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Abstract—Forecasting spatio-temporal correlated time series
of sensor values is crucial in urban applications, such as air
pollution alert, biking resource management, and intelligent
transportation systems. While recent advances exploit graph
neural networks (GNN) to better learn spatial and temporal
dependencies between sensors, they cannot model time-evolving
spatio-temporal correlation (STC) between sensors, and require
pre-defined graphs, which are neither always available nor totally
reliable, and target at only a specific type of sensor data at one
time. Moreover, since the form of time-series fluctuation is varied
across sensors, a model needs to learn fluctuation modulation.
To tackle these issues, in this work, we propose a novel GNN-
based model, Attention-adjusted Graph Spatio-Temporal Network
(AGSTN). In AGSTN, multi-graph convolution with sequential
learning is developed to learn time-evolving STC. Fluctuation
modulation is realized by a proposed attention adjustment
mechanism. Experiments on three sensor data, air quality, bike
demand, and traffic flow, exhibit that AGSTN outperforms the
state-of-the-art methods.

Index Terms—graph neural network, spatio-temporial corre-
lation, time series, attention adjustment, urban computing, air
quality, traffic flow, bike demand

I. INTRODUCTION

With the technologies of sensor networks and the Internet
of Things, sensors are widely and geographically deployed in
modern urban areas. Sensors established for different purposes
collectively monitor the physical-world environment and con-
tinuously generate time-series data. Sensor time-series values
are usually correlated in both spatial and temporal aspects.
We consider that urban sensor time-series data possesses two
properties, spatio-temporal correlation and sequential effect.
For example, air-quality values of near-by monitoring stations
can influence each other due to topography or wind. Traffic-
flow values of sensors along the communication lines can rise
and fall one after another. In addition, the time-series values
of a sensor are sequentially self-correlated. Sensor values of
air quality and traffic flow at the next time step are affected
by those in the past few steps.

Forecasting spatio-temporally correlated sensor values is a
crucial task in various urban applications. Accurate forecasting
of air quality allows people to manage themselves to avoid

outdoor activities [12]. Precise prediction of bike demand en-
ables better resource deployment and utilization [7]. Besides,
Intelligent Transportation System (ITS) [19] requires accu-
rate and reliable traffic-flow forecasting. While conventional
statistic models (e.g., ARIMA) and machine learning methods
(e.g., support vector regression) can model the sequential
effect of a single time series, deep recurrent and convolutional
neural network-based models [14], [18] better model either
spatial or temporal correlation between sensors so that the
performance can get improved. Recent advances target at
devising graph neural network (GNN) based models [8], [15]
to simultaneously model the spatial and temporal correlation
among sensors [3], [4], [9], [11], and the performance gets
further boosted.

Nevertheless, existing urban sensor value forecasting mod-
els have several limitations and face some challenges. First,
although the spatio-temporal correlation between sensors are
modeled [3], [4], [10], the influence of such correlation can
evolve. For example, wind direction that can affect how air
pollutants propagate is different across seasons. Vehicle flows
that vary on weekdays and weekends can affect traffic-flow
values. Hence, it is necessary to further model the time-
evolving spatio-temporal correlation. Second, current graph
neural network-based models [2]–[4], [10] require the pre-
defined graphs (e.g., road networks, traffic structures of biking)
as the model input. However, it is not realistic to assume that
all sorts of sensors have pre-defined graphs or to presume that
the existed graph structures are always available and in hand.
For example, there are no connections between air-quality
monitoring stations. Besides, modeling the spatio-temporal
correlation based on the pre-defined graphs may not be able to
capture potentially hidden mutual influence between sensors.
Thus a practical and useful model is expected to accept no
pre-defined graphs. Third, existing models tend to target at
specific sensor data, e.g., ST-GCN [17] and AST-GCN [4]
for traffic flow, ST-MGCN [3] and STG2Vec [10] for bike
demand, and DeepAir [16] and AccuAir [12] for air quality.
While these data-specialized models are built to deal with the
predictions of various urban sensors, we attempt to develop
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a general-purpose model that can perform spatio-temporal
forecasting for any sort of sensor data. Fourth, sensor time-
series values can fluctuate over time. Due to the topography,
the population, and the near-by types of point of interest
(POI), the fluctuation’s scale, frequency, and duration can
vary across different sensors. How to perform fluctuation-
aware modulation on the forecasted values is essential but
challenging. However, none of the existing studies consider the
learning of fluctuation modulation. We aim at automatically
learning the fluctuation modulation without using additional
data but time series themselves.

Given the past time-series values of deployed sensors,
this paper aims at forecasting sensor values at the next
time steps. To overcome the abovementioned limitations
and challenges, we propose a novel graph neural network-
based model, Attention-adjusted Graph Spatio-Temporal
Network (AGSTN). The main idea of AGSTN is four-fold.
First, we create multiple graphs to depict spatio-temporal
correlation (STC) at the past time steps, and exploit graph
neural networks to learn sensor STC embeddings. Our AGSTN
model requires no pre-defined graph structures for repre-
sentation learning. Second, we learn the time-evolving STC
features by applying 1-D convolutional neural networks to
STC embeddings. Third, we learn attention weights from the
original time series for different sensors, and perform attention
adjustment on the raw predictions so that the fluctuation-aware
modulation can be realized to make the forecasting values be
within every sensor’s reasonable range. Fourth, we leverage
intrinsic mode functions (IMF) to generate additional features
based on the original time series.

Below we summarize the contributions of this work.

• We identify several key issues in forecasting spatio-
temporal correlated urban sensor values, including mod-
eling time-evolving spatio-temporal correlation, no pre-
defined graph structures, the model generality for all sorts
of sensor data, and the learning of fluctuation modulation.

• We develop a general-purpose graph neural network-
based model, Attention-adjusted Graph Spatio-Temporal
Network (AGSTN) 1, to deal with the identified key
issues. The novelty lies in: (a) incorporating graph neural
networks with sequential methods so that time-evolving
STC can be learned, (b) requiring no pre-defined graphs,
and (c) inventing the attention adjustment to fulfill the
fluctuation modulation.

• Extensive experiments conducted on three different sen-
sor data, including air quality, bike demand, and traffic
flow, consistently exhibit that AGSTN outperforms state-
of-the-art models in terms of not only lower error values
but also higher ranking accuracy.

This paper is organized as follows. We present the problem
statement in Sec. II. Sec. III describes the technical details of
the proposed AGSTN. We report the experimental results in
Sec. IV, and conclude this work in Sec. V.

1Code can be accessed at https://github.com/l852888/AGSTN
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Fig. 1. Overview of the proposed AGSTN.

II. PROBLEM STATEMENT

Let S be the set of all sensors deployed in a specific
geographical area, and N = |S| be the number of sensors.
Each sensor si ∈ S is associated with a sequence of observed
time-series real values, denoted by xi. We consider that the
time-series data is recorded in a discrete manner, and thus
denote xti as the observed value at time t. Similarly, we denote
X and Xt ∈ R1×|S| as the matrix of time-series values of all
sensors, and their values at time t, respectively.

Short-term Sensor Value Forecasting (SSVF). Given the
observed time-series values of all sensors S at previous τ
time steps, denoted by a matrix

[
Xt−τ+1,Xt−τ+2,Xt

]
, where

t is the current time step, the goal of SSVF problem is
formulated as a next single-step spatio-temporal prediction
given a fixed previous τ -step observed values of all sensors
as the input. Specifically, we aim at learning a function
f : RN×τ → R1×N , that maps previous τ observations of
all sensors to their predicted values at the next time steps,
given by:

f(
[
Xt−τ+1,Xt−τ+2, · · · ,Xt

]
)→ Xt+∆, (1)

where ∆ is the number of short-term future time steps. In
the experimemts, we will report the performance by varying
different ∆ values, i.e., ∆ = 1 and ∆ > 1, and varying the
number of training time steps τ .

In the SSVF problem, since we target at using short-
term observations and aim to perform fine-grained time series
prediction, we consider “hour” to be the time unit for air
quality and bike demand data, and “5 minutes” to be the
time unit for traffic data. We set the parameter τ to be a
small integer (set τ = 6 by default). In other words, we make
predictions by using the observed air-quality values, and bike-
demand values in the past six hours; and the observed traffic-
flow values in the past 30 minutes.

III. THE PROPOSED AGSTN MODEL

We propose a novel model, Attention-adjusted Graph
Spatio-Temporal Network (AGSTN), to deal with the SSVF

https://github.com/l852888/AGSTN


problem. The overview of AGSTN is shown in Figure 1.
AGSTN consists of five parts. First, we exploit Intrinsic
Mode Functions (IMF) to generate additional features from
the original time series. Second, we aim at learning spatio-
temporal correlation between sensors based on constructed
graphs. Multi-graph convolutional network (M-GCN) layers
are incorporated to achieve the aim. Third, we use the se-
quential methods to make raw predictions from the original
time series and the M-GCN-generated features, using recurrent
and convolutional neural networks, respectively, from which
time-evolving spatio-temporal correlation between sensors is
modeled. Fourth, we impose an attention layer to learn the
reasonable fluctuation tendency of every sensor. Last, by av-
eraging raw predictions and applying the attention adjustment,
the final prediction is generated.

A. Generating IMF Features

While the original time series are treated as features in
our model, we generate additional features by decomposing
the original ones. The Empirical Ensemble Decomposition
(EEMD) algorithm [6] is adopted. The idea is to use multi-
granularity basic functions with variable amplitude and fre-
quency over time to represent and approximate the original
time series. By doing so, the model will be able to learn from
time series with similar shapes and tendencies. The original
time series are decomposed into intrinsic mode functions and
the residuals. Given the observed time series xi ∈ Rτ×1

of sensor si, EEMD decomposes xi to multiple intrinsic
functions IMFi = {IMF1, IMF2, ..., IMFK}, where K is
the number of intrinsic mode functions, and every IMFk is
τ -dimensional. We treat every IMFk as an additional time-
series feature, and the IMFtj ∈ RK×N be the IMF feature
matrix of all sensors at time step tj .

B. Modeling Spatial-Temporal Correlation

Sensor values can be correlated with each other due to a
variety of spatio-temporal properties. Traffic-flow and bike-
demand values in an urban area can propagate between places
that people commute from and to over time. Air-quality values
can exhibit some kind of spatial distributions and diffusion
patterns according to the topography. We aim at modeling such
kind of spatio-temporal correlation between sensors. The idea
is constructing multiple graphs to represent all of the potential
rise-or-fall co-influence between sensors. Then we leverage
graph convolutional networks to learn the correlation.

Multi-Graph Construction. Since the spatial correlation
between sensors can vary from one time to another, we
construct a graph Gtj = (S,E,Atj ) for every time tj ∈
[t−τ+1, · · · , t], where S is the set of sensor nodes, E is the set
of edges, and Atj is the set of edge weights. We consider every
graph Gtj is fully-connected, i.e., euv ∈ E,∀u, v ∈ S, u 6= v.
Sets S and E are the same for all graphs Gtj , but the sets
of edge weights Atj are different. Edge weights are expected
to depict the potential that the values of two sensors can be
influenced by one another. Hence, we use cosine similarity for
edge weights, i.e., ωuv = xu·xv

‖xu‖‖xv‖ ∈ A, where A ∈ RN×N

Graph Convolution Layer. We aim to learn the spatio-
temporal correlation (STC) embeddings for every sensor based
on the multiple graphs constructed from the past τ time steps.
We adopt graph convolutional networks (GCN) [8] to derive
STC embeddings of sensors. A GCN is a multi-layer neural
network that performs on graph data and generates embedding
vectors of nodes according to their neighborhoods. GCN is
able to capture information from a node’s direct and indirect
neighbors through stacking layer-wise graph convolution. We
learn a GCN for each constructed graph Gtj so as to model
spatio-temporal correlation between sensors at every time step
tj . That is, we devise a multi-graph convolutional (MGC)
network to generate STC embeddings. Given the matrix Atj

for a graph Gtj , and Ptj = [Xtj , IMFtj ] depicting the
matrix of feature vectors for sensor nodes in Gtj , the new
b-dimensional node feature matrix H

(l+1)
tj ∈ RN×b can be

derived by

H
(l+1)
tj = ρ(ÃtjH

(l)
tj Wl), tj ∈ [t− τ + 1, · · · , t] (2)

where l is the layer number, Ãtj = D−
1
2AtjD−

1
2 is the

normalized symmetric weight matrix (Dii =
∑
qA

tj
iq), and

Wl ∈ Rb×K (K is the number of IMF features) is the matrix
of learnable parameters at the l-th GCN layer. ρ is an activation
function, i.e., a ReLU ρ(x) = max(0, x). Here H

(0)
tj is set to

be Ptj . We choose to stack two GCN layers in derive the
learned sensor representation, denoted as Htj ∈ RN×b. We
set b = 1 since our goal is to predict the next single-step
sensor value. By concatenating Htj over all past τ time steps,
we can have the STC embeddings H ∈ RN for all sensors.

C. Raw Predictions by Sequential Models

Sensor time-series values are sequentially evolved. Hence it
is natural to exploit sequential models to model time-evolving
spatio-temporal correlation between sensors and generate the
raw predictions. We consider two sequential models, recurrent
neural networks (RNN) and convolutional neural networks
(CNN), to model temporal dynamics from two aspects. RNN
is used to capture the global evolution tendency based on the
original time series of all sensors. CNN is applied to STC
sensor embeddings so that the propagation from the local geo-
spatial neighborhood along past time steps can be modeled.
Both RNN and CNN can produce raw next-step predictions.

RNN-based Raw Prediction. Given the sequence of orig-
inal observations in N monitor stations at past τ time
steps [Xt−τ+1, · · · ,Xt], we utilize Long Short-Term Memory
(LSTM) [5] to learn the global temporal dynamics. Each
LSTM state has two inputs, the observations Xt of all sensors
at the current time step t and the previous state’s output
vector ht−1. The LSTM-based representation learning can be
depicted by:

htj = LSTM(Xtj ), (3)

where tj ∈ [t − τ + 1, · · · , t], in which τ is the number
of LSTM states. By feeding the last LSTM output vector ht

into a fully-connected layer, we generate the RNN-based raw
prediction r̂t+1 ∈ RN .



CNN-based Raw Prediction. We utilize 1-D convolution
neural network to learn the propagation influence based on the
derived STC sensor embeddings H ∈ RN×τ . We consider λ
consecutive time steps at one time to model their sequential
information produced by GCN. An independent 1-D CNN is
applied on each sensor. Hence the filter is set as Wf ∈ R1×λ.
Then the output vector C ∈ RN×(τ+λ−1) is:

C = ReLU(Wf ·Hτ :τ+λ−1 + bf )) (4)

where Wf is the matrix of learnable parameters, ReLU is
the activation function, Hl+1

τ :τ+λ−1 depicts sub-matrices whose
first row’s index is from τ to τ+λ−1, and bf is the bias term.
We generate the CNN-based raw prediction through applying
average pooling to C and obtain ĉt+1 ∈ RN .

D. Learning Attention Weights for Adjustment
Since sensors are deployed at different geographical posi-

tions, the scale, frequency, and duration of their fluctuation on
sensor values can be varied. In addition, some sort of sensor
values can change a lot (e.g., traffic flow) within a short-term
time period (e.g., 6 hours), and another can have quite minor
variation (e.g., air quality). To make the model capture the
basic shape and fluctuation tendency of sensors, we aim to
learn attention weights from their past time series, which is
used as a scaling factor of the predicted values. The derived
attention weight for each sensor will be used to adjust the raw
predictions and generate the final results.

The learning and use of attention weights consist of three
phases. First, we average the raw CNN-based and RNN-based
predictions of all sensors, r̂t+∆ and ĉt+∆, where ∆ is the
number of future time steps, to be the ensemble prediction,
given by:

X̂t+∆
ens = average(r̂t+∆, ĉ∆+1). (5)

Second, we learn the attention weights a ∈ R1×N based on
the original observations of past τ time steps. Then we apply
an activation function to generate a. This can be depicted by:

a = σ(Wa · [Xt−τ+1,Xt−τ+2, · · · ,Xt]), (6)

where Wa ∈ R1×N is the learnable weight matrix, σ is the
sigmoid function. Third, the learned attention weights a is
used to adjust the ensembled prediction X̂t+∆

ens and generate
the final prediction X̂t+∆ through element-wise product, given
by:

X̂t+∆ = a� X̂t+∆
ens , (7)

where � is the element-wise Hadamard product.

E. Objective Function
We choose to employ mean squared error (MSE) to be

the training objective of our AGSTN model. The objective
function L can be written as:

L(Θ) =
1

N

∑
s∈S

(Xt+1
s , X̂t+1

s ), (8)

where Xt+1
s is the ground-truth sensor value of sensor s at the

next time step t+1, and Θ is the set of all trainable parameters.
The MSE loss function is minimized by back-propagation.

TABLE I
STATISTICS OF THREE DATASETS.

Air Quality Bike Demand Traffic Flow
Time span 2018.01-12 2017.01-07 2012.03-06
# Records 8,760 10,176 34,271
# Sensors 26 827 207
Location Taiwan New York Los Angeles
Time unit hourly 30 mins 5 mins
# Past steps (τ ) 6 hrs 6 hrs 30 mins

IV. EXPERIMENTS

A. Dataset and Settings

Datasets. Three datasets of spatio-temporal correlated time
series are employed in our experiments. The types of time-
series values include air quality, bike demand, and traffic flow.
We provide data statistics in Table I. For air-quality data,
we collect hourly PM2.5 data of the northern region from
the Environmental Protection Agency in Taiwan 2. For bike-
demand data, we make use of the Citi Bike public dataset in
New York City 3, whose sensors collect the demand number
of bikes every 30 minutes. For traffic-flow data, we utilize
the METR-LA dataset 4, which contains traffic information
collected from loop detectors in the highway of Los Angeles.
The sensor readings are aggregated into 5-minutes windows.

Competing Methods. We compare the proposed AGSTN
with a number of baselines and state-of-the-art (SOTA) meth-
ods, as listed below. (1) ARIMA: Auto-Regressive Integrated
Moving Average model 5 is widely used in time series
prediction. (2) SVR: Support Vector Regression 6 uses linear
support vector machine for the regression prediction. (3) FC-
LSTM [13]: Recurrent Neural Network with fully connected
LSTM hidden units. (4) DCRNN [9]: A graph convolution-
based model to learn the spatio-temporal dependency by
integrating graph convolution into the gated recurrent unit. (5)
AST-GCN [4]: one of the SOTA models, it is an attention-
based graph convolution model to learn the spatial and
temporal dependencies with convolution structures. (6) ST-
MGCN [3]: one of the SOTA models, it is a multi-graph
convolution-based model to learn the spatial dependency and
temporal correlation using the contextual gated recurrent neu-
ral network. The hyperparapameters of competing methods are
set by following the respective studies. For some competing
methods (i.e., AST-GCN and ST-MGCN) need pre-defined
input graphs, such as road network and transportation graph, to
have a fair comparison, we use our graph construction method
mentioned in Section III-B.

Evaluation Metrics. To measure how the predicted values
are close to the ground truth, we adopt Mean Absolute Error
(MAE) and Rooted Mean Squared Error (RMSE) as the
evaluation metrics. Besides, it is also essential to identify

2https://taqm.epa.gov.tw/taqm/en/default.aspx
3https://www.citibikenyc.com/system-data
4https://github.com/liyaguang/DCRNN
5https://www.statsmodels.org/stable/index.html
6https://scikit-learn.org/stable/



TABLE II
MAIN RESULTS ON THE NEXT SINGLE TIME-STEP FORECASTING (I.E., ∆ = 1). MSE AND RMSE ARE ERROR VALUES, AND P@5 AND NDCG ARE

RANKING ACCURACY. THE BEST MODEL AND THE BEST COMPETITOR ARE HIGHLIGHTED BY BOLD AND UNDERLINE, RESPECTIVELY. THE LAST ROW

“IMPROVEMENT” IS COMPUTED BY
|BOLD−UNDERLINE|

UNDERLINE
× 100%.

Air Quality Bike Demand Traffic Flow
Error Ranking Error Ranking Error Ranking

Model MAE RMSE P@5 NDCG MAE RMSE P@5 NDCG MAE RMSE P@5 NDCG
ARIMA 11.2737 46.0466 0.3387 0.3332 7.3051 10.4379 0.3054 0.2432 6.6607 18.4607 0.3542 0.3254
SVR 10.9249 37.8123 0.3485 0.3483 4.7513 8.0558 0.3472 0.2638 3.3812 8.9780 0.4596 0.5982
FC-LSTM 8.8307 18.4758 0.3933 0.4321 6.5288 7.7125 0.4080 0.3373 3.1870 4.4329 0.4305 0.5479
DCRNN 9.0171 18.4077 0.3822 0.425 2.8483 3.6403 0.5227 0.5566 2.7431 3.8882 0.4389 0.5593
AST-GCN 8.6277 18.4002 0.4134 0.4716 3.2184 4.0919 0.5315 0.5182 2.4462 3.3060 0.4493 0.5831
ST-MGCN 8.2827 17.8944 0.3994 0.4427 2.8381 3.6400 0.5290 0.5560 2.8043 4.0127 0.4399 0.5604
AGSTN-imf 7.0258 16.7142 0.5947 0.6366 2.8176 3.6594 0.5210 0.5516 2.3177 3.1401 0.4848 0.5993
AGSTN 6.9273 16.6405 0.6007 0.6423 2.7464 3.5380 0.5387 0.5634 2.2429 3.1032 0.4962 0.6125
Improvement 16.3% 7.0% 45.3% 36.2% 3.2% 2.8% 1.6% 1.2% 8.3% 6.1% 8.2% 2.4%

TABLE III
RESULTS ON THE FORECASTING OF THE NEXT FIVE TIME-STEPS (I.E., ∆ = 5).

Air Quality Bike Demand Traffic Flow
Error Ranking Error Ranking Error Ranking

Model MAE RMSE P@5 NDCG MAE RMSE P@5 NDCG MAE RMSE P@5 NDCG
FC-LSTM 14.0541 23.8502 0.3356 0.2006 6.5833 7.7567 0.4124 0.3353 5.2397 6.4976 0.3452 0.4698
DCRNN 9.7865 19.6419 0.3893 0.4197 3.3658 4.3084 0.5048 0.5143 5.0858 6.3328 0.4070 0.5414
AST-GCN 10.3618 20.3901 0.3737 0.3908 4.5191 5.6869 0.4519 0.4018 5.0742 6.2875 0.3947 0.5274
ST-MGCN 10.009 19.7600 0.3848 0.4182 4.5876 5.7613 0.4248 0.3920 4.8635 6.1037 0.4400 0.5641
AGSTN-imf 9.3670 19.3148 0.4378 0.4692 3.4077 4.3598 0.4819 0.5157 4.7689 5.9536 0.4638 0.5906
AGSTN 9.4171 19.4865 0.4320 0.4541 3.4933 4.4395 0.5148 0.5298 4.7244 5.9297 0.4639 0.5950

sensors with the highest values in the next time step. Hence,
by sorting sensors based on their forecasted values in a
descending manner, we also consider it as a ranking problem.
The metrics, Precision@k (P@k) (k = 5 by default) and
Normalized Discounted Cumulative Gain (NDCG) [1], are
employed. For the first two metrics, lower scores indicate
better performance. For the latter two, higher is better.

Evaluation Settings. We follow the settings of SOTA
models AST-GCN [4] and ST-MGCN [3] to determine the
training, validation, and testing sets. We split each dataset in a
chronological order with 70% for training, 10% for validation,
and 20% for testing. The proposed model is termed AGSTN.
Its batch size is 32, and the initial learning rate is 10−3 with
a decay rate of 0.7 after every 5 epochs. The 1-D CNN filter
size is 3. To understand how the proposed AGSTN itself can
perform, we create a variation without using additional IMF
features, termed AGSTN-imf. To have a fair comparison, for
all models, we set the number of training epochs to be 200,
and stop training if the validation loss does not decrease for
10 epochs.

B. Experimental Results

Next-Step Forecasting. The results on predicting the sensor
values of the next step (∆ = 1) are shown in Table II. We can
observe that the proposed AGSTN consistently leads to the
best performance across three datasets under four evaluation
metrics. The improvement is on average 26% for air quality,
2.2% for bike demand, and 6.3% for traffic flow. By looking

into the results, we further have the following four findings.
First, even without adding the IMF features (i.e., AGSTN-
IMF), our model still apparently outperforms the SOTA mod-
els and baselines. Such results exhibit the promising prediction
capability of the proposed AGSTN model itself. Second,
the powerful representation capability of graph convolutional
networks leads to better performance of the SOTA methods
AST-GCN and ST-MGCN, and our AGSTN. Nevertheless, our
AGSTN outperforming the SOTA models further proves the
usefulness of learning from fully-connected (non-predefined)
graphs, attention adjustment, and incorporating IMF features.
We think unrestricted graph construction can better model the
correlation and dependency between sensors, comparing to the
SOTA models that require pre-defined graphs of connected
grids, traffic, and transportation. Third, the proposed AGSTN
is able to not only generate predictions with lower errors,
but be capable of accurately identifying sensors with higher
sensor values in the ranking settings. Fourth, among the three
datasets, the superiority of our AGSTN is significant on air-
quality data and limited on bike-demand data. We think the
reason could be the demand for bikes is more complicated and
influenced by more factors, including meteorology and nearby
point-of-interest properties, in addition to only historical val-
ues, which is supported by some recent studies [7], [10].

Multi-Step Forecasting. Generally, in making decisions, it
will be more helpful to accurately predict the sensor values
at multiple next steps. We conduct another experiment to
examine whether the proposed AGSTN can also generate



satisfying forecasting performance of multiple future steps
by setting ∆ = 5. In other words, the prediction setting
can be depicted as: f([Xt−τ+1,Xt−τ+2, · · · ,Xt]) → Xt+5.
The results are shown in TableIII. We can have the following
findings. First, our AGSTN and its variant AGSTN-imf can
still outperform the competing methods across three datasets
and four metrics, especially in the datasets of Air Quality and
Traffic Flow. Although, in some cases, i.e., the error measures
in Bike Demand data, AGSTN or AGSTN-imf have a bit
higher MAE and RMSE scores than DCRNN, their differences
are quite small. Second, by looking into the results, we find
that in forecasting the more time steps, the IMF features
seem not to be so helpful for the prediction. These features
may be more suitable for the prediction of less future time
steps. Third, despite the proposed AGSTN cannot always have
the lowest prediction errors of sensor values, it leads to the
best performance on being capable of accurately identifying
sensors with higher sensor values at multiple future steps in the
metrics of ranking and recommendation (P@5 and NDCG).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel graph neural network-
based model, Attention-adjusted Graph Spatio-Temporal Net-
work (AGSTN), to forecast short-term sensor values. AGSTN
requires only the original sensor time series and needs no pre-
defined graphs, and thus can be applied for any sort of urban
sensor data, such as air quality, taxi demand, and crowd flow.
The technical novelty of AGSTN lies in incorporating multi-
graph convolution with sequential learning to capture time-
evolving spatio-temporal correlation between sensors. And
AGSTN learns attention weights from the original time series
to adjust and modulate the raw prediction. Experiments on
three real-world datasets show that the forecasting perfor-
mance of AGSTN is superior to state-of-the-art models.

In fact, various urban sensor time-series values are usually
affected by multiple factors, such as near-by points of interest,
meteorology, topography, and the population. Ongoing work is
to consider multi-source data as additional features of AGSTN
so that more external influencing factors can be modeled. In
addition, while the current graph construction is based on
past time-series similarity between sensors, we are seeking
to perform the learning of graph structures by adding it into
the objective function. By doing so, the learned graph will be
able to explicitly interpret which sensors are correlated each
other over time.
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