
Climate Modeling with Neural Diffusion Equations
Jeehyun Hwang1, Jeongwhan Choi1, Hwangyong Choi1, Kookjin Lee2, Dongeun Lee3, Noseong Park1

Yonsei University1, Seoul, South Korea
Arizona State University2, Tempe, AZ, USA

Texas A&M University–Commerce3, Commerce, TX, USA

Abstract—Owing to the remarkable development of deep
learning technology, there have been a series of efforts to build
deep learning-based climate models. Whereas most of them utilize
recurrent neural networks and/or graph neural networks, we
design a novel climate model based on the two concepts, the
neural ordinary differential equation (NODE) and the diffusion
equation. Many physical processes involving a Brownian motion
of particles can be described by the diffusion equation and as a
result, it is widely used for modeling climate. On the other hand,
neural ordinary differential equations (NODEs) are to learn a
latent governing equation of ODE from data. In our presented
method, we combine them into a single framework and propose
a concept, called neural diffusion equation (NDE). Our NDE,
equipped with the diffusion equation and one more additional
neural network to model inherent uncertainty, can learn an
appropriate latent governing equation that best describes a given
climate dataset. In our experiments with two real-world and one
synthetic datasets and eleven baselines, our method consistently
outperforms existing baselines by non-trivial margins.

Index Terms—climate modeling, diffusion equation, neural
ordinary differential equation

I. INTRODUCTION

Deep learning-based climate modeling (or weather forecast-
ing) is an emerging topic and a brand-new application area [1]–
[11]. Owing to the recent advancement of the differential
equation-inspired deep learning [12]–[16], this specific topic
is gathering much attention from the research community.

The seminal paper, titled neural ordinary differential equa-
tions (NODEs), discovered that residual networks are equiva-
lent to the explicit Euler method to solve ODE problems [12].
Therefore, training residual networks is solving ODE problems
specialized in image classification, according to them.

In NODEs, more specifically, we solve an integral prob-
lem of h(t1) = h(t0) +

∫ t1
t0
f(h(t), t;θf)dt, where h is a

vector that contains a set of values that change over time
t ∈ [0, T] and f(h(t), t;θf) = dh(t)

dt . In other words, the
multi-dimensional vector h(t1) at time t1 > t0 is calculated
by adding the sum of the changes in [t0, t1] to h(t0). The
key of NODEs is the neural network f parameterized by θf ,
which is trained from data.

In the case of climate modeling, an area to model is
frequently abstracted by a grid network (or a small-world
network) and each grid cell corresponds to an element in
h(t) [17]. We then learn θf from data to minimize a climate
modeling loss function. We typically use the mean squared
error (MSE) as a loss function since climate modeling or
weather forecasting is a regression problem.

Encoder

DecoderNDE
Heat Capacity

Generation

Current Value at	𝑡!

Predicted Value at	𝑡"

Climate Model

(a)

Encoder

Decoder𝐺

𝑯!
(#)

𝑯	!
(&) 𝒚$

Diffusion
Equation

Uncertainty
Modeling

Heat Capacity
Generation

NDE

𝑲

(b)

Fig. 1. The overall workflow of our proposed neural diffusion equation
(NDE). NDE stands for our proposed method as well as its key layer. (a)
The weather stations (and their sensing values) are represented as a graph
and our NDE predicts their future values. (b) Given a graph G = (V,E)

annotated with node and edge features, the core NDE layer evolves H
(0)
V to

H
(1)
V , followed by a decoding layer which produces predictions. The NDE

layer consists of two parts: i) the diffusion equation and ii) the neural network-
based uncertainty model f .

Whereas various recurrent neural network models and re-
gression models can be used for this purpose, we propose to
use the diffusion equation [18] under the regime of NODEs
to model the physical dynamics governing the spread of
temperature, air, etc. As a matter of fact, the diffusion equation
is one of the most popular differential equations for climate
modeling [19], [20].

The diffusion equation over a grid network uses the discrete
Laplacian operator which is written as dh(t)

dt = −∆h(t) =
−kLh(t), where k is a heat capacity coefficient, ∆ means
the discrete Laplacian operator, and L is the symmetrically
normalized graph Laplacian matrix. The physical process in
this equation is governed by the current values h(t) at time t
and the grid connectivity.

One thing worth mentioning in the above diffusion equation
is that it does not have any parameters to learn since L and

ar
X

iv
:2

11
1.

06
01

1v
1

 [
cs

.L
G

]
 1

1
N

ov
 2

02
1

h(0), i.e., the initial climate conditions, are given by data. In
this regard, it is a pure ODE rather than NODE. To further in-
crease the accuracy, in our case we extend the definition of the
time-derivative of h(t) to dh(t)

dt = −kLh(t) + f(h(t), t;θf)
— we note that our model can be considered as a NODE
since the time-derivative of h(t) is partially approximated by
the neural network f . The neural network f is to learn the
uncertainty of real-world diffusion processes. Therefore, we
solve h(t1) = h(t0)+

∫ t1
t0
−kLh(t)+f(h(t), t;θf)dt, which

we call neural diffusion equation (NDE). We also consider the
case that k is not a scalar value but a matrix (see Section IV-C).
For simplicity but without loss of generality, we assume k is
a scalar in this section.

The overall workflow of our method is shown in Fig. 1. In
most cases, weather stations and their sensing values are con-
verted into a graph annotate with node and/or edge features,
and we use our neural diffusion equation (NDE) method to
predict future climate-related factors. In our proposed method,
the heat capacity coefficients are also trained from data
and so is the neural network-based uncertainty model. Since
real-world environments accompany uncertainties and noises
incurred by human activities and so forth, our uncertainty
modeling is one of the most important part in the method. The
heat capacity defines how quickly (easily) two neighboring
nodes interact with each other, which is not explicitly given
to us in many cases. Therefore, we propose to learn from data.
Another key component in our method is the heat equation.
We also implement the exact heat equation since non-trivial
parts in climate modeling can still be modeled by it.

In our experiments, we show that our method, featured by
i) the heat equation, ii) the uncertainty modeling, and iii)
the heat capacity generation, shows the best accuracy in all
datasets. We use five datasets: two of them are synthetic and
the other three are real-world datasets. The synthetic datasets
include a grid and small-world network (with and without
noises injected into the data) — we note that climate models
typically assume either a grid or a small-world network1.
The real-world datasets includes the data collected in Los
Angeles, San Diego, and the east side of the USA. We
compare our method with eleven baseline methods and our
proposed method NDE shows the best forecasting performance
only except the multi-step forecasting in San Diego. Our
contributions can be summarized as below:

1) We design a climate forecasting model with the diffusion
equation, the neural network-based uncertainty model-
ing, and the heat capacity generation methods.

2) We conduct comprehensive experiments with synthetic
and real-world datasets and compare with eleven base-
lines. Our proposed method, called neural diffusion
equation (NDE), shows the best forecasting performance
only except one experimental case. Our method’s fore-
casting errors are up to 51% smaller than that of the best
baseline method.

1Each research domain has its own preference on graph models. For
instance, social networks typically assume scale-free networks.

II. RELATED WORK

We introduce several base concepts in this section: i) neural
ordinary differential equations, ii) diffusion equations, and iii)
climate modeling.

A. Neural Ordinary Differential Equations (NODEs)

NODEs solve the following initial value problem (IVP),
which involves an integral problem, to calculate z(t1) from
z(t0) [12]:

z(t1) = z(t0) +

∫ t1

t0

f(z(t);θf)dt, (1)

where f(z(t);θf), which we call ODE function, is a neural
network to approximate ż def

= dz(t)
dt . To solve the integral

problem, NODEs rely on ODE solvers, such as the explicit
Euler method, the Dormand–Prince (DOPRI) method, and so
forth [21].

In general, ODE solvers discretize time variable t and
convert an integral into many steps of additions. For instance,
the explicit Euler method can be written as follows in a step:

z(t+ h) = z(t) + h · f(z(t);θf), (2)

where h, which is usually smaller than 1, is a pre-determined
step size of the Euler method.The DOPRI method uses a much
more sophisticated method to update z(t+ h) from z(t) and
dynamically controls the step size h. However, those ODE
solvers sometimes incur unexpected numerical instability [22].
For instance, the DOPRI method sometimes keeps reducing
the step size h and eventually, an underflow error is produced.
To prevent such unexpected problems, several countermea-
sures were also proposed.

Instead of the backpropagation method, the adjoint sen-
sitivity method is used to train NODEs for its efficiency
and theoretical correctness [12]. After letting az(t) = dL

dz(t)
for a task-specific loss L, it calculates the gradient of loss
w.r.t model parameters with another reverse-mode integral as
follows:

∇θfL =
dL
dθf

= −
∫ t0

tm

az(t)T
∂f(z(t);θf)

∂θf
dt.

∇z(0)L can also be calculate in a similar way and we
can propagate the gradient backward to layers earlier than
the ODE if any. It is worth of mentioning that the space
complexity of the adjoint sensitivity method is O(1) whereas
using the backpropagation to train NODEs has a space com-
plexity proportional to the number of DOPRI steps. Their
time complexities are similar or the adjoint sensitivity method
is slightly more efficient than that of the backpropagation.
Therefore, we can train NODEs efficiently.

B. Diffusion Equations

The diffusion equation is to describe the macroscopic be-
havior of many micro-particles in Brownian motion, resulting
from the random movements and collisions of the particles
[23]. In mathematics, it is related to Markov processes, such
as random walks, and applied in many other fields, such as

materials science, information theory, and biophysics [24]–
[27]. The essence of the diffusion equation with a graph-based
representation of data can be written as follows:

dh(t)

dt
= −∆h(t) = −kLh(t), (3)

where h ∈ R|V |×1 is a vector that contains a value for each
node, k is a heat capacity coefficient, ∆ means the discrete
Laplacian operator, and L is the symmetrically normalized
augmented graph Laplacian matrix. Therefore, the change of
the values in h over time t can be describe by the diffusion
equation.

In our case, each node has multi-dimensional values, where
the heat equation can be written as follows:

dH(t)

dt
= −∆H(t) = −kLH(t), (4)

where H is a matrix, each row of which contains multi-
dimensional values for each node.

Analogy to Simple Graph Convolution (SGC): The simple
graph convolution [28] method is one of the most efficient
graph convolutional networks. Its main graph convolutional
layer definition is as follows:

H(m) = SmH(0), (5)

where H is a node hidden matrix, and Sm is the m-th power
of the symmetrically normalized adjacency matrix S with
added self-loops.

Now we derive Eq. (5) from Eq. (4) to show their anal-
ogy [29], [30]. When applying the Euler discretization to
Eq. (4) with an interval step size dt, we have

H(t+ dt) = H(t)− dtLH(t)

= Ht − dt(I − S)H(t)

= [(1− dt)I + dtS]H(t)
def
= SdtH(t)

(6)

We will get the following final H(T), if we keep evolving
the ODE until the terminal time T .

H(T) = [Sdt]mH. (7)

We regard that SGC corresponds to the Euler discretization
with a unit step size dt = 1. This step size reduces the
diffusion matrix to the Linear GCN diffusion matrix S:

S(dt)|dt=1 = (1− 1)I + S = S (8)

and the final H becomes equivalent:

H(T)|dt=1 = H(m) = H(m) = SmH. (9)

Therefore, Eq. (9) is equivalent to Eq. (4) when the Euler
method with a unit step size is used. As mentioned earlier,
however, we also have many other ODE solvers, such as
DOPRI and so forth. Thus, SGC is a special case of the

diffusion equation. In this regard, our method, whose one
part is the diffusion equation, is able to learn from and infer
about graphs. In other words, our proposed model is a spatio-
temporal model.

C. Climate Modeling and Weather Forecasting

Climatologists study the natural factors that cause climate
change, using past information to help predict future climate
change. Climatological phenomena includes (radiative, con-
vective, and latent) heat transfer, interactions among atmo-
sphere, oceans and surface, and chemical and physical com-
position of the atmosphere. Climate model elements that can
constitute such phenomena are typically differential equations
based on physics, fluid motion, and chemistry [31]. In weather
forecasting tasks, temperature change is related to a transport
problem which occurs by diffusion principles. This equation
describes a large family of physical processes(heat conduction,
wind dynamics, fluid dynamics, etc.) [32]. For this reason, we
focus on designing our proposed method with the diffusion
equation.

Various deep learning-based models are designed for cli-
mate and weather forecasting [1], [6], [9], [10], [33], [34],
including near-surface air temperature predictions [17], [35],
air quality inference [8], [36], precipitation predictions [2],
[3], [37], wind speed predictions [7], [38], [39] and extreme
weather predictions [4], [5]. Climate and weather consists
of spatio and temporal data, leading to the development of
spatio-temporal models [11], [40]. However, models account-
ing spatial and temporal dependencies do not consider the
differential equations related to the climate model. Recently,
researches are trying to leverage physical knowledge for
climate predictions. De Bezenac et al. [41] used transport
physics (diffusion and advection) to predict the sea surface
temperature, but this is limited to a regular grid. DPGN [17]
designed a physics-informed learning architecture to predict
the air temperature. DPGN incorporated differentiable physics
equations with a graph neural network framework and used as
a physics-informed regularizer. Unlike the above models, we
learn the heat capacity of the diffusion equation, which is one
important point that have been overlooked for a while, and
consider the uncertain nature from the real-word climate data.

III. PROBLEM DEFINITION

We solve various climate modeling-related problems in this
work, using our proposed method. One typical problem is
predicting a climate-related factor a’s next value from recent
values of a set B factors, where i) a ∈ B, e.g., a is next
temperature and B includes recent temperature, or ii) a /∈ B,
e.g., a is next temperature and B does not include temperature
but humidity, wind velocity, and so on.

It is well known that these processes can be described
by diffusion equations under ideal conditions. Due to the
uncertain nature of real-world climate data, however, our
problem definition is to model the relationships among various
noisy climate factors. This problem definition falls into the
category of regression.

NDE

𝐺

𝑯!
(#)

𝑯	!
(&)

𝑲
Heat Capacity Generation

𝑿!

𝑿'
𝒚&

Encoder

Decoder

Edge Class (EC)

<latexit sha1_base64="bmrNV0nBTyQSwiO1STMzVz7mWOE=">AAACh3icdVFNTxsxEPUu4St8NMCxF6sRUgA17BYESFwoXCK1h1QiASkbIq/XSyy89sqeRYpW/iv8KG79N/UmOaShHcny03szz+OZOBfcQBD89vyV2ura+sZmfWt7Z/dTY2+/b1ShKetRJZR+jIlhgkvWAw6CPeaakSwW7CF+uav0h1emDVfyHiY5G2bkWfKUUwKOGjXeoliJxEwyd5UdOypf7VPZCo4sPsERl/BUho4MLP66mPjDRipRgBe5nxYve/UrL5h6pa3/ideLQgRjBsSpqcVHOIFRoxm0g2ngjyCcgyaaR3fUeI8SRYuMSaCCGDMIgxyGJdHAqWC2HhWG5YS+kGc2cFCSjJlhOZ2jxYeOSXCqtDsS8JRdrChJZqpGXWZGYGyWtYr8lzYoIL0allzmBTBJZw+lhcCgcLUUnHDNKIiJA4Rq7nrFdEw0oeBWV3dDCJe//BH0v7XDi3bw67x5czsfxwb6jL6gFgrRJbpBHdRFPUS9mnfsnXnn/qZ/6l/4V7NU35vXHKC/wv/+B1X4xi0=</latexit>

H(0)
v +

Z 1

0

�K � LH
(t)
V + f(H

(t)
V ;✓f)dt

<latexit sha1_base64="G9DbGxjcOQo8NTNGLxviqJxvjF4=">AAACGHicbVDLSgMxFM34rPU16tJNsAjtps6IqMtiQVxWsA9oS8mkaRuamQzJHbEM8xlu/BU3LhRx251/Y6adhbYeCDk5515y7/FCwTU4zre1srq2vrGZ28pv7+zu7dsHhw0tI0VZnUohVcsjmgkesDpwEKwVKkZ8T7CmN66mfvORKc1l8ACTkHV9Mgz4gFMCRurZZ7ij+dAnuIg7wJ4gvq0mvdhN0rcnRV9PfHPFLSM2Elwq9eyCU3ZmwMvEzUgBZaj17GmnL2nkswCoIFq3XSeEbkwUcCpYku9EmoWEjsmQtQ0NiM90N54tluBTo/TxQCpzAsAz9XdHTHydTmgqfQIjveil4n9eO4LBdTfmQRgBC+j8o0EkMEicpoT7XDEKYmIIoYqbWTEdEUUomCzzJgR3ceVl0jgvu5dl5/6iULnJ4sihY3SCishFV6iC7lAN1RFFz+gVvaMP68V6sz6tr3npipX1HKE/sKY/33mfDw==</latexit>

�(FC1(XV))

<latexit sha1_base64="xdEsh9AHO7395LqdKcU6NjdV5Q4=">AAACLXicbVBbSwJBFJ61m9ltq8dehiTQF9kNuzxKRvhokBdQk9lx1MHZCzNnI1n2D/XSX4mgByN67W80q0KlfTDMx/edwznncwLBFVjWxEitrK6tb6Q3M1vbO7t75v5BXfmhpKxGfeHLpkMUE9xjNeAgWDOQjLiOYA1nVE78xgOTivveHYwD1nHJwON9TgloqWtet4E9QnRTjrvRWYxzuK34wCUJ+TGKU8PxRU+NXf1FFS3W4/vIjnE+n890zaxVsKbAy8Sekyyao9o1X9s9n4Yu84AKolTLtgLoREQCp4LFmXaoWEDoiAxYS1OPuEx1oum1MT7RSg/3famfB3iq/u6IiKuSPXWlS2CoFr1E/M9rhdC/7ETcC0JgHp0N6ocCg4+T6HCPS0ZBjDUhVHK9K6ZDIgkFHXASgr148jKpnxbs84J1W8yWruZxpNEROkY5ZKMLVEIVVEU1RNETekET9G48G2/Gh/E5K00Z855D9AfG1zd6aKcE</latexit>

FC5(�(FC4(H
1
V)))

Fig. 2. The detailed workflow of NDE

IV. PROPOSED METHOD

We describe our proposed neural diffusion equation method
to model the spatio-temporal relationships among climate
factors.

A. Overall Architecture

Our method consists of four modules as shown in Fig. 2:
i) encoding layer, ii) heat capacity generation layer, iii) neural
diffusion equation layer, and iv) decoding layer. Given a graph
G = (V,E), a node feature matrix XV ∈ R|V |×M , and an
edge feature matrix XE ∈ R|E|×N , the role of each module
is as follows:

1) The encoding layer converts XV into a hidden matrix
H

(0)
V ∈ R|V |×D, where D is the size of hidden vector;

2) The heat capacity generation layer creates the heat ca-
pacity coefficient(s). Our method supports four different
heat capacity concepts and the details will be described
shortly;

3) The neural diffusion equation layer processes H(0)
V to

generate H(1)
V , following the learned neural diffusion

equation;
4) The decoding layer predicts a target climate factor for

each node from H
(1)
V .

The node feature matrix XV can have values for each node
for the previous P time steps to learn from historical patterns.

B. Initial Encoding Layer

The node feature matrix XV ∈ R|V |×M contains the input
features of nodes. We use the following encoding layer to
produce their initial hidden vectors:

σ(FC1(XV)), (10)

where σ is a rectified linear unit (ReLU) and FC is a fully-
connected layer.

Instead of directly feeding the raw climate factors contained
by XV into the neural diffusion layer, we first create initial
hidden vectors.

C. Heat Capacity Generation Layer

The heat capacity generation layer produces one of the four
different types of the heat capacity from the edge feature
matrix XE ∈ R|E|×N . In diffusion equations, a heat capacity
coefficient of an edge represents how quickly (or easily)
climate factors are diffused via the edge. Therefore, it is one

of the most crucial points in our model to learn a reliable heat
capacity. We support the following four types:

1) Edge Class (EC): We learn a heat capacity coefficient
for each class of edges when edge features are one-
hot vectors. Those edges which share the same one-
hot vector also share the same heat capacity coefficient,
denoted kc ∈ R, where c means a class of edges;

2) Heat Matrix (HM): We learn a heat capacity matrix
K ∈ R|V |×|V |. We learn the entire matrix in this case;

3) Single Coefficient (SC): We learn a single heat capacity
coefficient k ∈ R which will be shared by all edges;

4) Fixed Coefficient (FC): We also consider the case of
k = 1. In fact, this is one of the ablation study models.

The first method, denoted EC, can be efficiently imple-
mented using the embedding layer API of PyTorch and Ten-
sorFlow, which outputs an embedding vector given a one-hot
vector. In our case, it outputs a scalar heat capacity coefficient.

D. Neural Diffusion Equation Layer

This neural diffusion equation layer is the core of our
proposed method. It evolves H(0)

V to H(1)
V using the learned

neural diffusion equation. The key computation method is as
follows:

H
(1)
V = H

(0)
V +

∫ 1

0

−K �LH(t)
V + f(H

(t)
V , t;θf)dt, (11)

where � is an element-wise product, and L is the symmet-
rically normalized augmented graph Laplacian matrix of the
graph G. In the above equation, we assume the heat capacity
of EC and HM since in both cases the heat capacity is
represented by a matrix K. For SC and FC, we use a scalar
coefficient k.

Without the neural network f , Eq. (11) reduces to the
diffusion equation with the discrete Laplace operator. In real-
world environments, however, it is hard to say that diffusion
processes are completely governed by the diffusion equation
— in particular, we observe in our experiments that diffusion
processes around large cities have non-trivial uncertainties
that cannot be solely described by the diffusion equation. To
this end, we let the neural network f learn the uncertainty.
Therefore, dH

(t)
V

dt is governed by the heat equation and the
learned neural network. The definition of f is as follows:

f(H
(t)
V , t;θf)

def
= σ(FC3(σ(FC2(H

(t)
V)))). (12)

Algorithm 1: How to train our proposed NDE
Input: Training data Dtrain, Validating data Dval,

Maximum iteration number max iter
1 Initialize θf and other parameters θothers if any, e.g., the

parameters of the encoding, decoding, and other layers;
2 k ← 0;
3 while k < max iter do
4 Train θf and θothers;
5 Validate and update the best parameters, θ∗

f and θ∗
others,

with Dval;
6 k ← k + 1;
7 return θ∗

f and θ∗
others;

E. Decoding Layer

The decoding layer is to produce predictions from H
(1)
V .

The decoding layer definition is as follows:

ŷ = FC5(σ(FC4(H
(1)
V))), (13)

where ŷ ∈ R|V |×1 contains a climate factor value for each
node.

F. Multi-step Forecasting

While the default forecasting is to predict very next value
for a target climate factor from XV , our method also supports
predicting for next multiple S time steps. We keep evolving
H

(i−1)
V to H

(i)
V until i = S as follows, using the neural

diffusion equation layer:

H
(1)
V = H

(0)
V +

∫ 1

0

−K �LH(t)
V + f(H

(t)
V , t;θf)dt,

H
(2)
V = H

(1)
V +

∫ 2

1

−K �LH(t)
V + f(H

(t)
V , t;θf)dt,

...

H
(S)
V = H

(S−1)
V +

∫ S

S−1
−K �LH(t)

V + f(H
(t)
V , t;θf)dt.

(14)

One can consider that this mechanism corresponds to a
continuous recurrent network [42], [43]. The decoding layer
then predicts for each time step s ∈ {1, 2, · · · , S} using H(s)

V .

G. Training Algorithm

We use Alg. 1 to train our proposed NDE. For the gradient
calculation, we use the following mean squared error loss
function:

L def
=

∑|V |
i=1(y[i] − ŷ[i])2

|V | , (15)

where y[i] means the i-th element of y.
The training algorithm follows a standard method to update

the parameters and validate with a validation set. One more
thing worth mentioning is that the training process can be
theoretically well-posed.

TABLE I
DATASET DESCRIPTION

Dataset LA & SD NOAA
Train 2012/6/28 9pm-2012/07/8 7am 2015/1/1 0am-2015/9/13 12pm
Valid 2012/7/8 7am-2012/07/10 9am 2015/9/13 12pm-2015/10/20 0am
Test 2012/7/10 9am-2012/07/14 10pm 2015/10/20 0am-2016/1/1 0am

Fig. 3. Weather stations in the
eastern states of the US and its
4-NN graph.

Well-posedness of the Solution
of NDE: The well-posedness2 of
ODEs was already proved in [44,
Theorem 1.3] under the mild con-
dition of the Lipschitz continu-
ity of dh(t)

dt , i.e., dH(t)
dt in our

case. The matrix multiplication of
the heat equation is a representa-
tive Lipschitz continuous operator
with a specific Lipschitz constant.
In addition, almost all activations,
such as ReLU, Leaky ReLU, Soft-
Plus, Tanh, Sigmoid, ArcTan, and
Softsign, have a Lipschitz constant

of 1. Other common neural network layers, such as dropout,
batch normalization and other pooling methods, have explicit
Lipschitz constant values. Therefore, the Lipschitz continuity
of dH(t)

dt can be fulfilled in our case, and our training algorithm
solves a well-posed problem so its training process is stable
in practice.

V. EXPERIMENTS

We conduct experiments with synthetic and real-world
datasets for climate modeling. All experiments were con-
ducted in the following software and hardware environments:
UBUNTU 18.04 LTS, PYTHON 3.8.0, NUMPY 1.18.5, SCIPY
1.5, MATPLOTLIB 3.3.1, PYTORCH 1.7.0, CUDA 10.0, and
NVIDIA Driver 417.22, i9 CPU, and NVIDIA RTX TITAN.
We repeat the training and testing procedures with ten different
random seeds and report their mean and standard deviation
accuracy — resources are accessible at https://github.com/
jeehyunHwang/Neural-Diffusion-Equation.

A. Experimental Environments

1) Synthetic Data: We test with synthetic data from
physics. Network dynamics are generated based on the analyt-
ical solutions of the diffusion equation referred in Eq. (4). We
consider a grid network and a small-world network. Each node
of the grid network has eight connected neighbors. In particu-
lar, we add the small-world network due to the fact that climate
networks can be regarded as small-world networks [45], [46].
In fact, the real-world datasets we use later are classified
as small-world networks because all the small-coefficients,
which are coefficients for quantifying small-worldness [47],
[48], are greater than 1. We use the Watts-Strogats model
to generate the small-world network [49]. We first generate

2A well-posed problem means i) its solution uniquely exists, and ii) its
solution continuously changes as input data changes.

https://github.com/jeehyunHwang/Neural-Diffusion-Equation
https://github.com/jeehyunHwang/Neural-Diffusion-Equation

(a) LA (t = 1) (b) LA (t = 2) (c) LA (t = 3) (d) LA (t = 4)

(e) SD (t = 1) (f) SD (t = 2) (g) SD (t = 3) (h) SD (t = 4)

Fig. 4. The graph representation of the LA and SD areas. There are 274 and
282 nodes, respectively. These graphs show the change of the air temperature
over time.

ground-truth values of each network dynamics including 400
nodes using the Dormand-Prince method [50]. We sample 100
snapshots of the created continuous-time dynamics with the
same time-interval, and use first 80 snapshots for training and
the remaining 20 snapshots for testing.

2) LA and SD Data: We also use a dataset that consists of
hourly climate observations over 16 days (June/28/2012 21:00
to July/14/2012 22:00) in Los Angeles and San Diego areas,
including 274 and 282 nodes, respectively (as shown in Fig. 4).
Each node includes 10 climate observations: air temperature,
albedo, precipitation, soil moisture, relative humidity, specific
humidity, surface pressure, planetary boundary layer height,
and wind vector (2 directions). Listed observations are selected
due to its characteristic of high relation to diffusion equa-
tion [19]. The dataset also includes edge attributes representing
the land-usage types of source and destination nodes, resulting
in 43 different edge connection classes. The discrete time unit
is one hour. The statistics of all real-world datasets we use for
our experiments are summarized in Table I.

3) NOAA Data: We conduct experiments with a dataset
including hourly average temperature derived from the On-
line Climate Data Directory of the National Oceanic and
Atmospheric Administration(NOAA)3. We select 188 stations
located in a region of the latitude in [23.886, 44.371] and the
longitude in [-87.188, -67.605] as shown in Fig. 3, from 2015
of hourly climate normals dataset. The imputation of missing
values is done using the average value of 2 time-wise nearest
neighbors for experimental purposes. We adopt 4-NN (Nearest
Neighbor) algorithm to construct graph structure, and the
created adjacency matrix A is converted by A = (A+AT)/2
to make it symmetric. The discrete time unit is one hour.

4) Evaluation Method: For the synthetic dataset, we per-
form a time-series forecasting of reading the first 80% and
predicting the last 20% of observations, i.e., extrapolation. We
exclude the interpolation from this evaluation since almost all

3https://www.ncdc.noaa.gov/cdo-web/

models show reasonable accuracy for it. However, they show
significantly different accuracy for the extrapolation. Since
each node has one scalar value strictly following the diffusion
equation, this dataset is relatively more straightforward than
other real-world datasets.

With the LA and SD datasets, we feed P recent observa-
tions, where P = {1, 3, 5}, and predict S next values, where
S = {1, 10}, i.e., sequence-to-sequence predictions. This
specific experimental setting had been used in [17] as well.
In particular, the input node feature does not include the air
temperature but the ground-truth output is the air temperature,
i.e., the case of a /∈ B in Section. III. This forecasting can be
used to reconstruct the sensing values of malfunctioning/dead
sensors from others.

In the NOAA dataset, we predict next S temperature values,
where S = {1, 6}, from recent P temperature values, where
P = {1, 6}, i.e., the case of a ∈ B in Section. III.

In all datasets, we use the evaluation metrics of mean
absolute error (MAE) and/or mean squared error (MSE). In
all cases, we run with 10 different random seeds and report
their mean and standard deviation accuracy.

5) Baselines: We consider the following baseline to com-
pare with our method:

1) In the first group of baselines, they ignore graph connec-
tivity and perform individual forecasting for each node
as follows:

a) Multi-Layer Perceptron (MLP) is a basic neu-
ral network model which uses a series of fully-
connected layers. We set the number of layers to
2, and the hidden size to 64.

b) Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and Gated Recurrent Units
(GRU) are popular models to deal with time-series
data. We set the number of layers to 2, and the
hidden size to 64.

2) The next group includes the temporal-GNN models,
which are combinations of GNN and RNN models.
The temporal-GNN model adopt the GNN to capture
the graph structure and RNN/LSTM/GRU to learn the
temporal information.

3) DPGN [17] and NDCN [51] are two differential
equation-based models to predict values that follow the
diffusion equation. They do not consider learning the
heat capacity coefficients and modeling uncertainty.

a) The key of DPGN is injecting the knowledge of
the diffusion equation into neural networks. To this
end, it uses a technique known as physics-informed
neural network (PINN [52]).

4) We also consider two variants of DPGN: GN-skip and
GN-only. The GN-only model includes three modules,
which are a graph encoder, a graph network (GN)
block [53], and a graph decoder. The GN-skip model
connects the input and output of the GN block with a
skip-connection [54]. For these two variants of DPGN,

however, we do not inject the knowledge of the heat
equation.

6) Hyperparameters: We consider the following ranges of
the hyperparameters: the hidden vector size D is in {8, 20,
16, 32}. The number of layers of f in Eq. (12) is in {2,3}.
The hidden vector size D is in {128, 256}. The learning rate
in all methods is in {1× 10−2, 1× 10−3, 1× 10−4}.

For reproducibility, we report the best hyperparameters for
our method as follows:

1) Synthetic Data: the learning rate is 1× 10−2, the weight
decay is 1× 10−3, the hidden vector size D is 20;

2) LA: the learning rate is 1× 10−3, the weight decay is
5× 10−4, the hidden vector size D is 32;

3) SD: the learning rate is 1× 10−3, the weight decay is
5× 10−4, the hidden vector size D is 32;

4) NOAA: the learning rate is 1× 10−3, the weight decay
is 0, the hidden vector size D is 32.

B. Experimental Results

1) Synthetic Data: Table II summarizes the mean and
standard deviation accuracy of the extrapolation experiments
with the synthetic datasets for various models. To inject some
uncertainty into the data, we add temporal noises and consider
both with and without the noises. RNN-based models, such
as RNN and RNN-GNN, show relatively poor accuracy. This
is because RNN models do not have enough capacity to
learn from the first 80% of observations, which is rather long
to be processed by RNNs. LSTM and GRU-based models
show reasonable accuracy. GRU-based models are better than
LSTM-based models in our experiments without noises in the
grid network. When there exist noises, LSTM outperforms
GRU. Both LSTM and GRU are capable of learning from the
long sequence, i.e., the first 80% of observations, and show
better accuracy than RNN. One more result worth mentioning
is that GRU-GNN outperforms GRU in the grid network when
there are no noises, which shows the efficacy of processing
both temporal and spatial information.

However, all the best outcomes are made by differential
equation-based models, NDCN and NDE. Among them, our
NDE shows much smaller MAE values. The MAE of NDE is
55% of that of NDCN, which is about 45% smaller for the
grid network. In the case of the small-world network, NDE
shows a 15% smaller MAE than that of NDCN. Since our NDE
explicitly models noise (uncertainty), it shows better accuracy
than others.

Fig. 5 visualizes some ground-truth and predicted values
in the grid network. The true diffusion examples in Fig. 5
(a-c) show that there exist three thermal points in (a) but as
time goes by, they are diffused over the 2-dimensional space.
We note that the time points we use in these figures, i.e.,
t ∈ {21.5, 81, 90}, do not belong to the training set. Therefore,
t = 21.5 means an interpolation and the other two cases mean
extrapolations. Our prediction by NDE successfully interpolate
and extrapolate the diffusion process as shown in the figures.
Fig. 6 visualizes for the small-world network and we can
observe similar patterns.

(a) True (t = 21.5) (b) True (t = 81) (c) True (t = 90)

(d) NDE (t = 21.5) (e) NDE (t = 81) (f) NDE (t = 90)

Fig. 5. The visualization of the interpolation (t = 21.5) and the extrapolation
(t = 81 and t = 90) on the grid network

(a) True (t = 21.5) (b) True (t = 81) (c) True (t = 90)

(d) NDE (t = 21.5) (e) NDE (t = 81) (f) NDE (t = 90)

Fig. 6. The visualization of the interpolation (t = 21.5) and the extrapolation
(t = 81 and t = 90) on the small-world network

2) LA and SD Data: Table III summarizes the forecasting
results in the LA and SD datasets. For the one next step
forecasting of LA, MLP and RNN-based models show the
biggest errors (MSEs) whereas other differential equation-
based models show reasonable accuracy. One interesting point
is that the combination of RNN and GNN does not sig-
nificantly improve the accuracy over the only RNN-based
models. In comparison with GN-skip, both DPGN and NDCN
significantly decrease the errors, i.e., a MSE of 0.5654 for
GN-skip vs. 0.4435 of DPGN. However, our NDE further
decreases the error to 0.2628, which is about 41% smaller.
For the one next step forecasting in SD, we observe similar
patterns with a little smaller margin of 31% between DPGN
and NDE. However, the gap between them is still non-trivial.

For the multi-step forecasting in LA, many baseline methods
show unreliable outcomes in comparison with our method,
e.g., an MSE of 1.2588 by NDCN vs. 0.7594 by NDE. Except
our method, DPGN shows a small error.

For the multi-step forecasting in SD, however, our method
does not show the best accuracy. Our NDE is comparable
to NDCN and RNN-GNN. The smallest error is achieved by

TABLE II
PREDICTION ERRORS (MAES) IN SYNTHETIC DATA FROM HEAT DIFFUSION. EACH RESULT IS THE MEAN AND THE STANDARD DEVIATION WITH 10 RUNS.

Model Grid Small-world Grid Small-world #Paramswithout noise without noise with noise with noise
RNN 0.7188 ± 0.2464 0.1452 ± 0.0697 1.0087 ± 0.0014 0.6423 ± 0.0590 24,530

LSTM 0.5374 ± 0.1352 0.1561 ± 0.0162 0.8230 ± 0.0531 0.5984 ± 0.0017 84,890
GRU 0.4887 ± 0.0145 0.1050 ± 0.0179 0.8815 ± 0.1021 0.6121 ± 0.0149 64,770

RNN-GNN 0.7511 ± 0.2253 0.1783 ± 0.0641 1.0088 ± 0.0017 0.6426 ± 0.0585 24,530
LSTM-GNN 0.5303 ± 0.0984 0.1739 ± 0.0524 0.8182 ± 0.1016 0.6287 ± 0.0214 84,890
GRU-GNN 0.4530 ± 0.0774 0.1054 ± 0.0178 1.0042 ± 0.0692 0.6249 ± 0.0247 64,770

NDCN 0.2007 ± 0.3963 0.0799 ± 0.0194 0.6882 ± 0.0641 0.5921 ± 0.2421 901
NDE 0.1121 ± 0.0229 0.0687 ± 0.0260 0.4569 ± 0.0347 0.4822 ± 0.2124 1,761

NDE(with only f) NDE(without f) DPGN NDE Ground Truth

09:00 21:00 09:00 21:00 09:00 21:00 09:00 21:00
Time

1

0

1

2

3

4

Te
m

pe
ra

tu
re

(a) Node 1 in LA

09:00 21:00 09:00 21:00 09:00 21:00 09:00 21:00
Time

1

0

1

2

3

4

Te
m

pe
ra

tu
re

(b) Node 2 in LA

09:00 21:00 09:00 21:00 09:00 21:00 09:00 21:00
Time

1

0

1

2

3

Te
m

pe
ra

tu
re

(c) Node 1 in SD

09:00 21:00 09:00 21:00 09:00 21:00 09:00 21:00
Time

1

0

1

2

3

Te
m

pe
ra

tu
re

(d) Node 2 in SD

Fig. 7. We visualize the ground-truth and predicted values for two nodes of the LA and SD graphs. (a-b) One-step near-surface air temperature forecasting
in LA from 2012/07/10 9:00 to 2012/07/14 22:00 (c-d) One-step near-surface air temperature forecasting in SD from 2012/07/10 9:00 to 2012/07/14 22:00

DPGN (although both DPGN and NDE rely on the diffusion
equation in their model designs). We think that the training
mechanism of PINN used by DPGN is more effective than
our training method for SD. Recall that our method is more
effective than the PINN mechanism of DPGN for LA, which
shows the difficulty of learning diffusion processes to model
climate. One more difficulty of SD is that it contains many
unpaved regions, as noted in [17].

Fig. 7 shows the ground-truth and predicted values by time.
In these figures, we compare only the highly performing
differential equation-based methods. With the human visual
evaluation in the figures, our NDE shows the best matches
with the ground-truth values. DPGN’s predictions are clearly
worse than those of our method.

3) NOAA Data: For this dataset which does not have
edge features, DPGN, GN-only and GN-skip cannot be tested
because they require edge features. In NOAA, differential
equation-based methods show a good match. MLP and RNN-
based methods show much larger errors than those of NDCN
and NDE. Among RNN-based models, LSTM shows relatively
smaller errors. However, NDCN shows much smaller errors
than them, and our NDE shows the smallest errors among all
methods.

C. Ablation and Sensitivity Studies

With the LA and SD datasets, we conduct ablation studies.
First, we compare the heat capacity generation methods in
Table V. In all cases, as shown, the heat capacity generation

by edge class shows the smallest errors, followed by the single
coefficient and the fixed coefficient methods.

We also carried out sensitivity studies by varying P , i.e.,
varying how much past information we feed into the model.
In Table VI, it shows that climate modeling does not require
long history. The diffusion equation also requires only H(t)

to derive dH(t)
dt , which means past history is not needed in the

diffusion equation. Our experimental results also show similar
patterns in LA and SD.

Table VII shows the performance by varying the hidden
dimension size D. We test up to D = 32 and D = 32 shows
the smallest errors. In particular, the performance gap between
D = 16 and D = 32 is large in SD and NOAA.

In Fig. 7 and other main result tables, the two ablation study
models, i.e., NDE(without f) and NDE(with only f), do not
produce as good predictions as those of the full model, NDE.
One more point worth mentioning is that NDE(with only f)
sometimes requires a large model for f since it relies only on
f , e.g., 85,089 parameters in NOAA by NDE(with only f) vs.
53,585 by NDE.

D. Model Efficiency Analyses

Fig. 8 shows the number of parameters and the error. Models
at the bottom left corner in this figure are preferred. Our NDE
and its variants are located around the bottom left corner.

In general, RNN-based models show low efficiencies in the
figure, followed by RNN-GNN, GRU-RNN, and NDCN. One
more interesting point is that our ablation study models also
show good efficiencies in general.

TABLE III
PREDICTION ERRORS (MSES) ON THE LA AND SD

Model LA SD LA SD LA SD
One-step One-step Multi-step Multi-step #Params #Params

MLP 0.6902 ± 0.0171 0.5863 ± 0.0123 1.2766 ± 0.0143 1.0030 ± 0.0154 4,865 4,865
RNN 0.6295 ± 0.0178 0.5411 ± 0.0231 1.2869 ± 0.0172 0.9065 ± 0.0172 29,825 29,825

LSTM 0.6723 ± 0.0074 0.5651 ± 0.0269 1.3043 ± 0.0106 0.8811 ± 0.0225 119,105 119,105
GRU 0.6486 ± 0.0049 0.5749 ± 0.0082 1.2872 ± 0.0141 0.8852 ± 0.0084 89,345 89,345

RNN-GNN 0.6607 ± 0.0064 0.5291 ± 0.0578 1.1844 ± 0.0727 0.7862 ± 0.0475 29,825 29,825
LSTM-GNN 0.7007 ± 0.0008 0.5754 ± 0.0180 1.1392 ± 0.0252 0.7954 ± 0.0110 119,105 119,105
GRU-GNN 0.6914 ± 0.0098 0.5705 ± 0.0057 1.1722 ± 0.0726 0.7414 ± 0.0294 89,345 89,345

GN-only 0.6035 ± 0.0832 0.7007 ± 0.0848 1.3415 ± 0.1195 1.0422 ± 0.0673 45,696 45,696
GN-skip 0.5654 ± 0.1015 0.6543 ± 0.1195 1.0257 ± 0.1912 0.9872 ± 0.2425 45,696 45,696
DPGN 0.4435 ± 0.0378 0.5149 ± 0.0831 0.8677 ± 0.1033 0.6714 ± 0.1106 45,696 45,696
NDCN 0.5380 ± 0.0469 0.5296 ± 0.0274 1.2588 ± 0.0654 0.7542 ± 0.0730 75,525 75,525

NDE(with only f) 0.3439 ± 0.0922 0.6009 ± 0.2001 0.8635 ± 0.0267 0.7960 ± 0.0854 4,851 9,889
NDE(without f) 0.3493 ± 0.0488 0.5522 ± 0.0582 0.9730 ± 0.1266 0.8731 ± 0.0236 492 1,454

NDE 0.2621 ± 0.0026 0.3561 ± 0.0055 0.7594 ± 0.0225 0.7301 ± 0.0048 4,894 9,934

TABLE IV
PREDICTION ERRORS (MAES) ON NOAA

Model One-step Multi-step #Params
MLP 0.4629 ± 0.0187 3.2582 ± 0.5518 4,673
RNN 0.6783 ± 0.0675 4.5232 ± 0.2807 29,313

LSTM 0.4822 ± 0.0356 2.4247 ± 0.0906 117,057
GRU 0.5930 ± 0.0838 2.1406 ± 0.0409 87,809

RNN-GNN 0.7169 ± 0.1131 6.5125 ± 1.4519 29,313
LSTM-GNN 0.4631 ± 0.0292 2.3955 ± 0.7086 117,057
GRU-GNN 0.5020 ± 0.1098 1.9906 ± 0.1261 87,809

NDCN 0.3151 ± 0.0122 2.2967 ± 0.0415 36,657
NDE(with only f) 0.3340 ± 0.0265 1.8039 ± 0.1017 85,089
NDE(withouf f) 0.3245 ± 0.0161 1.8890 ± 0.0565 37,713

NDE 0.2975 ± 0.0062 1.6337 ± 0.0467 53,585

TABLE V
SENSITIVITY W.R.T. THE HEAT CAPACITY GENERATION METHOD FOR

ONE-STEP PREDICTION

Heat Capacity Generation Method LA SD
FC 0.3657 ± 0.0117 0.7701 ± 0.1164
SC 0.2901 ± 0.0096 0.5863 ± 0.0550
HM 0.5063 ± 0.1031 0.6033 ± 0.0382
EC 0.2621 ± 0.0026 0.3561 ± 0.0055

0.4

0.5

0.6

0.7

MLP

RNN

LSTM
GRU

RNN-GNN

LSTM-GNN

GRU-GNN

0.0 2.5 5.0 7.5 10.0
#Parameters(1e+4)

0.30

0.35

M
ea

n
Ab

so
lu

te
 E

rro
r

NDCN

NDE(with only f)
NDE(without f)

NDE

(a) One-step prediction

4
5
6

MLP

RNN

RNN-GNN

LSTM-GNN

0.0 2.5 5.0 7.5 10.0
#Parameters(1e+4)

1.50
1.75
2.00
2.25

M
ea

n
Ab

so
lu

te
 E

rro
r

LSTM
GRU
GRU-GNN

NDCN

NDE(with only f)

NDE(without f)

NDE

(b) Multi-step prediction

Fig. 8. Model efficiency in NOAA. The bottom left corner is preferred.

VI. CONCLUSION

In this paper, we tackled the problem of one-step and multi-
step climate factor forecasting. The diffusion equation with

TABLE VI
SENSITIVITY W.R.T. P

P LA SD
1 0.2621 ± 0.0026 0.3561 ± 0.0055
3 0.3332 ± 0.0459 0.4495 ± 0.0899
5 0.3229 ± 0.0868 0.4289 ± 0.0576

TABLE VII
SENSITIVITY W.R.T. THE HIDDEN DIMENSION SIZE D

Size of D LA SD NOAA
8 0.2787 ± 0.0049 0.5223 ± 0.0492 0.4355 ± 0.0092
16 0.2628 ± 0.0132 0.5491 ± 0.0671 0.3789 ± 0.0135
32 0.2621 ± 0.0026 0.3561 ± 0.0055 0.2975 ± 0.0062

uncertainty modeling is used in our research. To this end, our
presented method learns i) the heat capacity generation method
and ii) the neural network-based uncertainty model. In the end,
these two modules are combined with the diffusion equation.
Our comprehensive experiments with synthetic and real-world
datasets show the best efficiency of our method, NDE. In
general, NDE achieves the best (or nest-best) accuracy with
a relatively smaller number of parameters and GPU memory
space complexity during inference.

In the future, we will study a more principled method to
model uncertainty. One possible approach is to use stochastic
differential equations (SDEs) [55], [56].

ACKNOWLEDGEMENT

Noseong Park (noseong@yonsei.ac.kr) is the corresponding
author. This work was supported by the Yonsei University
Research Fund of 2021, and the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No. 2020-0-
01361, Artificial Intelligence Graduate School Program (Yon-
sei University), and No. 2021-0-00155, Context and Activity
Analysis-based Solution for Safe Childcare).

REFERENCES

[1] M. A. Zaytar and C. El Amrani, “Sequence to sequence weather
forecasting with long short-term memory recurrent neural networks,”
International Journal of Computer Applications, 2016.

[2] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” NeurIPS, vol. 28, 2015.

[3] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and
W.-c. Woo, “Deep learning for precipitation nowcasting: A benchmark
and a new model,” arXiv preprint, 2017.

[4] Y. Liu, E. Racah, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel,
M. Wehner, W. Collins et al., “Application of deep convolutional neural
networks for detecting extreme weather in climate datasets,” arXiv
preprint, 2016.

[5] E. Racah, C. Beckham, T. Maharaj, S. E. Kahou, C. Pal et al.,
“Extremeweather: A large-scale climate dataset for semi-supervised
detection, localization, and understanding of extreme weather events,”
arXiv preprint, 2016.

[6] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale deep
learning for climate analytics,” in International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2018.

[7] L. Cheng, H. Zang, T. Ding, R. Sun, M. Wang, Z. Wei, and G. Sun,
“Ensemble recurrent neural network based probabilistic wind speed
forecasting approach,” Energies, vol. 11, no. 8, 2018.

[8] W. Cheng, Y. Shen, Y. Zhu, and L. Huang, “A neural attention model for
urban air quality inference: Learning the weights of monitoring stations,”
in AAAI, vol. 32, no. 1, 2018.

[9] M. Hossain, B. Rekabdar, S. J. Louis, and S. Dascalu, “Forecasting the
weather of nevada: A deep learning approach,” in IJCNN. IEEE, 2015.

[10] X. Ren, X. Li, K. Ren, J. Song, Z. Xu, K. Deng, and X. Wang,
“Deep learning-based weather prediction: A survey,” Big Data Research,
vol. 23, 2021.

[11] S. F. Tekin, O. Karaahmetoglu, F. Ilhan, I. Balaban, and S. S. Kozat,
“Spatio-temporal weather forecasting and attention mechanism on con-
volutional lstms,” arXiv preprint, 2021.

[12] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
“Neural ordinary differential equations,” in NeurIPS, 2018.

[13] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural net-
works,” arXiv preprint, 2019.

[14] M. Finzi, K. A. Wang, and A. G. Wilson, “Simplifying hamiltonian
and lagrangian neural networks via explicit constraints,” arXiv preprint,
2020.

[15] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho,
“Lagrangian neural networks,” arXiv preprint, 2020.

[16] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using
physics as model prior for deep learning,” arXiv preprint, 2019.

[17] S. Seo and Y. Liu, “Differentiable physics-informed graph networks,”
arXiv preprint, 2019.

[18] W. A. Strauss, Partial differential equations: An introduction. John
Wiley & Sons, 2007.

[19] T. Stocker, Introduction to climate modelling. Springer Science &
Business Media, 2011.

[20] B. Larwa, “Heat transfer model to predict temperature distribution in
the ground,” Energies, vol. 12, no. 1, 2019.

[21] J. Dormand and P. Prince, “A family of embedded runge-kutta formulae,”
Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp.
19 – 26, 1980.

[22] J. Zhuang, N. Dvornek, X. Li, S. Tatikonda, X. Papademetris, and
J. Duncan, “Adaptive checkpoint adjoint method for gradient estimation
in neural ode,” in ICML, 2020.

[23] D. Freedman, Brownian motion and diffusion. Springer Science &
Business Media, 2012.

[24] Y. Shikano, T. Wada, and J. Horikawa, “Discrete-time quantum walk
with feed-forward quantum coin,” Scientific reports, 2014.

[25] R. dos Santos Mendes, E. K. Lenzi, L. C. Malacarne, S. Picoli, and
M. Jauregui, “Random walks associated with nonlinear fokker–planck
equations,” Entropy, vol. 19, no. 4, 2017.

[26] A. Plastino, E. Curado, F. Nobre, and C. Tsallis, “From the nonlinear
fokker-planck equation to the vlasov description and back: Confined
interacting particles with drag,” Physical Review E, 2018.

[27] G. Mendes, M. Ribeiro, R. Mendes, E. Lenzi, and F. Nobre, “Nonlinear
kramers equation associated with nonextensive statistical mechanics,”
Physical Review E, 2015.

[28] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in ICML. PMLR, 2019.

[29] Y. Wang, Y. Wang, J. Yang, and Z. Lin, “Dissecting the diffusion process
in linear graph convolutional networks,” arXiv preprint, 2021.

[30] L.-P. Xhonneux, M. Qu, and J. Tang, “Continuous graph neural net-
works,” in ICML. PMLR, 2020.

[31] A. DeWan, N. Dubois, K. Theoharides, and J. Boshoven, “Understanding
the impacts of climate change on fish and wildlife in north carolina,”
Defenders of Wildlife, Washington, DC, 2010.

[32] S. R. Hanna, G. A. Briggs, and R. P. Hosker Jr, “Handbook on atmo-
spheric diffusion,” National Oceanic and Atmospheric Administration,
Tech. Rep., 1982.

[33] S. Rasp and S. Lerch, “Neural networks for postprocessing ensemble
weather forecasts,” Monthly Weather Review, 2018.

[34] S. Scher, “Toward data-driven weather and climate forecasting: Ap-
proximating a simple general circulation model with deep learning,”
Geophysical Research Letters, vol. 45, no. 22, 2018.

[35] S. Seo, C. Meng, and Y. Liu, “Physics-aware difference graph networks
for sparsely-observed dynamics,” in ICLR, 2019.

[36] Y. Lin, N. Mago, Y. Gao, Y. Li, Y.-Y. Chiang, C. Shahabi, and J. L.
Ambite, “Exploiting spatiotemporal patterns for accurate air quality
forecasting using deep learning,” in ACM SIGSPATIAL, 2018.

[37] P. Zhang, Y. Jia, J. Gao, W. Song, and H. Leung, “Short-term rainfall
forecasting using multi-layer perceptron,” IEEE Transactions on Big
Data, 2018.

[38] H. Liu, X. Mi, and Y. Li, “Smart deep learning based wind speed
prediction model using wavelet packet decomposition, convolutional
neural network and convolutional long short term memory network,”
Energy Conversion and Management, vol. 166, 2018.

[39] Q. Zhu, J. Chen, L. Zhu, X. Duan, and Y. Liu, “Wind speed prediction
with spatio–temporal correlation: A deep learning approach,” Energies,
2018.

[40] A. Chattopadhyay, P. Hassanzadeh, and S. Pasha, “Predicting clustered
weather patterns: A test case for applications of convolutional neural
networks to spatio-temporal climate data,” Scientific reports, 2020.

[41] E. De Bézenac, A. Pajot, and P. Gallinari, “Deep learning for physical
processes: Incorporating prior scientific knowledge,” Journal of Statis-
tical Mechanics: Theory and Experiment, 2019.

[42] E. D. Brouwer, J. Simm, A. Arany, and Y. Moreau, “Gru-ode-bayes:
Continuous modeling of sporadically-observed time series,” in NeurIPS,
2019.

[43] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural controlled
differential equations for irregular time series,” arXiv preprint, 2020.

[44] T. Lyons, M. Caruana, and T. Lévy, Differential Equations Driven by
Rough Paths. Springer, 2004, École D’Eté de Probabilités de Saint-
Flour XXXIV - 2004.

[45] A. Gozolchiani, S. Havlin, and K. Yamasaki, “Emergence of el niño
as an autonomous component in the climate network,” Physical review
letters, vol. 107, no. 14, 2011.

[46] X.-S. Yang, “Small-world networks in geophysics,” Geophysical re-
search letters, vol. 28, no. 13, 2001.

[47] M. D. Humphries, K. Gurney, and T. J. Prescott, “The brainstem reticular
formation is a small-world, not scale-free, network,” Proceedings of the
Royal Society B: Biological Sciences, 2006.

[48] M. D. Humphries and K. Gurney, “Network ‘small-world-ness’: a
quantitative method for determining canonical network equivalence,”
PloS one, 2008.

[49] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, 1998.

[50] J. R. Dormand, Numerical methods for differential equations: a compu-
tational approach. CRC press, 1996, vol. 3.

[51] C. Zang and F. Wang, “Neural dynamics on complex networks,” in KDD,
2020.

[52] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, 2019.

[53] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Ried-
miller, R. Hadsell, and P. Battaglia, “Graph networks as learnable
physics engines for inference and control,” in ICML. PMLR, 2018.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[55] R. T. Q. Chen and D. K. Duvenaud, “Neural networks with cheap
differential operators,” in NeurIPS, 2019.

[56] L. Kong, J. Sun, and C. Zhang, “SDE-net: Equipping deep neural
networks with uncertainty estimates,” in ICML, 2020.

	I Introduction
	II Related Work
	II-A Neural Ordinary Differential Equations (NODEs)
	II-B Diffusion Equations
	II-C Climate Modeling and Weather Forecasting

	III Problem Definition
	IV Proposed Method
	IV-A Overall Architecture
	IV-B Initial Encoding Layer
	IV-C Heat Capacity Generation Layer
	IV-D Neural Diffusion Equation Layer
	IV-E Decoding Layer
	IV-F Multi-step Forecasting
	IV-G Training Algorithm

	V Experiments
	V-A Experimental Environments
	V-A1 Synthetic Data
	V-A2 LA and SD Data
	V-A3 NOAA Data
	V-A4 Evaluation Method
	V-A5 Baselines
	V-A6 Hyperparameters

	V-B Experimental Results
	V-B1 Synthetic Data
	V-B2 LA and SD Data
	V-B3 NOAA Data

	V-C Ablation and Sensitivity Studies
	V-D Model Efficiency Analyses

	VI Conclusion
	References

