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Abstract—Recent efforts towards video anomaly detection
(VAD) try to learn a deep autoencoder to describe normal event
patterns with small reconstruction errors. The video inputs with
large reconstruction errors are regarded as anomalies at the test
time. However, these methods sometimes reconstruct abnormal
inputs well because of the powerful generalization ability of
deep autoencoder. To address this problem, we present a novel
approach for anomaly detection, which utilizes discriminative
prototypes of normal data to reconstruct video frames. In this
way, the model will favor the reconstruction of normal events and
distort the reconstruction of abnormal events. Specifically, we use
a prototype-guided memory module to perform discriminative
latent embedding. We introduce a new discriminative criterion for
the memory module, as well as a loss function correspondingly,
which can encourage memory items to record the representative
embeddings of normal data, i.e. prototypes. Besides, we design a
novel two-branch autoencoder, which is composed of a future
frame prediction network and an RGB difference generation
network that share the same encoder. The stacked RGB difference
contains motion information just like optical flow, so our model
can learn temporal regularity. We evaluate the effectiveness of our
method on three benchmark datasets and experimental results
demonstrate the proposed method outperforms the state-of-the-
art.

Index Terms—anomaly detection, memory module, latent em-
beddings

I. INTRODUCTION

Video anomaly detection (VAD) (as shown in Fig. 1) is
widely used in the automatic analysis of surveillance videos,
such as traffic, airport, and station monitoring [1], [2]. Due
to the scarcity and ambiguity of abnormal event samples,
VAD is still a challenging task. Most recent efforts towards
VAD [3]–[5] are based on deep autoencoder (AE) [6] with
an unsupervised setting. In the training phase, only normal
video frames are input into the model. They usually extract
general feature representations and then attempt to reconstruct
the inputs again. While during the testing phase, the new
sample with a large reconstruction error is more likely to be
an anomaly, i.e., a typical process of anomaly detection.

There are two main problems with these methods. In the
first place, they usually extract general feature representations
rather than the representative ones of normal data. As a result,
AEs can sometimes reconstruct abnormal inputs from general
feature representation because of their powerful generalization
ability [7]. In the next place, some methods do not consider the

Fig. 1. Overview of anomaly detection in video sequences. Green and orange
rectangles represent normal and abnormal frames, respectively. The red boxes
denote the abnormal locations in the pictures. The goal of frame-level anomaly
detection is to determine which frames in a video sequence contain anomalies.

intrinsical temporal characteristics of video events or capture
motion information through optical flow, which is a high
computational cost.

To address the first problem, some VAD methods based
on autoencoder try to learn more typical latent features from
normal data. Gong et al. [8] proposed to augment the au-
toencoder with a memory module and developed an improved
autoencoder called MemAE. They used a sparse addressing
strategy to force the memory module to record prototypical
normal patterns. Park et al. [5] proposed feature compactness
and separateness losses to further improve MemAE, where
individual memory items in the memory correspond to proto-
typical patterns of normal data. However, their method lacks
the ability to model motion information, so it is unable to
capture the temporal regularity.

In this paper, we propose a prototype-guided memory mod-
ule and embed it into our two-branch autoencoder. As shown
in Fig. 2, we propose to use a novel memory module to record
the representative embeddings of normal data, i.e. prototypes,
to the items in the memory. Based on cluster assessment, we
introduce a discriminative criterion for memory module, and
derive a single loss directly from it. Training the memory
module with this loss can make the memory items far away
from each other and make the features close to their nearest
memory item. As a result, these items not only encode
representative embeddings of normal data but also preserve the
variances. We regard such items as discriminative prototypes.
Given a query feature, our memory module will find the most
relevant prototypes based on the cosine similarity between the
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Fig. 2. Illustration of the proposed video anomaly detection framework. The encoder extracts the query features from an input video clip to retrieve prototypes
in the memory. Our discriminative loss encourages prototypes far away from each other and makes the query features close to their nearest prototypes. In
this way, the memory module can learn discriminative latent embeddings. The prototype-guided memory module transforms the query features with the most
relevant prototypes. Finally, the two decoders input the transformed features and predict the future frame and generate the stacked RGB difference, respectively.

query feature and all memory items. Then we transform the
query feature by a weighted average of these prototypes. In
this way, even if it is an abnormal input, the feature will tend
to be normal after transformation, which prevents the model
from reconstructing the abnormal input.

Besides, video events intrinsically own spatio-temporal
characteristics, so the appearance and motion features of video
events are very crucial for video analysis. Nguyen et al. [4]
proposed to combine a reconstruction network and an optical
flow prediction network that share the same encoder to learn
appearance-motion correspondence. However, training their
model requires an auxiliary network [9] to provide ground
truth optical flow, and it is a high computational cost. Chang
et al. [10] showed that using an RGB difference strategy [11]
to simulate motion information is faster than optical flow.
Based on this, we propose to add a decoder branch to the
traditional video frame appearance reconstruction autoencoder,
which is used to learn motion information. As shown in Fig.
2, we design a motion decoder to generate the stacked RGB
difference, which helps the model to detect the anomalies
related to fast moving in the surveillance videos. This design
makes our method more suitable for the task of real-time video
anomaly detection. We perform comprehensive experiments on
three benchmarks, namely UCSD Ped2 [12], CUHK Avenue
[13], and ShanghaiTech [14] to verify the effectiveness of the
proposed method.

Our main contributions of this paper could be summarized
as follows.

(1) We devise a novel approach for anomaly detection,
which utilizes discriminative prototypes of normal data to
reconstruct video frames. A new prototype-guided memory
module is designed to perform discriminative latent embed-
ding. We propose a novel discriminative criterion for memory
module, as well as a loss function correspondingly, which can
encourage memory to record the discriminative prototypes.

(2) We develop a novel two-branch autoencoder, i.e. a
future frame prediction branch and an RGB difference gen-

eration branch, in which the two branches are responsible for
constraining the encoder to extract the spatial and temporal
features from the video clips, respectively.

(3) Experimental results on three benchmark datasets show
the proposed method achieves state-of-the-art performance. An
extensive ablation study shows the effectiveness of the major
components of the proposed method.

II. RELATED WORK

A. Video Anomaly Detection

The early works on VAD [15]–[20] relied on hand-crafted
appearance and motion features, but these methods lack ro-
bustness in complex or crowded scenes with occlusion and
shadow. Adam et al. [15] design an algorithm based on
multiple local monitors which collect low-level statistics. The
anomaly detector proposed by Li et al. [17] is based on a
video representation that accounts for both appearance and
dynamics, using a set of mixture of dynamic textures models.
Saligrama et al. [18] develop a probabilistic framework to
account for such local spatio-temporal anomalies. A key
insight of this work is that if anomalies are local optimal
decision rules are local even when the nominal behavior
exhibits global spatial and temporal statistical dependencies.
[20] is a unique utilization of particle trajectories for modeling
crowded scenes, in which they propose new and efficient
representative trajectories for modeling arbitrarily complicated
crowd flows.

Recently, deep learning has been successful in many com-
puter vision tasks [21]–[23] as well as anomaly detection
[24]. Due to the scarcity and diversity of anomalies, it is
difficult to collect sufficient and comprehensive anomaly data
as the supervision information for training model. Thus most
existing researches regard VAD as an unsupervised learning
task [3], [25], [26], that is to say, only normal data can be
obtained during training. Many anomaly detection methods
[3], [25], [27] attempted to learn normal event patterns by a
deep AE. Xu et al. [28] proposed the use of stacked denoising



autoencoders to separately learn both appearance and motion
features as well as a joint representation. Hasan et al. [27] use
a convolutional autoencoder (ConvAE) to reconstruct video
frames, and employed reconstruction error as a criterion to
identify anomalies. Based on the LSTM Encoder-Decoder and
the Convolutional Autoencoder, Wang et al. [29] explore a
hybrid autoencoder architecture, which can better explain the
temporal evolution of spatial features. Zhao et al. [25] propose
to use a spatio-temporal autoencoder to extract features from
both spatial and temporal dimensions. Luo et al. [30] leverage
a Convolutional LSTMs Auto-Encoder (ConvLSTM-AE) to
model normal appearance and motion patterns at the same
time, which further boosts the performance of the ConvAE
based solution. There have also been recent attempts to use
feedforward convolutional networks for efficient video pre-
diction by minimizing the mean square error (MSE) between
the predicted frame and the future frame [31]. Similar efforts
were performed in [3] using an autoencoder with adversarial
training strategy to predict future frame rather than the input
itself. Liu et al. [3] believed that normal events are predictable
while abnormal ones are unpredictable. However, these meth-
ods sometimes even reconstruct or predict abnormal frames
well because of the powerful generalization ability of the
autoencoder. To alleviate this issue, we apply a new prototype-
guided memory module to lessen the representation capacity
of autoencoder.

The method most relevant to us is proposed by [4]. Their
method learns appearance-motion correspondence by combin-
ing a reconstruction network and an optical flow prediction
network. In contrast, we design a motion decoder to generate
the stacked RGB difference, which helps detect the anomalies
related to fast moving. Besides, because the generation of RGB
difference is much faster than optical flow, our method is more
suitable for real-time VAD.

B. Latent Representation Learning

Recently, some works have considered the task of unsuper-
vised extraction of meaningful latent representations. Yin et al.
[32] propose a novel multi-view clustering method by learning
a shared generative latent representation that obeys a mixture
of Gaussian distributions. The motivation is based on the fact
that the multi-view data share a common latent embedding
despite the diversity among the various views. Ye et al.
[33] propose a probabilistic structural latent representation
(PSLR), which incorporates an adaptable softmax embedding
to approximate the positive concentrated and negative instance
separated properties in the graph latent space.

In order to make the model more sensitive to anomalies,
some anomaly detection methods [5], [8], [10] based on
autoencoder attempt to learn the representative latent features
from normal data. Recently, memory module have been used
in anomaly detection for understanding the typical normality.
Gong et al. [8] propose to embed a memory module in the
latent space of autoencoder. They use a sparse addressing
strategy to force the memory module to record prototypical
normal patterns. Park et al. [5] further enhance the effec-

Frame RGB difference  Optical flow

Fig. 3. Some examples of RGB video frames, RGB difference and optical
flow.

tiveness of memory module in VAD task by using feature
compactness and separateness losses to train memory. In this
way, their memory items can be discriminative. Chang et
al. [10] design a k-means cluster to force the autoencoder
network to generate compact latent representations. Unlike
these methods, our model uses a prototype-guided memory
module to perform discriminative latent embedding. In this
way, our model can learn various and prototypical features of
normal data.

III. PROPOSED METHOD

The proposed method leverages a future frame prediction
framework for unsupervised anomaly detection. Note that
prediction can be considered as a reconstruction of the future
frame using previous ones [5]. Our framework consists of
three major components: an encoder (for extracting the query
features from video clips), a prototype-guided memory module
(for recording discriminative prototypes and transforming the
query features), and two decoders (one for decoding the latent
features into a future frame, the other for generating RGB
difference). The whole framework is illustrated in Fig. 2.
Given a video clip with normal event of length t+1. We input
the first t frames into the prediction-based network mentioned
above, and then the model predicts frame t+1 and generates
the corresponding stacked RGB difference. As shown in Fig.
3, the motion representation learned by RGB difference can
simulate the motion information captured by optical flow. We
train our model using intensity loss, RGB difference loss,
and discriminative loss end-to-end. The memory items are
updated to record discriminative prototypes of normal data
in the training phase. In the test phase, the model inputs the
features transformed by the prototypes to perform future frame
prediction. In this way, the model will favor the prediction of
normal events and distort the prediction of abnormal events,
so as to carry out anomaly detection. We provide the details
of our method as follows.



A. Two-Branch Autoencoder

The proposed framework is a novel two-branch autoen-
coder, which can simultaneously learn appearance and motion
information from video input. For the shared encoder and
future frame prediction decoder, we adopt the U-Net [34]
architecture, which is widely used for the tasks of future frame
prediction [3], [5]. The RGB difference generation decoder
of our model keeps the same structure as the future frame
prediction decoder except for the skip connections. Such skip
connections in U-Net has been proved to be useful for future
frame prediction because it can transform low-level features
from original domains to the decoded ones. But it is harmful to
produce RGB difference, because the network may allow input
information to go through these connections directly, resulting
in merely copying the input frames.

Mathematically, given a video clip xclips with consecutive t
frames I1, I2, ..., It, we sequentially stack all these frames and
input them into the encoder to get an encoded representation
z of size H × W × C, where H , W , C denote height,
width, and the number of channels, respectively. The encoded
representation is used as query features to retrieve the related
items in the memory. The memory module transforms the
query features z with the most relevant prototypes.

z = fe(xclips; θe), (1)

ẑ = fm(z; θm), (2)

where θe and θm denote the parameters of the encoder fe(·)
and the memory module fm(·), respectively. And ẑ represents
the transformed features, which have the same shape as z. A
detailed description of the memory module will be given in the
next section. Finally, the two decoders input the transformed
features and predict the future frame Ît+1 and generate RGB
difference x̂diff , respectively.

Ît+1 = fpredd (ẑ; θpredd ), (3)

x̂diff = fdiffd (ẑ; θdiffd ), (4)

where θpredd and θdiffd denote the parameters of the future
frame prediction decoder fpredd (·) and the RGB difference
generation decoder fdiffd (·), respectively. And we denote the
ground truth RGB difference between xclips and It+1 as
xdiff :

xdiff = xclips − It+1. (5)

The loss function Lpred and Ldiff for the future frame
prediction decoder and the RGB difference generation decoder
are given in (6) and (7):

Lpred = ‖It+1 − Ît+1‖2, (6)

Ldiff = ‖xdiff − x̂diff‖2. (7)
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Fig. 4. The read and update scheme for the memory module.

B. Prototype-Guided Memory Module

In this section, we introduce our key innovations in detail.
In order to enable our model to have the ability to record
representative embeddings of normal data for understanding
the normality, we propose a prototype-guided memory module
and embed it into our two-branch autoencoder. Such a memory
module can effectively prevent the model from reconstructing
abnormal inputs and improve the performance of anomaly
detection.

1) Discriminative Criterion: We consider how to let the
memory module learn the representative embeddings of nor-
mal data, i.e. prototypes. We argue that the memory module
should satisfy the following two points. Firstly, memory mod-
ule should record various features. This requires that items in
the memory module should be as far away from each other
as possible in the latent space. If they are close to each other,
memory module tend to record similar features, thus lacking
discriminability. Secondly, memory module should record pro-
totypical features. This requires the queries to be close to their
nearest memory item, reducing intra-class variations. In this
way, the memory items are representative and can be regarded
as the typical representations of their surrounding features. We
refer to these two points as the discriminative criterion of the
memory module. In the following, we describe in detail how
to read and update memory. These operations are illustrated
in Fig. 4. The process of deriving the loss function from
discriminative criterion will also be given. This discriminative
loss will be used to train our model as a term of the objective
function.

2) Retrieve and Read: We denote the memory items as
a matrix M ∈ RN×C , where N is the number of memory



items and C is the dimension of each memory item. Let row
vector {mj}Nj=1 denotes the j-th memory item of M . And we
denote by {zi}Ki=1, where K = H ×W , individual queries in
the query features z. Each zi is a query of size 1×1×C, the
same shape as mj . Queries are input to the memory module to
read items. In order to retrieve and read the items, we use (8)
to calculate the cosine similarity between each query {zi}Ki=1

and all memory items {mj}Nj=1.

d(zi,mj) =
zim

T
j

‖zi‖‖mj‖
. (8)

And then we can obtain a two-dimensional distance matrix d
with a size of K ×N . Further, we perform normalization on
each row of the matrix d by a softmax function as:

wij =
ed(zi,mj)∑N
j=1 e

d(zi,mj)
. (9)

With this distance matrix, we can know which memory items
are related to query zi. We can use (10) to retrieve and read
the memory module to get the transformed feature ẑi.

ẑi =

N∑
j=1

wijmj . (10)

We use all memory items to transform features so that our
model can understand various prototypical normal patterns.

3) Update Scheme: To update the memory items, we com-
pute the normalized distance metric between each memory
items {mj}Nj=1 and all queries {zi}Ki=1 as:

vij =
ed(zi,mj)∑K
i=1 e

d(zi,mj)
, (11)

where, v is an K ×N distance matrix. We utilize this cosine
similarity between memory items and query features to update
each memory items using following equation:

mj ← f(mj +

K∑
i=1

vijzi), (12)

where f(·) is the L2 norm. By using the weighted average
of query features, we can focus more attention on the query
features near the memory item.

4) Derivation of Loss Function: As shown in Fig. 5, we
classify queries into their nearest memory item according to
the distance matrix d. In order to achieve the first point of the
discriminative criterion, i.e., memory module should record
various features, we want to increase the distance between
memory items. We measure the scatter between memory items
in terms of the between-class scatter matrix as:

SB =

N∑
j=1

nj
K

(mj − m̄)T(mj − m̄), (13)

where nj is the number of queries declared that the item mj

is the nearest one and m̄ is the mean vector of all memory
items,

m̄ =
1

N

N∑
j=1

mj . (14)

Memory Items
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Fig. 5. The schematic illustration of the proposed discriminative loss. The
query features with the same color are classified into the same item. We want
the memory items as far away from each other as possible in order to record
various features. At the same time, we hope the queries are close to their
nearest memory item, reducing intra-class variations. In this way, memory
items are encouraged to record representative embeddings.

The size of matrix SB is C×C, and its trace Tr(SB) indicates
the scatter between memory items. We want to maximize
Tr(SB), to encourage memory module to record various
features.

As for the second point of the discriminative criterion,
i.e., memory module should record prototypical features. This
requires the queries to be close to their nearest memory
item, reducing intra-class variations. We compute the scatter
between them in terms of the within-class scatter matrix as:

Sj
W =

nj∑
k=1

(zk
j −mj)

T(zk
j −mj), (15)

SW =

N∑
j=1

nj
K

Sj
W , (16)

where {zk
j }

nj

k=1 denote those queries declared that the item
mj is the nearest one. The size of matrix SW is also C ×C.
We want to minimize Tr(SW ), to encourage memory module
to record prototypical features.

Based on the above discussion, we use the trace ratio of
within-class to between-class scatter as the discriminative loss
of our memory module.

Ldis =
Tr(SW )

Tr(SB)
. (17)

Our loss encourages the queries to be close to their nearest
memory item while separating all memory items to improve
discriminability, which improves the ability to record diverse
and prototypical normal patterns.



TABLE I
AUC OF DIFFERENT METHODS ON THE UCSD PED2, CUHK AVENUE,

AND SHANGHAITECH DATASETS. NUMBERS IN BOLD INDICATE THE BEST
PERFORMANCE AND UNDERLINED ONES ARE THE SECOND BEST.

Methods UCSD Ped2 Avenue SH.Tech

MPPCA [35] 69.3% N/A N/A
MPPC+SFA [12] 61.3% N/A N/A
MDT [12] 82.9% N/A N/A
DFAD [36] N/A 78.3% N/A

ConvAE [27] 85.0% 80.0% 60.9%
ConvLSTM-AE [30] 88.1% 77.0% N/A
AE-Conv3D [25] 91.2% 77.1% N/A
Unmasking [37] 82.2% 80.6% N/A
TSC [14] 91.0% 80.6% 67.9%
Stacked RNN [14] 92.2% 81.7% 68.0%
Frame-Pred [3] 95.4% 84.9% 72.8%
Siamese Net [38] 94.0% 87.2% N/A
MemAE [8] 94.1% 83.3% 71.2%
AMC [4] 96.2% 86.9% N/A
MNAD [5] 97.0% 88.5% 70.5%
CDAE [10] 96.5% 86.0% 73.3%

Ours 97.6% 87.8% 74.5%

C. Objective Function

We combine all these losses corresponding to future frame
prediction, RGB difference generation, and discriminative
memory module, into our objective function:

L = λpredLpred + λdiffLdiff + λdisLdis, (18)

where λpred, λdiff , and λdis are the hyper-parameters to
balance each losses.

D. Regularity Score

At test time, following the previous work [5], we also
calculate the Peak Signal to Noise Ratio (PSNR) between the
input frame and its prediction and the distance between the
query features and memory items. We use the sum of these
two metrics as the regularity score of each frame.

Given a video clip with consecutive t+1 frames, we input
the first t frames into our prediction-based network, and it
will predict a future frame Ît+1. The generation quality of
the prediction frame determines whether it is abnormal or not.
Following [3], we also use PSNR as (19) for image quality
assessment. A higher PSNR of the t + 1-th frame indicates
that it is predicted well. That means it is more likely to be
normal.

PSNR(It+1, Ît+1) = 10log10
1

MSE(It+1, Ît+1)
, (19)

MSE(It+1, Ît+1) =
1

S2

S∑
i=0

S∑
j=0

‖It+1(i, j)− Ît+1(i, j)‖22,

(20)
where i, j denote the spatial index of a video frame with size
of S × S. And then, we use (21) to normalize PSNR of all
frames under a single scene to the range [0, 1].

P (t) =
PSNR(It, Ît)−mintPSNR(It, Ît)

maxtPSNR(It, Ît)−mintPSNR(It, Ît)
. (21)
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Fig. 6. Anomaly visualization on ShanghaiTech, CUHK Avenue, and UCSD
Ped2 datasets. We show some abnormal frames and their prediction errors.
Anomalies are marked with red boxes. Embedding a memory module in the
network can detect anomalies more sensitively. Red indicates high anomaly
and blue indicates low.

When the frame It is abnormal, we obtain a low value of P (t)
and vice versa.

In addition, the query features from the normal video frame
should be close to the memory items in the memory module.
We calculate the L2 distance between each query feature and
the nearest memory item as another indicator to measure the
regularity.

DIST (zt,m) =
1

K

K∑
i=0

‖zt
i −m1st‖2, (22)

where 1st is an index of the nearest memory item for the
query feature zt

i , defined as:

1st = argmax
j∈N

wij . (23)

And then, we use (24) to normalize DIST of all frames under
a single scene to the range [0, 1].

D(t) =
DIST (zt,m)−mintDIST (zt,m)

maxtDIST (zt,m)−mintDIST (zt,m)
. (24)

The value S(t) calculated by (25) is taken as the regularity
score of frame It.

S(t) = γP (t) + (1− γ)(1−D(t)). (25)

When the frame It is abnormal, we obtain a low value of S(t)
and vice versa.



TABLE II
ABLATION STUDY OF OUR MODEL.

Component AUC (%)

RGB difference % ! % % ! !

Memory module % % ! ! ! !

Discriminative loss % % % ! % !

UCSD Ped2 94.5 95.8 95.4 96.6 96.5 97.6
CUHK Avenue 84.6 85.4 85.5 86.6 86.8 87.8

E. Implementation Details

To train our network, the input images need to be resized
to 256×256 and the intensity of pixels need to be normalized
to [-1, 1]. The mini-batch size is 4, and t is set to 4. The size
H×W×C of query feature map is 32×32×512. The number
of memory items N is normally set to 100. Specifically, our
network is trained by Adam optimizer [39] with a learning
rate of 2× 10−4. λpred, λdis, λdiff , and γ normally are 1, 1,
0.1, and 0.6, respectively. Hyper-parameter tuning was done
using grid search.

F. Evaluation Metric

In order to quantitatively evaluate the effectiveness of our
method, following [5], [8], [27], we also employ frame-level
Area Under the Curve (AUC) as the evaluation metric. A
threshold on regularity score is varied in order to generate
Receiver Operating Characteristic (ROC) curves of false posi-
tive rate versus true positive rate. Then the Area Under Curve
(AUC) is cumulated to a scalar for performance evaluation. A
higher value indicates better anomaly detection performance.

IV. EXPERIMENTS

To demonstrate the effectiveness of our method, we conduct
experiments on three publicly available datasets and compare
our method with different state-of-the-art methods. We also
provide an extensive ablation study and some detailed analysis
of our proposed method.

A. Datasets

In this paper, we use three benchmark datasets, including
UCSD Ped2 [12], CUHK Avenue [13], and ShanghaiTech
[14]. Now we give a brief introduction to the datasets used
in our experiments.

The UCSD Pedestrian dataset contains two subsets: Ped1
and Ped2. Following [4], [8], we only conduct experiments on
Ped2 because Ped1 is frequently used for pixel-wise anomaly
detection. The UCSD Ped2 dataset consists of 16 training and
12 testing videos. This dataset contains 12 abnormal events, all
of which are unusual pedestrian patterns, such as skateboards,
cars, and bicycles, etc.

The CUHK Avenue dataset consists of 16 training and 21
testing videos which are captured in CUHK campus avenue.
This dataset contains 47 abnormal events, including running,
throwing objects, and loitering, etc. The size of pedestrian may
change with the position and angle of the camera.
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The ShanghaiTech dataset is the most recent benchmark
dataset, which contains 330 training and 107 test videos with
130 abnormal events. It is collected from 13 scenes and is
the largest and most challenging anomaly detection dataset
at present. Abnormal events are diverse and realistic, which
include appearance anomalies like bicycles, motorcycles, cars,
skateboards, and motion anomalies such as jumping, chasing,
fighting, etc.

B. State of the Art Comparison

Table I compares our model with some latest deep learning
based methods, including ConvAE [27], ConvLSTM-AE [30],
AE-Conv3D [25], Unmasking [37], TSC [14], Stacked RNN
[14], Frame-Pred [3], Siamese Net [38], MemAE [8], AMC
[4], MNAD [5], and CDAE [10]. In addition, we also compare
different hand-craft features based methods, including MPPCA
[35], PPC+SFA [12], MDT [12], and DFAD [36]. Our model
achieves the state-of-the-art performance.

Compared to MemAE [8] which is the first to augment the
AE with a memory module to record prototypical patterns of
the normal samples, our model uses the loss function derived
from discriminative criterion to further enhance the effective-
ness of memory module. Our model outperforms MemAE by
3.5%, 4.5%, and 3.3% on UCSD Ped2, ShanghaiTech, and
CUHK Avenue, respectively. Compared to AMC [4] which
learns appearance-motion correspondence, the performance of
our method is better on UCSD Ped2 and CUHK Avenue
by large margins. Note that AMC leverages an adversarial
learning framework and needs an auxiliary network [9] to
provide ground truth optical flow. This means that it takes
less effort to train our model, but we can still get better
performance. Compared to a state-of-the-art prediction method
[5] that also exploits a memory module for anomaly detection,
our model outperforms it by 4.0% on ShanghaiTech and
0.6% on UCSD Ped2 and has comparable performance on
CUHK Avenue. Compared with the latest method [10], the
performance of our model is at least 1.1% higher than it on all
datasets. This demonstrates the effectiveness of our approach
to exploiting a two-branch autoencoder with a prototype-
guided memory module for video anomaly detection.



TABLE III
AUC AND RUNNING TIME OF DIFFERENT METHODS ON THE PED2

DATASET. THE R AND O INDICATE RGB DIFFERENCE AND OPTICAL FLOW,
RESPECTIVELY.

Methods R/O AUC Running Time

Frame-Pred [3] O 95.4% 25 fps
CDAE [10] R 96.5% 32 fps

Ours O 96.6% 30 fps
R 97.6% 42 fps

C. Ablation Study

To evaluate the effectiveness of each component of our
model as shown in Fig. 2, we conduct an extensive ablation
study. In Table II, we measure the performances of variants
of our model on UCSD Ped2 and CUHK Avenue. We train
the baseline model in the first column with only future frame
prediction loss. From the second column, we can see that our
model with the RGB difference generation decoder gives better
results. This shows that using an RGB difference strategy to
simulate motion information can improve performance. The
third column indicates the performances of our model with
memory module but without discriminative loss. We see better
results than the baseline model because the memory module
can help the model record normality. The fourth column
demonstrates that discriminative loss can further boost mem-
ory module performance. Combining all the components can
arrive at our complete model in the last column. Benefit from
the discriminative memory module and motion information
learning, this instance achieves the highest performance.

D. Comparison with Optical Flow

In order to compare the running time and performance of
RGB difference and optical flow, we conducted a comparative
experiment on the UCSD Ped2 dataset. Table III compares our
model with some state-of-the-art methods, including Frame-
Pred [3] and CDAE [10]. The R and O indicate RGB differ-
ence and optical flow, respectively. We can replace the part
of RGB difference in our model with the optical flow method
FlowNet [9], which is consistent with the Frame-Pred [3]. As
shown in Table III, Our method is much faster and performs
better than the method based on optical flow. Also based on
the RGB difference, our method is faster than CDAE [10],
because the two branch networks of our model share the same
encoder, while CDAE [10] contains two different encoders,
which increases the running time.

E. Visualization

In order to further illustrate the effectiveness of our method,
we visualize several anomaly detection examples.

1) Anomaly Visualization: As shown in Fig. 6, we select
three abnormal samples from datasets for anomaly visualiza-
tion. Their corresponding abnormal events are chasing, throw-
ing bag, and vehicle moving on the sidewalk, respectively.
The error maps mainly highlight the abnormal locations in
the pictures. The error maps in the middle column show that

TABLE IV
AUCS OF OUR MODEL WITH DIFFERENT MEMORY SIZES.

Memory Size UCSD Ped2 CUHK Avenue

w/o 95.8% 85.4%
25 96.6% 86.3%
50 97.0% 86.9%
100 97.6% 87.8%
200 97.5% 87.6%

the model can predict anomalies well without our prototype-
guided memory module. On the contrary, when the memory
module is embedded, the detected anomalies are more sig-
nificant. This proves that using discriminative prototypes to
predict video frames can effectively prevent the model from
predicting anomalies.

2) Anomaly Event Detection: In order to show how to
detect abnormal events in real-world surveillance videos, we
present a regularity score curve for a testing video of UCSD
Ped2. As shown in Fig. 7, the anomaly event is a bicycle
breaking into the sidewalk. As can be seen from the curve,
when there are only pedestrians in the scene, the regularity
score maintains a very high value, while when the anomalies
occur, the regularity score decreases sharply. This shows
that our method is capable of detecting the occurrence of
anomalies.

3) Predicted Frames Comparison: As shown in Fig. 8, we
also select two groups of samples from the ShanghaiTech,
CUHK Avenue, and UCSD Ped2 datasets respectively for
predicted frames comparison. In each group, the left column
is the ground truth It+1. The mid column is the corresponding
predicted frame Ît+1. And the right column is the difference
between predicted frame and their ground truth. The three
groups on the right represent normal frames with almost no
highlight region on their corresponding difference maps. The
three groups on the left represent abnormal frames. As shown
in Fig. 8, when there is no abnormal event, the frames can
be well predicted. However, when abnormal events occur, the
predictions are blurred and with color distortion. And the
difference maps mainly highlight the abnormal locations in the
pictures, which shows that our method can detect anomalies
sensitively.

F. Detailed Analysis

In addition, we also conduct an experiment to observe
the performance of our model with different memory sizes.
Finally, we examine the effect of discriminative loss and
compare the running time of different state-of-the-art methods.

1) Memory Module: Table IV compares AUCs of our
model with different memory sizes on UCSD Ped2 and CUHK
Avenue. Our method is not sensitive to the setting of memory
size N . With a large enough memory size, our model will have
a slightly better performance. Compared with MemAE [8], the
performance of our model with 100 memory items is still at
least 3.3% higher than that of MemAE with 2000 memory
items on all datasets. Although MNAD [5] uses only 10 mem-
ory items, the performance of our method is 4% higher than it



Fig. 8. Anomaly visualization on ShanghaiTech, CUHK Avenue, and UCSD Ped2 datasets. We show some abnormal and normal frames and their predictions.
Anomalies are marked with red boxes. The difference maps mainly highlight the abnormal locations in the picture. Red indicates high anomaly and blue
indicates low. Best viewed in color.

on ShanghaiTech, which is the most challenging dataset. Our
model can make such great improvement because we use a
prototype-guided memory module to perform discriminative
latent embedding so that each individual memory item has a
stronger memory ability.

2) The Effect of Discriminative Loss: We calculate the
distance d(mj , m̄) between each memory item mj to the
mean memory item m̄, and we denote the sum of these
distances as:

Dm =

N∑
j=1

d(mj , m̄), (26)

d(mj , m̄) =
mjm̄

T

‖mj‖‖m̄‖
. (27)

At the same time, we calculate the distance between each
query and its closest memory item when testing on UCSD
Ped2, and we denote the average of these distances as:

Dq =
1

K × T
T∑

t=1

K∑
i=1

d(zt
i ,m1st), (28)

d(zt
i ,m1st) =

zt
im

T
1st

‖zt
i‖‖m1st‖

, (29)

where t denote the frame index of video frames of test set
with size of T . From Fig. 9, we can see that using our
discriminative loss Ldis to train the model can increase the
distance between memory items while making the queries
closer to their nearest memory item. This shows that our
loss can improve the discriminability and representativeness
of memory items, so that each memory item can be regarded
as a prototype.

Dm Dq

50

100

150

d
is
ta
n
ce

w/o Ldis

w/ Ldis

Fig. 9. The distance between memory items and the distance between queries
and their nearest memory item.

3) Running Time: Our framework is implemented with
NVIDIA GeForce 1080 Ti and PyTorch [40]. The average
running time is about 42 fps on UCSD Ped2. Because we use
a fast RGB difference strategy to simulate motion information,
our method can achieve high detection speed and is suitable
for real-time surveillance video analysis. We also report the
running time of other state-of-the-art methods such as 20 fps
in [37], 25 fps in [3], 32 fps in [10], 38 fps in [8], and 67 fps
in [5]. The results are copied from the original corresponding
papers.

V. CONCLUSION

We present a memory-augmented two-branch autoencoder
for video anomaly detection. The model is designed as a
combination of two branches to learn spatial and temporal in-
formation simultaneously. A novel prototype-guided memory
module with discriminative loss is also introduced to perform
discriminative latent embedding. Our method can learn better
latent representations and thus detect anomalies sensitively.
The experimental results show that our method outperforms
existing state-of-the-art by a large margin.
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