size is proportional to the numerical values in the

instance IBP of BP, as if we were representing those numbers

in unary notation. To simplify the reduction, we assume there

are no items of weight 1 (they can be added at the end where

capacity is left), and that no two items have the same weight.

We refer to this variant as UNIQUE-WEIGHTS BIN PACKING

(UWBP). UWBP is also strongly NP-complete; we defer the

proof of this claim to the full version of the paper.

Lemma 1. UWBP is strongly NP-complete.

B. Overview of the Reduction from UWBP to HMD

For any UWBP instance, we construct in polynomial time

an instance of HMD that has positive answer if and only if

UWBP has positive answer. To this end, we will introduce

several gadgets which will serve to model the different con-

straints of UWBP. Each gadget consists of a string of length

2k − 1 over a specific alphabet: #, x, y, $, and a letter bi
for each i ∈ [M]. We will explain how all UWBP constraints

are linked to the gadgets. The gadget tij models whether item

j ∈ [N] is placed in bin i ∈ [M]:

tij = bi x . . . x︸ ︷︷ ︸
k−wj−1

bi . . . bi︸ ︷︷ ︸
wj−1

bi . . . bi︸ ︷︷ ︸
k−1

The structure models the weight of items placed in bin i:
when we replace the # with bi, we introduce wj occurrences

of bki . The gadget uij , together with tij and the set of forbidden

patterns, ensures that each item is placed in some bin:

uij = bi x . . . x︸ ︷︷ ︸
k−wj−1

bi . . . bi︸ ︷︷ ︸
wj−1

y . . . y︸ ︷︷ ︸
wj

x . . . x︸ ︷︷ ︸
k−wj−2

y

We link the filling of the ith bin with the number of

occurrences of bki . To limit the other non-sensitive patterns

flexibly, we then choose a value τ high enough, and lower the

available occurrences of each pattern by adding extra copies

of them at the end. Namely, we have k = maxj wj + 3 and

τ = max{M,B}+ 1.

The final instance of HMD is the concatenation of the

following patterns separated by the string $$:

1) tij , ∀i, j.

2) uij , ∀i, j.

3) τ −B− 1 occurrences of bki , ∀i (allowed occurrences of

bki model the capacity of bin i).

4) τ − 2 occurrences of bix
k−wj−1b

wj−1
i x, ∀i, j (only one

more occurrence of this pattern is allowed, and one is

created by replacing the # in tij or uij with x).

5) τ − M occurrences of ywj+1xk−wj−2y, ∀j (allowed

occurrences force us to replace at least one u·j with x
for each j, thus forcing us to use bij in the corresponding

tij gadget, i.e., placing each item in a bin).

The set S of sensitive patterns is carefully chosen to link

these gadgets, and consists of the union of the following sets:

1) {bi′bk−1
i | i, i′ ∈ [M], i′ 	= i}, which forbids putting a bi′

to replace the # in any tij , if i′ 	= i.
2) {biybk−2

i | i ∈ [M]}, which forbids putting a y to replace

the # in a tij .

3) {bi$bk−2
i | i ∈ [M]}, which forbids putting a $ to replace

the # in a tij .

4) {biywjxk−wj−2y | i ∈ [M], j ∈ [N]}, which forbids

putting any bi to replace the # in a uij .

926

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on May 26,2022 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

5) {bi$ywjxk−wj−2 | i ∈ [M], j ∈ [N]}, which forbids

putting a $ to replace the # in a uij .

It can be shown that this instance of HMD has positive

answer if and only if the original UWBP does, thus proving

our claim. We defer the details to the full version of the paper.

Theorem 1. HMD is strongly NP-complete.

IV. HM IS HARD TO APPROXIMATE

Given the hardness of HMD, we now shift our focus on

checking whether an approximately optimal solution of HM

can be obtained instead. Given any instance IM of a minimiza-

tion problem M , an algorithm is called an α-approximation,

for some α ≥ 1, if it runs in polynomial time in the size of IM
and always outputs a solution value Γ ≤ α ·OPT, where OPT

denotes the optimal value for IM . We start with the following:

Theorem 2. There is no α-approximation algorithm for HM,
for any α ≥ 1, unless P=NP.

Proof. Suppose by contradiction that an α-approximation al-

gorithm A existed for minimizing the number of τ -ghosts in

HM. We could then use A to solve HMD: the answer to

HMD would be positive (i.e., there would exist a function

g that creates 0 τ -ghosts) if and only if the answer of A was

Γ = 0 ≤ α · OPT = 0, which contradicts Theorem 1.

The reader may now wonder whether the problem becomes

easier should one relax the requirement for a fixed threshold
τ . Thus, the following problem arises naturally.

Problem 2 (HMMT). Given an integer k > 0, a string

X = X0#X1# · · ·#Xδ of length n over alphabet Σ#, with

|Xi| ≥ k − 1 for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ0 > 0,

compute the smallest integer τ1 ≥ τ0 so that there exists a

function g : [δ] → Σ, such that the following hold for string

Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I No U ∈ Σk, with FreqX(U) < τ1 and FreqZ(U) ≥ τ1
occurs in Z.

II No S ∈ S occurs in Z.

The practical rationale for considering HMMT is that it

could be useful if, for instance, τ1 is only slightly larger than τ
in a given HM instance. Unfortunately, we show that HMMT

is NP-hard, and it is even hard to approximate.

Theorem 3. HMMT is NP-hard.

Proof. We reduce HMD to HMMT as follows. Let IHMD be the

instance of HMD we would like to solve for some threshold

τ . We construct an instance of HMMT consisting of the X ,

k, and S from IHMD, and we also set τ0 = τ . We denote this

instance by IHMMT. The reduction takes linear time in the size

of HMD. We seek to find the minimum threshold τ1 ≥ τ0
such that no length-k substring of Z is a τ1-ghost. Then IHMD

has a positive answer if and only if the answer τ1 of IHMMT

is equal to τ0 = τ . The statement thus follows.

Observe that a pattern U is a τ -ghost if and only if

τ ∈ (FreqX(U),FreqZ(U)]. Therefore, the minimal number

of τ -ghosts is not monotonous in τ . On the contrary, the

minimal number of τ -ghosts is zero when τ = 0 and all

patterns are already frequent (i.e., they appear at least τ times),

or when τ > n and the threshold is so high that no pattern can

ever become a τ -ghost. In between, the minimal number of

τ -ghosts increases whenever τ equals the frequency of some

patterns in X , and then slowly decreases again. We will use

this behavior, and the fact that HMD is NP-hard, to construct

a string for which we cannot determine in polynomial time

whether τ1 = τ0 or τ1 > ατ0 (and for which we can prove

that τ1 	∈ [τ0 + 1, ατ0]), implying inapproximability.

Theorem 4. There is no α-approximation algorithm for
HMMT, for any α ≥ 1, unless P=NP.

Proof. Let X be an arbitrary string and S be the set of

sensitive patterns as defined in HMD. Further, let T be the

length-(k − 2) suffix of X and Z be a string obtained by

replacing the #’s of X . From this instance of HMD, we will

construct an instance of HMMT consisting of a string Y and

a set S ′ of sensitive patterns, so that if an α-approximation

algorithm existed for HMMT, we could decide HMD in

polynomial time. We define Y over Σ ∪ {#,&} to be

Y = X(&&T)τ0&(#T&)�(α−1)τ0�.

Let R be the set of all strings &sT , with s ∈ Σ. We define

the dictionary of sensitive patterns be S ′ = S ∪ R. Note

that we need to replace all #’s in (#T&)�(α−1)τ0� by &’s

in order not to introduce any sensitive patterns. However,

doing so increases the number of &T& patterns (and all

other newly created patterns) from τ0 to
ατ0�. Therefore,

if τ = τ0, then the number of τ -ghosts in Z equals that

in Z(&&T)τ0&(&T&)�(α−1)τ0�, because the additional new

patterns were already occurring at least τ times in Y . However

if τ0 < τ ≤
ατ0�, then there will always be at least one

τ -ghost, namely &T&. Recall that deciding HMD is NP-

complete. Therefore it is NP-complete to decide whether or

not τ1 = τ0 or τ1 >
ατ0�. We conclude that there exists no

α-approximation algorithm for HMMT, unless P=NP.

V. EXACT ALGORITHMS FOR HM

We resort to ILP to design exact algorithms for HMD and

HM. In particular, we show that both problems are fixed-

parameter tractable for several combinations of parameters.

We say that the length-(k− 1) substring U preceding an

occurrence of # in X , and the length-(k− 1) substring V
following it, form its context UV . Recall that there are δ
occurrences of # in X , and that any two occurrences are at

least k letters apart, so UV is in Σ2k−2. We assign to every

context UV a unique identifier (id). We write #i for # in

X if its context UV has id i. A string N ∈ Σk is critical if

it may become a τ -ghost, i.e., if an additional occurrence of

N can be created by replacing some # by a letter in Σ and

FreqX(N) ∈ [τ − kδ, τ − 1]. This is because the frequency of

N cannot increase by more than kδ, and the frequency of N

927

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on May 26,2022 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

in X must be less than τ for N to become τ -ghost. We assign

to each critical string N a unique id �, and denote it by N�.

We introduce the following parameters:

γ number of distinct contexts present in X;

δi number of occurrences of letter #i in X , for i ∈ [γ];
λ number of distinct critical length-k strings;

αi
�,j additional number of occurrences of N� introduced

by replacing a #i with a letter j ∈ Σ, for � ∈ [λ];
e� difference (τ − 1)− FreqX(N�), for � ∈ [λ].

Intuitively, e� is the budget we have for N�: the number of

its additional occurrences we can afford. Since replacing an

occurrence of #i by j ∈ Σ adds k new strings in Σk, αi
�,j

counts how many of them are equal to N�. Let xi,j be the

number of times we replace #i by j ∈ Σ, and let F ⊆ [γ]×Σ
be the set of forbidden replacements: (i, j) ∈ F if and only if

replacing #i by j introduces a sensitive pattern. To determine

whether there exists a way of replacing all #’s with letters

without introducing any sensitive patterns nor τ -ghosts, we

need to find a solution x ∈ Z
γ×|Σ| to the following problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F∑
i∈[γ],j∈Σ αi

�,jxi,j ≤ e� ∀� ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(1)

The first and fourth constraints ensure that each # is

replaced by exactly one letter, the second constraint that we

do not reinstate any sensitive patterns, and the third constraint

that we do not introduce any τ -ghosts. This is clearly an ILP

with m = γ|Σ| variables and at most 2m+λ+γ constraints.

The well-known algorithm by Megiddo [23] solves the ILP

problem in linear time in the number constraints (resp. vari-

ables) when the number of variables (resp. constraints) is upper

bounded by a constant. Hence, although HMD is NP-complete

in general, if appropriate subsets of parameters are bounded

by a constant, we can count on polynomial-time solutions.
To show that HMD takes polynomial time in certain cases,

let us start with a general preprocessing step. We construct

a static dictionary with O(1) access time of the letters in X
and the letters in strings of S . The value (id) of each key

(letter) is chosen from {1, . . . , k|S| + n}. This construction

can be done in O(n+ k|S|) time using perfect hashing [13].

We can thus lexicographically sort all length-k substrings of

X and all length-k strings in S (viewed as strings over letter

id’s) using radix sort in O(nk+ |S|k) time, and construct two

dictionaries, one for X and one for S, as follows. For X , we

construct a trie of all its non-sensitive length-k substrings. The

value of each key (non-sensitive pattern) is its multiplicity in

X . We also construct a trie of all strings in S in a similar

fashion (no multiplicities are relevant here, so no values are

stored). We store in both tries, for every node, the first letter

on each of its outgoing edges in a static dictionary with O(1)
access time [13]. Thus both trie dictionaries support O(k)
access time: if a length-k string Q is given as a query, we

first convert it to a string I(Q) of id’s in O(k) time using the

letter dictionary, and then search for I(Q) from the root of the

tries in O(k) time. The total construction time is O(nk+|S|k).

When δ = O(1), the brute-force algorithm checking all

possible ways to replace the #’s with letters of Σ runs in

polynomial time. There are |Σ|δ ways to replace the #’s. Each

of these ways generates δk new length-k strings for which

we have to check if they are sensitive or create a τ -ghost.

Checking if they are sensitive can be done using the trie of S
in O(k) time per each length-k string. Counting the additional

number of occurrences of each length-k substring of X can be

done using the trie of X in O(k) time. Counting the number

of occurrences of each length-k string that does not occur in

X can be done by constructing a trie of all such strings (we

have at most δk of them per way), similar to the preprocessing

step. This gives O(nk + |S|k + |Σ|δδk2) time in total.
A problem with parameters p and q is fixed-parameter

tractable (FPT) in p if there exists a function f and a

polynomial P such that the problem has time complexity

O(f(p) · P (q)) [11]. The following theorem shows three

scenarios where an FPT algorithm exists for HMD.

Theorem 5. HMD is fixed-parameter tractable if
(a) |Σ| = O(1) and γ = O(1); or
(b) |Σ| = O(1) and k = O(1); or
(c) k = O(1) and λ = O(1).

Proof. We first perform the above-mentioned preprocessing.

(a) We will solve this case by constructing and solving the

ILP in Eq. 1. We can count the number of occurrences of

each length-k substring of X using the trie of X (and thus

determine e� for these strings) in O(nk) time. The id i of each

context #i and its number δi of occurrences can be determined

within the same complexity using a similar preprocessing: this

is possible because the length of every context is 2k − 2 =
O(k). Finally, the αi

�,j’s and F can be computed in O(γ|Σ|k2)
total time as follows. For a context #i and a letter j ∈ Σ, we

create k new length-k strings when replacing #i with j, each

of which is either sensitive (in which event we add (i, j) to

F) or non-sensitive (we increase αi
�,j by 1). Checking if they

are sensitive can be done using the trie of S in O(k) time per

length-k string. Counting the additional number of occurrences

of a critical length-k substring of X can be done using the trie

of X in O(k) time. Counting the number of occurrences of

a critical length-k string that does not occur in X (note that

e� = τ − 1 for these strings) can be done by constructing a

trie of all such strings, similar to the preprocessing step. The

ILP is thus constructed in O(nk + |S|k + γ|Σ|k2) total time.

Since the number of variables in the ILP is m = γ|Σ| = O(1)
and solving ILP’s is fixed-parameter linear in the number of

variables [23], HMD is FPT if γ and |Σ| are fixed.
(b) Since every context has length 2k − 2 and also |Σ| =

O(1) and k = O(1), we have that γ ≤ |Σ|2k−2 = O(1). Thus,

if k and |Σ| are fixed, we are in case (a), and HMD is FPT.
(c) If k = O(1) and λ = O(1), the numbers of constraints

and variables in the ILP are not necessarily upper bounded

by a constant. Therefore, we cannot directly solve the ILP

in polynomial time. However, since the λ critical length-k
strings contain overall at most λk different letters, we actually

only need to distinguish among a bounded number of letters.

928

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on May 26,2022 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

Since we do not need to consider explicitly the remaining

letters, we rather represent them by a single special letter. Let

σ ⊆ Σ denote the set of letters contained in critical length-k
strings. Note that critical length-k strings can be determined

as described in part (a). Thus σ can be specified and indexed

using perfect hashing [13] within the same time complexity.

We introduce a new letter $ representing all the letters in Σ\σ,

and we denote by F|$ the set of forbidden replacements where

all pairs (i, j) ∈ F with j ∈ Σ \ σ are collapsed in a single

pair (i, $). We thus need to find a solution x ∈ Z
γ×(|σ|+1) for:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi,j ≥ 0 ∀i ∈ [γ], j ∈ σ ∪ {$}
xi,j = 0 ∀(i, j) ∈ F|$∑

i∈[γ],j∈σ αi
�,jxi,j ≤ e� ∀� ∈ [λ]∑

j∈σ∪{$} xi,j = δi ∀i ∈ [γ]

(2)

This new ILP can be constructed in O(nk + |S|k + γ|Σ|k2)
time, like Eq. 1. Since the ILP has only γ(|σ| + 1) = O(1)
variables, HMD is FPT for fixed k and λ [23]. We can obtain

a solution to the original problem by replacing $ by any letter

in Σ \ σ that does not create a sensitive pattern.

We can decide in polynomial time if HM has a solution:

we check all |Σ| letter replacements at each of the δ positions

where a # occurs. If, at each position, there exists at least

one letter replacement that does not create a sensitive pattern,

then HM has a solution. Thus, without loss of generality we

assume that HM always has a solution. To minimize τ -ghosts

in Z, we define a binary variable z�, � ∈ [λ], which is equal

to 1 (resp. 0) when N� has (resp. has not) become τ -ghost.

The ILP formulation for HM is to find x ∈ Z
γ×|Σ| so as to:

Minimize
∑λ

�=1 z� subject to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F
z� ≥ 0 ∀� ∈ [λ]∑

i∈[γ],j∈Σ αi
�,jxi,j − kδz� ≤ e� ∀� ∈ [λ]∑

j∈Σ xi,j = δi ∀i ∈ [γ]

(3)

Note that, in the ILP of Eq. 3,
∑

i∈[γ],j∈Σ αi
�,jxi,j−kδz� ≤

e� if and only if N� is not a τ -ghost or z� = 1.

Theorem 6. HM is fixed-parameter tractable if
(a) |Σ| = O(1), γ = O(1), and λ = O(1); or
(b) k = O(1) and λ = O(1).

Proof. (a) We can obtain the ILP of Eq. 3 in O(λ) time from

the ILP of Eq. 1, which can be constructed in O(nk+ |S|k+
γ|Σ|k2) time; see the proof of Theorem 5(a). The ILP of Eq. 3

has at most 2m+ 2λ+ γ constraints and m+ λ = |Σ|γ + λ
variables. Therefore HM is FPT if |Σ|, γ and λ are fixed [23].

(b) Similar to the ILP of Eq. 2 (see Theorem 5(c)), we can

reduce the alphabet Σ to the letters of the critical length-k
strings and a special letter $. This new minimization ILP has

γ(|σ|+1)+λ ≤ (kλ+1)2k−1+λ = O(1) variables. Therefore

HM is FPT if k and λ are fixed [23].

Acknowledgments. MIUR Grant 20174LF3T8 AHeAD; University of Pisa

”PRA – Progetti di Ricerca di Ateneo” (Institutional Research Grants) Grant

PRA 20202021 26 “Metodi Informatici Integrati per la Biomedica”; and

NWO Gravitation-grant NETWORKS-024.002.003.

REFERENCES

[1] O. Abul, F. Bonchi, and F. Giannotti. Hiding sequential and spatiotem-
poral patterns. TKDE, 22(12):1709–1723, 2010.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pages
3–14, 1995.

[3] H. Arimura and T. Uno. An efficient polynomial space and polynomial
delay algorithm for enumeration of maximal motifs in a sequence. J.
Comb. Optim., 13(3):243–262, 2007.

[4] G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides, N. Pisanti,
S. P. Pissis, and G. Rosone. String sanitization: A combinatorial
approach. In ECML/PKDD, pages 627–644, 2019.

[5] G. Bernardini, H. Chen, G. Loukides, N. Pisanti, S. P. Pissis, L. Stougie,
and M. Sweering. String sanitization under edit distance. In CPM, pages
7:1–7:14, 2020.

[6] E. Bier, R. Chow, P. Golle, T. H. King, and J. Staddon. The rules
of redaction: Identify, protect, review (and repeat). IEEE Secur. Priv.,
7(6):46–53, 2009.

[7] F. Biessmann, D. Salinas, S. Schelter, P. Schmidt, and D. Lange. “deep”
learning for missing value imputationin tables with non-numerical data.
In CIKM, pages 2017–2025, 2018.

[8] M. Chen, X. Yu, and Y. Liu. Mining moving patterns for predicting
next location. Inf. Syst., 54(C):156–168, 2015.

[9] N. Cristianini and M. W. Hahn. Introduction to computational genomics
- a case studies approach. Cambridge University Press, 2007.

[10] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compres-
sion using antidictionaries. In ICALP, pages 261–270, 1999.

[11] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms.
Springer Publishing Company, Incorporated, 1st edition, 2015.

[12] C. Fiot, A. Laurent, and M. Teisseire. Approximate sequential patterns
for incomplete sequence database mining. In FUZZ, pages 1–6, 2007.

[13] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table
with O(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[14] M. R. Garey and D. S. Johnson. “Strong” NP-completeness results:
Motivation, examples, and implications. J. ACM, 25(3):499–508, 1978.

[15] A. Gkoulalas-Divanis and G. Loukides. Revisiting sequential pattern
hiding to enhance utility. In KDD, pages 1316–1324, 2011.

[16] J. W. Grzymala-Busse and M. Hu. A comparison of several approaches
to missing attribute values in data mining. In Rough Sets and Current
Trends in Computing, pages 378–385, 2001.

[17] V. Guralnik and G. Karypis. A scalable algorithm for clustering
sequential data. In ICDM, pages 179–186, 2001.

[18] IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations
and symbols for nucleic acids, polynucleotides, and their constituents.
Biochemistry, 9(20):4022–4027, 1970.

[19] U. Keich and P. A. Pevzner. Finding motifs in the twilight zone.
Bioinformatics, 18(10):1374–1381, 2002.

[20] D. C. Koboldt, K. M. Steinberg, David E. Larson, Richard K. Wilson,
and Elaine R. Mardis. The next-generation sequencing revolution and
its impact on genomics. Cell, 155(1):27–38, 2013.

[21] R. Li, C. Yu, Y. Li, T. Wah Lam, S. Yiu, K. Kristiansen, and J. Wang.
SOAP2: an improved ultrafast tool for short read alignment. Bioinfor-
matics, 25(15):1966–1967, 2009.

[22] H. M. Martinez. An efficient method for finding repeats in molecular
sequences. Nucleic Acids Research, 11(13):4629–4634, 1983.

[23] N. Megiddo. Linear programming in linear time when the dimension is
fixed. J. ACM, 31(1):114–127, 1984.

[24] S. Rangavittal, R. S. Harris, M. Cechova, M. Tomaszkiewicz, R. Chikhi,
K. D. Makova, and P. Medvedev. RecoverY: k-mer-based read classifi-
cation for Y-chromosome-specific sequencing and assembly. Bioinfor-
matics, 34(7):1125–1131, 2017.

[25] W. Shen, J. Wang, and J. Han. Sequential pattern mining. In C. C.
Aggarwal and J. Han, editors, Frequent Pattern Mining, pages 261–282.
2014.

[26] M. Spiliopoulou. Managing interesting rules in sequence mining. In
PKDD, pages 554–560, 1999.

[27] Y. Wu, C. Chiang, and A. L. P. Chen. Hiding sensitive association rules
with limited side effects. TKDE, 19(1):29–42, 2007.

[28] J. J. Ying, W. Lee, T. Weng, and V. S. Tseng. Semantic trajectory mining
for location prediction. In SIGSPATIAL, pages 34–43, 2011.

929

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on May 26,2022 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

