
THyMe+: Temporal Hypergraph Motifs and Fast
Algorithms for Exact Counting

Geon Lee
Graduate School of AI, KAIST

geonlee0325@kaist.ac.kr

Kijung Shin
Graduate School of AI and School of Electrical Engineering, KAIST

kijungs@kaist.ac.kr

Abstract—Group interactions arise in our daily lives (email
communications, on-demand ride sharing, comment interactions
on online communities, to name a few), and they together form
hypergraphs that evolve over time. Given such temporal hyper-
graphs, how can we describe their underlying design principles?
If their sizes and time spans are considerably different, how can
we compare their structural and temporal characteristics?

In this work, we define 96 temporal hypergraph motifs (TH-
motifs), and propose the relative occurrences of their instances
as an answer to the above questions. TH-motifs categorize
the relational and temporal dynamics among three connected
hyperedges that appear within a short time. For scalable analysis,
we develop THYME+, a fast and exact algorithm for counting the
instances of TH-motifs in massive hypergraphs, and show that
THYME+ is at most 2 , 163× faster while requiring less space
than baseline. Using it, we investigate 11 real-world temporal
hypergraphs from various domains. We demonstrate that TH-
motifs provide important information useful for downstream
tasks and reveal interesting patterns, including the striking
similarity between temporal hypergraphs from the same domain.

I. INTRODUCTION

Interactions in real-world systems are complex, and in many
cases, they are beyond pairwise: email communications, on-
demand ride sharing, comment interactions on online commu-
nities, to name a few. These group interactions together form
a hypergraph, which consists of a set of nodes and a set of
hyperedges (see Fig. 1(a) for an example). Each hyperedge is
a subset of any number of nodes, and by naturally representing
a group interaction among multiple individuals or objects, it
contributes to the powerful expressiveness of hypergraphs.

Recently, several empirical studies have revealed structural
and temporal properties of real-world hypergraphs. Perva-
sive structural patterns include (a) heavy-tailed distributions
of degrees, edge sizes, and intersection sizes [1]; (b) giant
connected components [2], and small diameters [2]; and (c)
substantial overlaps of hyperedges with homophily [3]. Tem-
poral properties observed commonly in various time-evolving
hypergraphs include (a) significant overlaps between tempo-
rally adjacent hyperedges [4]; and (b) diminishing overlaps,
densification, and shrinking diameters [1].

In addition to these macroscopic properties, local connectiv-
ity and dynamics in real-world hypergraphs have been studied.
Benson et al. [5] examined the interactions among a fixed
number of nodes, with a focus on their relations with the
emergence of a hyperedge containing all the nodes. Lee et al.
[6] inspected the overlaps between three hyperedges, which
they categorize into 26 patterns called hypergraph motifs
(h-motifs). Comparing the relative counts of each h-motif’s

1

e1 = (e!1={1,4,5}, t1=7)

2

4

5 6 8
7

3
e2 = (e!2={2,3,4}, t2=10) e3 = (e!3={4,5,6}, t3=11)

e6 = (e!6={4,5,6}, t3=17)

e4 = (e!4={6,7,8}, t4=12)
e5 = (e!5={6,7,8}, t5=14)

(a) An example temporal hypergraph

(b) 7 regions for
defining TH-motifs

(c) The definition
of TH-motif 77

(d) An instance
of TH-motif 77

Fig. 1: (a) A temporal hypergraph with 8 nodes and 6 temporal
hyperedges. (b) The 7 regions in the Venn diagram represen-
tation for defining TH-motifs. (c) The definition of TH-motif
77. ‘F’ and ‘E’ stand for ‘filled’ and ‘empty’, respectively. (d)
The sequence 〈e2, e3, e4〉 is an instance of TH-motif 77.

instances revealed that local structures are particularly similar
between hypergraphs from the same domain but different
across domains. In h-motifs, however, temporal dynamics are
completely ignored.

This line of research has also revealed that specialized
analysis tools (e.g., h-motifs [6] and multi-level decomposition
[2]) are useful for extracting unique high-order information
that hypergraphs convey and also for coping with additional
complexity due to the flexibility in the size of hyperedges.
Simply utilizing graph analysis tools (e.g., network motifs
[7]) after converting hypergraphs into pairwise graphs is often
limited in addressing the above challenges [6], [8].

Motivated by interesting patterns that temporal network
motifs revealed in ordinary graphs [9]–[13], we define 96
temporal hypergraph motifs (TH-motifs) for local pattern
analysis of time-evolving hypergrpahs. TH-motifs generalize
the notion of static h-motifs, which completely ignore tem-
poral information, and describe both relational and temporal
dynamics among three connected hyperedges that arrive within
a short time. Specifically, given three connected hyperedges
ei, ej , and ek, all of which arrive within δ time units, TH-
motifs describe their connectivity based on the emptiness of
the seven subsets of them shown in Fig. 1(b). In the temporal
perspective, the relative arrival orders of ei, ej , and ek are
taken into account, and thus patterns that are indistinguishable

ar
X

iv
:2

10
9.

08
34

1v
1

 [
cs

.S
I]

 1
7

Se
p

20
21

using static h-motifs can be characterized using TH-motifs.
Given a temporal hypergraph, where a timestamp is attached

to each hyperedge (see Fig. 1(a) for an example), we summa-
rize its local structural and temporal characteristics using the
relative occurrence of 96 TH-motifs’ instances. That is, we
obtain a vector of length 96 regardless of the sizes and time
spans of hypergraphs, and thus local characteristics of different
hypergraphs can easily be compared.

Another focus of this paper is the problem of counting
TH-motifs’ instances. Since the number of three connected
hyperedges can be orders of magnitude larger than the number
of hyperedges, directly enumerating all of them is com-
putationally prohibitive, especially for massive hypergraphs.
We develop THYME+ (Temporal Hypergraph Motif Census),
which exactly counts each TH-motif’s instances while avoid-
ing direct enumeration. In our experiments, THYME+ is up
to 2,163× faster than the direct extension of a recent exact
temporal network motif counting algorithm [9], which enu-
merates every static h-motif in the induced static hypergraph.
THYME+ makes the best use of our two findings in real-world
hypergraphs that temporal hyperedges tend to be (1) repetitive
and (2) temporally local. These findings about duplicated (i.e.,
completely overlapped) hyperedges complement the findings
in [4], which focus mainly on partial overlaps.

Using TH-motifs and THYME+, we investigate 11 real-
world hypergraphs from 5 distinct domains. Our empirical
study demonstrates that TH-motifs are informative, capturing
both structural and temporal characteristics. Specifically, using
the counts of incident TH-motifs’ instances as features brings
up to 25.7% improvement in the accuracy of a hyperedge
prediction task, compared to when static h-motifs are used
instead of TH-motifs. Moreover, TH-motifs reveal interesting
patterns, including the striking similarity between hypergraphs
from the same domain.

In summary, our contributions are as follow:
1) New concept: We define 96 temporal hypergraph mo-

tifs (TH-motifs) for characterizing local structures and
dynamics in hypergraphs of various sizes.

2) Fast and exact algorithms: We develop fast algorithms
for exactly counting the instances of TH-motifs, and they
are up to 2, 163× faster than baseline.

3) Empirical discoveries: We demonstrate the usefulness of
TH-motifs by uncovering the design principles of 11 real-
world temporal hypergraphs from 5 different domains.

Reproducibility: The source code and datasets used in this
work are available at https://github.com/geonlee0325/THyMe.

In Section II we review preliminaries and related prior
works. In Section III, we present the concept of TH-motifs. In
Section IV, we develop algorithms for counting the instances
of TH-motifs. In Section V, we empirically analyze real-world
temporal hypergraphs through the lens of TH-motifs. Lastly,
in Section VI, we offer conclusions.

II. PRELIMINARIES AND RELATED WORKS

In this section, we first review the concept of hypergraphs.
Then, we introduce hypergraph motifs (h-motifs), which is de-

TABLE I: Frequently-used notations.

Notation Definition

T = (V, E) temporal hypergraph with temporal hyperedges E
GT = (V,EE) induced static hypergraph of the temporal hypergraph T

ei = (ẽi, ti) temporal hyperedge with nodes ẽi arrived at time ti
I(ẽ) set of temporal hyperedges whose nodes are ẽ

h(ẽi, ẽj , ẽk) TH-motif corresponding to an instance 〈ei, ej , ek〉

P = (VP , EP) projected graph in THYME
Q = (VQ, EQ, tQ) projected graph in THYME+

signed for static hypergraphs. Lastly, we discuss other related
works. Refer to Table I for the frequently-used notations.

A. Basic Concepts: Static and Temporal Hypergraphs

A hypergraph G = (V,E) consists of a set of nodes V =
{v1, ..., v|V |} and a set of hyperedges E = {ẽ1, ..., ẽ|E|}. Each
hyperedge ẽ ∈ E is a non-empty set of an arbitrary number of
nodes. A temporal hypergraph T = (V, E) on a node set V is
an ordered sequence of temporal hyperedges. Each ith temporal
hyperedge ei = (ẽi, ti) where ẽi ⊆ V is the set of nodes and
ti is the time of arrival. Two distinct temporal hyperedges ei =
(ẽi, ti) and ej = (ẽj , tj) are duplicated if they share exactly
same set of nodes, i.e., ẽi = ẽj . We assume the sequence is
ordered and timestamps are unique, i.e., if i < j, then ti <
tj . We denote the set of temporal hyperedges whose nodes
are ẽ (i.e., those inducing ẽ) by I(ẽ) := {ei = (ẽi, ti) ∈
E : ẽi = ẽ}. The temporal hypergraph T induces a static
hypergraph GT = (V,EE) where timestamps and duplicated
temporal hyperedges are ignored. That is, a hyperedge ẽ ∈ EE
in GT exists if and only if I(ẽ) 6= ∅. Notably, the number of
temporal hyperedges is typically much larger than that of static
hyperedges in the induced hypergraph, i.e., |E| � |EE |.

B. Static Hypergraph Motifs (h-motifs)

Hypergraph motifs (h-motifs) [6] are tools for understanding
the local structural properties of static hypergraphs. Given
three connected hyperedges, h-motifs describe their connec-
tivity patterns by the emptiness of each of seven subsets: (1)
ẽi \ ẽj \ ẽk, (2) ẽj \ ẽk \ ẽi, (3) ẽk \ ẽi \ ẽj , (4) ẽi ∩ ẽj \ ẽk,
(5) ẽj ∩ ẽk \ ẽi, (6) ẽk ∩ ẽi \ ẽj , and (7) ẽi ∩ ẽj ∩ ẽk. While
there can exist 27 possible cases of emptiness, 26 cases of
them are considered after excluding symmetric, duplicated,
and disconnected ones. Since non-pairwise interactions among
the hyperedges (such as ẽi ∩ ẽj ∩ ẽk) are taken into account,
h-motifs effectively captures the high-order information of the
overlapping patterns of the hyperedges. It is shown empirically
that their occurrences in the real-world hypergraphs are signif-
icantly different from those in randomized hypergraphs. More-
over, the relative occurrences are particularly similar between
hypergraphs from the same domain, while they are distinct
between hypergraphs from different domains. Note that h-
motifs, which is originally designed for static hypergraphs,
completely ignore temporal information.

C. Other Related Works

In this subsection, we review prior works on network motifs
and empirical analysis of hypergraphs.

https://github.com/geonlee0325/THyMe

Fig. 2: The 96 temporal hypergraph motifs (TH-motifs). In each TH-motif, the red hyperedge arrives first followed by the
blue one and then the green one. Each of the 7 distinct regions in the Venn diagram representation is colored white if it is
empty, and it is colored grey if it is filled with at least one node. See Fig. 1(d) for an instance of TH-motif 77.

Network Motifs. Network motifs are fundamental building
blocks of real-world graphs [7], [14]. Their relative occur-
rences in real-world graphs are significantly different from
those in randomized ones [7] and unique within each do-
main [15]. While they were originally defined on a static
graph, they have been extended to temporal [9], hetero-
geneous [10], [16], and bipartite [17] graphs, as well as
hypergraphs [6]. Their usefulness has been demonstrated in
a wide range of graph applications including community
detection [18]–[22], ranking [23], and embedding [24]–[28].

Temporal Network Motifs: The notion of network motifs has
been extended to temporal networks to describe patterns in
sequences of temporal edges. Several definitions of temporal
motifs have been used, and most of them consider the temporal
connectivity between the edges. In [11] and [12], they consider
δ-adjacency between temporal edges. That is, every consecu-
tive edges should share a node and arrive within in δ time
units. Several counting algorithms for such patterns have been
proposed [11]–[13]. Another definition of temporal motifs
describes patterns of sequences of temporal edges where all
edges arrive within δ time units [9] while taking their relative
arrival orders into consideration. In this work, we define TH-
motifs based on the notion of temporal motifs defined in [9]
due to its simplicity and effectiveness.

Empirical Analysis of Real-world Hypergraphs: Empirical
analysis of global [2], [3] and local [5], [6] structural patterns
and temporal patterns [1], [4], [5] of real-world hypergraphs
has been performed, as discussed in detail in Section I.

III. PROPOSED CONCEPTS

In this section, we propose temporal hypergraph motifs (TH-
motifs), which are tools for understanding the local structural
and temporal characteristics of temporal hypergraphs. We
introduce the definition and their relevant concepts.

Definition: TH-motifs describe structural and temporal pat-
terns in sequences of three connected temporal hyperedges that
are close in time. Note that three hyperedges are connected
if and only if one among them overlaps with the others.
Specifically, given three connected temporal hyperedges 〈ei =
(ẽi, ti), ej = (ẽj , tj), ek = (ẽk, tk)〉 where ti < tj < tk and
tk − ti ≤ δ (i.e., they arrive within a predefined time interval
δ), TH-motifs describe the emptiness of the 7 subsets: (1)
ẽi \ ẽj \ ẽk, (2) ẽj \ ẽk \ ẽi, (3) ẽk \ ẽi \ ẽj , (4) ẽi ∩ ẽj \ ẽk, (5)
ẽj ∩ ẽk \ ẽi, (6) ẽk ∩ ẽi \ ẽj , and (7) ẽi ∩ ẽj ∩ ẽk. That is, in
the structural aspect, TH-motif describes the emptiness of the
seven distinct regions in the Venn diagram representation (see
Fig. 1(b)), effectively capturing the high-order connectivity
among three hyperedges. In the temporal aspects, TH-motifs
take the relative arrival orders of three hyperedges and their
time interval into consideration. While there can exist 27 pos-
sible cases of emptiness, we consider 96 cases of them, which
are called TH-motif 1 to TH-motif 96, after excluding those
describing disconnected hyperedges. We visualize the 96 TH-
motifs in Fig. 2. Recall that static h-motifs completely ignore
temporal information, and also assume that every hyperedge
is unique, while TH-motifs also describe the patterns among
duplicated temporal hyperedges. Thus, while static h-motifs
distinguish only 26 different patterns, TH-motifs distinguish
96 different patterns by considering temporal dynamics in
addition to connectivity.

Instance of TH-motifs: A sequence 〈ei, ej , ek〉 of three tem-
poral hyperedges is an instance of TH-motif t if their relational
and temporal dynamics are described by TH-motif t (see
Fig. 1(d) for an example). For each instance 〈ei, ej , ek〉, we
denote its corresponding TH-motif by h(ẽi, ẽj , ẽk).

Triple, Pair, and Single Inducing TH-motifs: The 96 TH-
motifs can be categorized into three types based on the number
of underlying static hyperedges. A TH-motif is triple-inducing

email-Enron email-Eu contact-primary contact-high threads-ubuntu

0.27 %

0.31 %

(a) email

12 %

29 %

(b) contact

0.0007 %

(c) threads

Fig. 3: Only a small fraction of static h-motifs’ instances in the
induced static hypergraphs are induced by any valid instance
of TH-motifs. Results in small datasets where the instances of
static h-motifs can be exactly counted are reported.

if underlying hyperedges in its instance 〈ei, ej , ek〉 are distinct
(i.e., ẽi 6= ẽj , ẽj 6= ẽk, and ẽk 6= ẽi), as in TH-motifs 1-86. If
two are duplicated while the remaining one is different, as in
TH-motifs 87-95, it is pair-inducing. If all three hyperedges
are duplicated, as in TH-motif 96, it is single-inducing.

IV. COUNTING ALGORITHMS

In this section, we describe methodologies for exactly
counting the instances of each TH-motifs in the input temporal
hypergraph. We first present DP, which extends a recent exact
counting algorithm [9] for temporal network motifs. Then,
we describe THYME, a preliminary version of our proposed
algorithm THYME+. Lastly, we propose THYME+ (Temporal
Hypergraph Motif Census), a fast and efficient algorithm that
addresses the limitations of the previous ones.

Remarks: The problem of counting TH-motifs has additional
technical challenges while it bears some similarity with count-
ing static h-motifs or temporal network motifs. First, the
number of temporal hyperedges is typically much larger than
that of hyperedges in the underlying static hypergraph. For
example, the 11 considered real-world temporal hypergraphs
(see Section V-A) have up to 1.2 − 22.0× more hyperedges
than the underlying static ones. This incurs significant bot-
tlenecks of enumeration methods, and thus fast algorithms
are demanded. Temporal network motifs are defined only by
pairwise interactions among a fixed number of nodes and
their timestamps. However, TH-motifs are defined not just
by pairwise interactions but also by non-pairwise interactions
among three hyperedges, in addition to their timestamps.

A. DYNAMIC PROGRAMMING (DP): Extension of [9]

We present DYNAMIC PROGRAMMING (DP), which is a
baseline approach for counting the instances of each TH-motif
in the input temporal hypergraph T .

Counting DP: Given an input temporal hypergraph T =
(V, E), DP enumerates the instances of static h-motifs in the
induced static hypergraph GT = (V,EE). This step can be
processed by using an existing algorithm provided in [6]. For
each instance {ẽi, ẽj , ẽk} of static h-motif in GT , DP counts
the instances of each TH-motifs whose temporal hyperedges
(a) induce the static h-motif instance and (b) arrive within δ
time. To this end, we adapt the dynamic programming scheme
provided by [9], as described in detail in Appendix A.

Algorithm 1: THYME: Preliminary Algorithm
Input : (1) temporal hypergraph: T = (V, E)

(2) time interval δ
Output: # of each temporal h-motif t’s instances: M [t]

1 M ← map initialized to 0
2 P = (VP = ∅, EP = ∅)
3 ws ← 1

4 for each temporal hyperedge ei = (ẽi, ti) ∈ E do
5 insert(ei)
6 while tws + δ < ti do
7 remove(ews)
8 ws ← ws + 1

9 S ←set of 3 connected temporal hyperedges including ei
10 for each instance 〈ej , ek, ei〉 ∈ S do
11 M [h(ẽj , ẽk, ẽi)] += 1

12 return M
13 Procedure insert(ei = (ẽi, ti))
14 VP ← VP ∪ {ei}
15 Nei ← {e : e ∈ VP \ {ei} and ẽi ∩ ẽ 6= ∅}
16 EP ← EP ∪ {(ei, e) : e ∈ Nei}
17 Procedure remove(ei = (ẽi, ti))
18 VP ← VP \ {ei}
19 Nei ← {e : e ∈ VP and ẽi ∩ ẽ 6= ∅}
20 EP ← EP \ {(ei, e) : e ∈ Nei}

Limitations of DP: Using dynamic programming, DP avoids
enumerating over all instances of TH-motifs. However, it still
enumerates all instances of static h-motifs in the induced
hypergraph GT , most of which however are not induced by any
valid instance of TH-motifs, as seen in Fig. 3. For example,
in threads-ubuntu, only 0.0007% of the static h-motifs
instances are induced by any valid instance of TH-motifs when
δ is 5 hours. That is, DP enumerates every three connected
hyperedges in GT , ignoring any temporal information, while
we are interested only in three connected temporal hyperedges
that arrive within in a short period of time.

B. THYME: Preliminary Version of the Proposed Algorithm

To address the limitations of DP, we present THYME,
a preliminary version of our proposed algorithm THYME+.
THYME directly enumerates each instance of TH-motifs,
instead of those of static h-motifs, to avoid unnecessary
search. To this end, THYME concisely considers the temporal
hyperedges that occur in the δ-sized temporal window. In
response to the arrival of a new temporal hyperedge ei at time
ti, the temporal window moves to [ti − δ, ti]. It maintains
only a succinct projected graph P = (VP , EP) that represents
the connectivity between the temporal hyperedges that occur
within the current temporal window. As the window moves,
the projected graph P is incrementally updated, reflecting
the changes of the current temporal hyperedges. Using P ,
THYME exhaustively enumerates the instances of TH-motifs.

Projected Graph in THYME: The projected graph P =
(VP , EP) is a graph where each node is a temporal hyperedge
and two nodes are connected as an edge if their corresponding
temporal hyperedges share any nodes. In THYME, P is main-
tained on the fly, with response to the temporal hyperedges

that either enter or exit the sliding time window. The update
schemes are described as insert and remove, respectively,
in Algorithm 1. In insert, a temporal hyperedge ei is added
as a node (line 14) and its neighbors (i.e., those in VP that are
adjacent to ei) are joined by edges (lines 15-16). In remove,
a temporal hyperedge ei, as well as its incident edges are
removed from VP and EP , respectively (lines 18-20).

Counting in THYME: The counting procedure of THYME
is described in Algorithm 1. The sets of nodes and edges
of the projected graph P are initialized to empty maps, i.e.,
VP = ∅ and EP = ∅ (line 2). Once a temporal hyperedge
ei = (ẽi, ti) ∈ E arrives, the temporal window is moved to
[ti − δ, ti] and the projected graph P is updated accordingly,
as described above. Then, it enumerates the instances of three
connected nodes in P , which corresponds to the instances
of TH-motifs of T containing ei (line 9). For each instance
〈ej , ek, ei〉 of TH-motif t, the corresponding count M [t] is
incremented (line 11).

Limitations of THYME: Though THYME avoids redundant
search in the induced static hypergraph GT , it directly enu-
merates every instance of TH-motifs in T . Since the size of the
temporal hypergraph is much larger than that of induced static
hypergraph, counting the instances in temporal hypergraph can
be more computationally challenging, especially when time in-
terval δ is large. Each temporal hyperedge within the temporal
window corresponds to a unique node in the projected graph P
even when many temporal hyperedges are highly duplicated,
as in real-world hypergraphs (see Section V-E).

C. THYME+: Advanced Version of the Proposed Algorithm

We present THYME+, our proposed algorithm for exactly
counting the instances of TH-motifs. THYME+ is faster and
more efficient than DP and THYME, as shown empirically in
Section V, by addressing their limitations as follows.
• DP enumerates all instances of static h-motifs in the induced

hypergraph GT , where most of them are redundant, not
induced by any instance of TH-motifs of the temporal
hypergraph T . THYME+ selectively enumerates the h-motif
instances and thus reduces the redundancy.

• THYME exhaustively enumerates all instances of TH-
motifs. THYME+ reduces the enumeration by introducing
an effective counting scheme.

• The projected graph P maintained by THYME can be
large since each temporal hyperedge is represented as a
unique node. THYME+ maintains a projected graph Q that
is typically smaller than P . In Q, the same node can be
shared by multiple temporal hyperedges. The motivation
behind Q is empirically demonstrated in Section V-E.

Projected Graph in THYME+: THYME+ maintains a pro-
jected graph Q = (VQ, EQ, tQ) composed of a set of nodes
VQ, a set of edges EQ, and a map tQ. Each node and edge
represent a static hyperedge and a pair of static hyperedges
that share any nodes, respectively. In addition, tQ maps a set
of timestamps of temporal hyperedges inducing a particular
static hyperedge. Notably, while each node in the projected

Algorithm 2: THYME+: Proposed Algorithm
Input : (1) temporal hypergraph: T = (V, E)

(2) time interval δ
Output: # of each temporal h-motif t’s instances: M [t]

1 M ← map initialized to 0
2 Q = (VQ = ∅, EQ = ∅, tQ = ∅)
3 ws ← 1

4 for each temporal hyperedge ei = (ẽi, ti) ∈ E do
5 insert(ei)
6 while tws + δ < ti do
7 remove(ews)
8 ws ← ws + 1

9 S ← set of 3 connected static hyperedges including ẽi
10 for each instance {ẽi, ẽj , ẽk} ∈ S do
11 comb3(ẽi, ẽj , ẽk)

12 for each pair (ẽi, ẽj) ∈ Nẽi do
13 comb2(ẽi, ẽj)

14 comb1(ẽi)

15 return M

16 Procedure insert(ei = (ẽi, ti))
17 if ẽi /∈ VQ then
18 VQ ← VQ ∪ {ẽi}
19 Nẽi ← {ẽ : ẽ ∈ VQ \ {ẽi} and ẽi ∩ ẽ 6= ∅}
20 EQ ← EQ ∪ {(ẽi, ẽ) : ẽ ∈ Nẽi}
21 tQ(ẽi)← t(ẽi) ∪ {ti}

22 Procedure remove(ei = (ẽi, ti))
23 t(ẽi)← t(ẽi) \ {ti}
24 if tQ(ẽi) = ∅ then
25 VQ ← VQ \ {ẽi}
26 Nẽi ← {ẽ : ẽ ∈ VQ and ei ∩ e 6= ∅}
27 EQ ← EQ \ {(ẽi, ẽ) : ẽ ∈ Nẽi}

28 Procedure comb3(ẽi, ẽj , ẽk)
29 M [h(ẽj , ẽk, ẽi)] +=

∑
t∈tQ(ẽj),t′∈tQ(ẽk)

1[t < t′]

30 M [h(ẽk, ẽj , ẽi)] +=
∑

t∈tQ(ẽj),t′∈tQ(ẽk)
1[t′ < t]

31 Procedure comb2(ẽi, ẽj)
32 M [h(ẽi, ẽj , ẽi)] +=

∑
t∈tQ(ẽi)\{ti},t′∈tQ(ẽj)

1[t < t′]

33 M [h(ẽj , ẽi, ẽi)] +=
∑

t∈tQ(ẽi)\{ti},t′∈tQ(ẽj)
1[t′ < t]

34 M [h(ẽj , ẽj , ẽi)] +=
(|tQ(ẽj)|

2

)
35 Procedure comb1(ẽi)
36 M [h(ẽi, ẽi, ẽi)] +=

(|tQ(ẽi)−{ti}|
2

)
graph P used in THYME is a unique temporal hyperedge, Q
represents the connectivity between hyperedges in the induced
static hypergraph GT . That is, duplicated temporal hyperedges
can share the same node in Q, and thus the size of the graph
can be much smaller than P , i.e., |EQ| < |EP |.

The update schemes of Q, insert and remove in Algo-
rithm 2 add or delete nodes and their adjacent edges, respec-
tively. More specifically, in insert, given a new temporal
hyperedge ei = (ẽi, ti), its set of nodes ẽi is inserted as a new
node, only if there do not exist any temporal hyperedges in the
current temporal window whose nodes are ẽi (line 18). Once
the new node is inserted, their incident edges are created as
well (lines 19-20). Finally, the timestamp ti is added in tQ(ẽi)
(line 21). In remove, given a temporal hyperedge ei to be

removed, it first deletes its timestamp ti from tQ(ẽi) (line 23).
If the ei is the only temporal hyperedge in the current window
whose node set is ẽi, then ẽi and its incident edges are removed
from VQ and EQ, respectively (lines 25-27).

Counting in THYME+: The counting procedure of
THYME+ is described in Algorithm 2. The sets of nodes
and edges of the projected graph Q are initialized to empty
maps, i.e., VQ = ∅ and EQ = ∅ (line 2). For each temporal
hyperedge ei = (ẽi, ti), it moves the temporal window to
[ti − δ, ti] and accordingly as described above. Once Q
is updated, THYME+ counts the instances of TH-motifs
that contains ei and the previous temporal hyperedges. To
minimize enumerations, THYME+ adapts effective counting
schemes, comb3, comb2, and comb1, which compute the
number of instances of triple-inducing, pair-inducing, and
single-inducing TH-motifs, respectively, as follows:

• Triple-inducing TH-motifs (lines 9-11): THYME+ first
enumerates the instances of three connected hyperedges in
Q such that contains ẽi (line 9). For each set {ẽi, ẽj , ẽk}
of three connected hyperedges, the number of instances
of TH-motifs that contains ei is counted by timestamp
combinations using comb3 method. That is, since ei is
the latest temporal hyperedge, the set {ẽi, ẽj , ẽk} can be
induced by sequences of either 〈ex, ey, ei〉 or 〈ey, ex, ei〉
where ẽx = ẽj and ẽy = ẽk. Since tx ∈ tQ(ẽj) and
ty ∈ tQ(ẽk), the number of such instances can be computed
by the number of timestamp combinations of tQ(ẽj) and
tQ(ẽk) (lines 29-30).

• Pair-inducing TH-motifs (lines 12-13): THYME+ enu-
merates each edge (ẽi, ẽj) in Q that are adjacent to ẽi,
which can be induced by three different orders of sequences,
〈ex, ey, ei〉, 〈ey, ex, ei〉, and 〈ey, ey, ei〉 where ẽx = ẽi and
ẽy = ẽj . Since tx ∈ tQ(ẽi) \ {ti} and ty ∈ tQ(ẽj), the
number of the sequences can be computed by the number
of combinations of the set of these timestamps (lines 32-33).

• Single-inducing TH-motifs (line 14): Single-inducing TH-
motif, which consists of three duplicated temporal hyper-
edges, can be immediately counted using comb1. That
is, a sequence 〈ex, ey, ei〉 where ẽx = ẽi and ẽy = ẽi
can be an instance of single-inducing TH-motif. Since
tx ∈ tQ(ẽi) \ {ti}, ty ∈ tQ(ẽi) \ {ti}, and tx < ty , the
number of such instances is computed immediately (line 36).

In Section V-E, we share empirical observations supporting
the intuition behind THYME+. In addition, we provide the
complexity analysis of THYME+ in the supplementary docu-
ment [29].

V. EMPIRICAL STUDIES

In this section, we review experiments to answer Q1-Q4.

Q1. Discoveries: Which findings do TH-motifs bring?
Q2. Comparison with Static H-motifs: Are TH-motifs more

informative than static hypergraph motifs [6]?
Q3. Speed & Efficiency: How fast and efficient is THYME+?
Q4. Further Analysis: Why is THYME+ fast and efficient?

TABLE II: Statistics of the 11 real-world hypergraphs from
5 different domains: the number of nodes |V |, the number of
temporal hyperedges |E|, the number of induced static hyper-
edges |EE |, and the maximum hyperedge size maxe∈E |e|.

Dataset |V ||V ||V | |E||E||E| |EE ||EE ||EE | maxe∈E |e|maxe∈E |e|maxe∈E |e|

email-Enron 143 10,885 1,514 37
email-Eu 986 235,263 25,148 40

contact-primary 242 106,879 12,704 5
contact-high 327 172,035 7,818 5

threads-ubuntu 90,054 192,947 166,999 14
threads-math 153,806 719,792 595,749 21

tags-ubuntu 3,021 271,233 147,222 5
tags-math 1,627 822,059 170,476 5

coauth-DBLP 1,836,596 3,700,681 2,467,389 280
coauth-Geology 1,091,979 1,591,166 1,204,704 284
coauth-History 503,868 1,813,147 896,062 925

We first describe the settings where the experiments are
conducted. Then, we provide some empirical observations
using the proposed concepts and algorithms. Next, we test
the scalability of the methods. Finally, we provide possible
reasons why THYME+ is efficient based on the observations
on real-world temporal hypergraphs.

A. Experimental Settings

Machines: We conducted all the experiments on a machine
with i9-10900K CPU and 64GB RAM.

Implementation: We implemented DP, THYME, and
THYME+ commonly in C++.

Datasets: We use eleven real-world temporal hypergraphs
from five different domains. Refer to Table II for the summa-
rized statistics of the hypergraphs. We provide the details of
each dataset in Appendix B. While we assume that timestamps
of temporal hyperedges are unique, in some dataset, this may
not hold. In such cases, we randomly order the temporal
hyperedges whose timestamps are identical.

B. Q1. Discoveries

In this subsection, we present several observations that TH-
motifs reveal in the 11 real-world hypergraphs. TH-motifs
provide a new perspective in analyzing temporal hypergraphs.

Obs 1. Real hypergraphs are not ‘random’: For an accu-
rate characterization, we compare the number of instances of
TH-motifs in real-world temporal hypergraphs against that in
randomized ones. To this end, we randomize the real-world
temporal hypergraph using HyperCL [3], a random hypergraph
generator which preserves node degrees and hyperedge sizes.
Once the randomized hypergraph is generated, we randomly
assign the timestamps of its temporal hyperedges. In Fig. 4,
we compare the distribution of the number of instances of each
TH-motif in real-world temporal hypergraphs and those in ran-
domized ones. The distributions are clearly different, and the
total number of instances is greater in real-world hypergraphs
than in random hypergraphs. Specifically, the total number of
TH-motifs’ instances in real-world hypergraphs are 6.42×,
1.44×, 46.69×, 4.30× of that in randomized hypergraphs

Real-world Hypergraph Random Hypergraph

1 96
TH-motif Index

103

Co
un

ts

(a) email-Eu

1 96
TH-motif Index

104

Co
un

ts

(b) contact-primary

1 96
TH-motif Index

102

Co
un

ts

(c) threads-math

1 96
TH-motif Index

102

Co
un

ts

(d) tags-ubuntu

Fig. 4: The distribution of the number of TH-motifs’ instances in real-world temporal hypergraphs and that in randomized
temporal hypergraphs are significantly different. We set δ to 1 hour. We do not directly compare the distributions from the
coauthorship datasets since their timestamp units are years. We provide the distributions in [29].

in email-Eu, contact-primary, threads-math, and
tags-ubuntu, respectively.

Obs 2. TH-motifs distinguish domains: Network motifs
have demonstrated their power to distinguish graphs based
on their domains. In addition, the count distributions of
h-motifs in static hypergraphs are particularly similar between
domains but different across domains. To confirm that
temporal h-motifs also possess such distinguishing power,
we obtain the characteristic profile (CP) of each hypergraph,
a normalized 96 dimensional vector of concatenation of
relative significance of each temporal h-motif, as suggested
in [6]. As seen in Fig. 5, CPs accurately capture patterns
of real-world temporal hypergraphs. That is, while CPs of
the temporal hypergraphs from the same domain are similar,
they are different across domains. These results support
that TH-motifs play a key role in capturing structural and
temporal patterns of real-world temporal hypergraphs.

Obs 3. Orders of hyperedges matter: TH-motifs are asym-
metric with respect to the arrival order of the temporal
hyperedges, and thus instances that are indistinguishable with
static h-motifs can be categorized as different TH-motifs. We
are interested in how the orders of the hyperedges affect the
occurrences of TH-motifs, and to this end, we statistically
investigate nine pair-inducing ones, ranging from TH-motif
87 to 95. TH-motifs in each triple, TH-motifs 87 − 89, TH-
motifs 90−92, and TH-motifs 93−95 share the same structural
pattern and are distinguished by the orders of the hyperedges.
Consider an instance 〈ei, ej , ek〉 of the pair-inducing TH-
motif. The pair-inducing TH-motifs, by definition, consist of a
pair of duplicated hyperedges and thus enables three different
orderings O1: ẽi = ẽj 6= ẽk, O2: ẽi 6= ẽj = ẽk, and O3:
ẽi 6= ẽj 6= ẽk, ẽi = ẽk,. In O1 and O2, duplicated temporal
hyperedges occur consecutively, whereas in O3, the first and
last hyperedges are duplicated. TH-motifs 87, 90, and 93 are
O1, TH-motifs 88, 91, and 94 are O2, and TH-motifs 89,
92, and 95 are O3. As seen in Fig. 6, this difference indeed
affect the occurrences of the TH-motifs in real-world temporal
hypergraphs. The ratio of the TH-motifs whose ordering is O3
are significantly small, compared to that of O1 and O2. That
is, duplicated temporal hyperedges tend to occur in a short
time and thus affect the count distributions of TH-motifs.

C. Q2. Comparison with Static H-motifs

In this subsection, we demonstrate the usefulness of TH-
motifs. We compare TH-motifs and static h-motifs as inputs

features for a hyperedge prediction task.

Obs 4. TH-motifs help predict future hyperedges: To ver-
ify the usefulness of temporal h-motifs, we consider the prob-
lem of hyperedge prediction, a binary classification problem
of predicting whether the given hyperedge is true or not. Given
a temporal hypergraph T = (V, E), we generate a set E ′ of
fake hyperedges, whose size is equal to the true one (i.e.,
|E| = |E ′|), using HyperCL [3], which preserves the degrees
of the nodes and the sizes are equal to the true ones. The
timestamps of the fake hyperedges are randomly assigned.
We sort the entire temporal hyperedges E ∪ E ′ based on their
timestamps and split into train and test sets in a ratio 8:2. Then
we train a logistic regression classifier using the train set with
following three different features of each temporal hyperedge:
• THM96 (∈ R96): Each dimension represents the number of

instances of TH-motifs that contain the hyperedge.
• THM26 (∈ R26): The 26 TH-motifs whose occurrences

have the highest variance are selected.
• SHM26 (∈ R26): Each dimension represent the number

of instances of static h-motifs that contain the hyperedge.
Temporal information is ignored.

As seen in Fig. 7, THM96 and THM26, which are based
on the TH-motifs counts, are more accurate than STM26.
While h-motifs only represent structural patterns, TH-motifs
incorporate temporal information in addition to them, and thus
they are more informative.

D. Q3. Speed and Efficiency

We evaluate the speed and efficiency of the proposed
algorithms DP, THYME, and THYME+. As seen in Fig. 8,
while DP and THYME run out of memory in some datasets or
with particular δ values, THYME+ is fast and space efficient
enough in all considered settings. Specifically, THYME+ is up
to 2, 163× faster than DP and 16× faster than THYME. As
described in Section IV, THYME+ maintains a small projected
graph Q and thus reduces enumeration over the instances in
Q. In the next subsection, we provide empirical findings that
support the effectiveness of THYME+.

E. Q4. Further Analysis

Why is THYME+ faster and more space efficient compared
to DP and THYME? What properties of real-world temporal
hypergraphs make THYME+ efficient? To answer these ques-
tions, we examine structural and temporal patterns of temporal

email-Euemail-Enron

Similarity = 0.874
(Avg. similarity of all pairs = 0.407) 𝛿 = 24 hours

contact-highcontact-primary

Similarity = 0.997
(Avg. similarity of all pairs = 0.205) 𝛿 = 30 minutes

threads-maththreads-ubuntu

Similarity = 0.724
(Avg. similarity of all pairs = 0.162) 𝛿 = 10 minutes

tags-mathtags-ubuntu

Similarity = 0.932
(Avg. similarity of all pairs = 0.381) 𝛿 = 12 hours

coauth-Geologycoauth-DBLP coauth-History

Similarity = 0.965
(Avg. similarity of all pairs = 0.407) 𝛿 = 2 years

Fig. 5: Characteristic profiles (CPs) (i.e., normalized signif-
icance of each TH-motif) accurately capture the patterns of
real-world temporal hypergraphs. The CPs of the temporal
hypergraphs from the same domain are similar in terms of
the Pearson correlation coefficients, which are the reported
numbers, while they are different across domains. Grey lines
indicate CPs of the temporal hypergraphs from other domains.

hyperedges in real-world temporal hypergraphs and summarize
common properties observed as follows.

• (Obs. 5) Repetitive behavior: Duplicated temporal hyper-
edges tend to appear repeatedly, and the distribution of the
numbers of repetitions is heavy-tailed.

• (Obs. 6) Temporally locality: Future temporal hyperedges
are more likely to repeat recent hyperedges than older ones.

Obs. 5. Repetitive behavior: We first investigate the repeat-
ing patterns (i.e., duplication) of temporal hyperedges in
real-world temporal hypergraphs. As seen in Table II, the

email-Enron email-Eu contact-primary contact-high

threads-ubuntu threads-math tags-ubuntu tags-math

coauth-DBLP coauth-geology coauth-history

Random ratio

(a) TH-motifs 87-89

90 91 92
TH-motif Index

0.0

0.2

0.4

0.6

Ra
tio

(b) TH-motifs 90-92

93 94 95
TH-motif Index

0.0

0.2

0.4

0.6

Ra
tio

(c) TH-motifs 93-95

Fig. 6: The number of instances of nine pair-inducing TH-
motifs depend on the ordering of the hyperedges. The ratio of
the occurrences of TH-motifs 89, 92, and 95 are significantly
low compared to the other TH-motifs with same structures.

number of induced hyperedges (|EE |) is significantly smaller
than that of temporal hyperedges (|E|), implying that tem-
poral hyperedges are frequently repeated. Surprisingly, in
contact-high dataset, the number of induced hyperedges
is only 4.5% of that of temporal hyperedges, implying that
most temporal hyperedges consist of predefined set of nodes.
Note that due to the flexibility of hyperedge sizes, a hyperedge
can be generated from O(2|V |), and thus is extremely unlikely
to repeat the exact set of nodes. In addition, we discover
that the distributions of hyperedge repetitions in real-world
temporal hypergraphs are generally heavy-tailed and close to
power-law distributions, as seen in Fig. 9. We support this
claim by fitting the distributions to representative heavy-tailed
distributions in [29].

Obs. 6. Temporal locality: Now that we have observed the
structural behaviors of the temporal hyperedges, we turn our
attention to the temporal aspect. The temporal locality of
temporal hyperedges is the tendency that recent hyperedges
are more likely to be repeated in the near future than the older
ones. To show the temporal locality, we investigate the time
intervals of the N consecutive identical temporal hyperedges,
i.e., the time it takes for a hyperedge to be repeated N times.
Fig. 10 shows the average time intervals of all the hyperedges
in the real-world hypergraphs and randomly shuffled hyper-
graphs, where timestamps of the hyperedges are randomly
shuffled while preserving the underlying structure. In every
dataset, the time intervals within N consecutive hyperedges
are shorter in real-world hypergraphs than in randomized ones.
That is, future hyperedges are more likely to repeat the recent
hyperedges than older ones.

Intuition behind THYME+: How do these properties of real-
world temporal hypergraphs provide efficiency to THYME+?
Here, we provide some reasons why we expect THYME+ to
be faster and more space-efficient than THYME and DP.

• Connection to Obs. 5: Each node in the projected graph P
used in THYME represents a unique temporal hyperedge,
and its size heavily depends on δ. On the other hand, the
nodes in the projected graph Q maintained in THYME+

represent induced hyperedges, and several temporal hyper-
edges can share the same node. Thus, more repetitions of
temporal hyperedges provide higher efficiency of THYME+,

THM96

SHM26

THM26
13.4 %

(a) email-Enron

25.7 %

(b) email-Eu

11.4 %

(c) contact-primary

4.7 %

(d) contact-high

Fig. 7: TH-motifs provide informative features of temporal hyperedges. THM96 and THM26, which use the counts of TH-
motifs’ instance as features, are more accurate than SHM26, which uses the counts of static h-motifs’ instances, in predicting
future temporal hyperedges. Results in small datasets where the instances of static h-motifs can be exactly counted are reported.

THYME+ (Proposed) THYME DP

2,163 X

THYME+ is 5.7 X faster

(a) email-Eu

27 X
16 X

(b) contact-primary

1.4 X

Out of memory

(c) threads-math

2.7 X

Out of memory

(d) tags-ubuntu

1.9 X

Out of memory

Out of memory (𝛿 ≥ 2)

(e) coauth-DBLP

Fig. 8: THYME+ is faster and more space efficient than DP and THYME. We provide the full results in [29].

101 103

Repetitions

101

103

Hy

pe
re

dg
es

(a) email-Eu

100 101 102

Repetitions

101

103

105

Hy

pe
re

dg
es

(b) threads-math

100 101 102

Repetitions

101

103

105

Hy

pe
re

dg
es

(c) coauth-DBLP

Fig. 9: Temporal hyperedges in real-world hypergraphs are
repetitive. Temporal hyperedges appear repetitively and the
number of repetitions follow a near power-law distribution.
This tendency is found consistently across all datasets [29].

as observed in real-world temporal hypergraphs.
• Connection to Obs. 6: The benefits of temporal locality

of temporal hyperedges are two-fold: (1) The tendency of
temporal hyperedges to repeat within a short period of
time indicates that duplicated temporal hyperedges are more
likely to co-appear in the temporal window in THYME+,
which reduces the size of the projected graph Q. (2) If
duplicated temporal hyperedges reappear within the tem-
poral window, insertion/deletion of nodes and edges of Q
are skipped, which is beneficial in terms of speed.

VI. CONCLUSION

In this work, we propose (a) temporal hypergraph motifs
(TH-motifs), which are tools for analyzing design principles
of time-evolving hypergraphs, and (b) THYME+, which is
a fast algorithm for exactly counting TH-motifs’ instances.
Using them, we investigate 11 real-world hypergraphs from 5
domains. Our contributions are summarized as follows.
• New concept: We define 96 temporal hypergraph motifs

(TH-motifs) that describe local relational and temporal
dynamics in time-evolving hypergraphs.

• Fast and exact algorithm: We develop THYME+, a fast and
exact algorithm for counting the instances of TH-motifs. It
is at most 2, 163× faster than the baseline approach.

Real-world Hypergraph Random Hypergraph

2 3 4 5 6 7 8
N

0.5

1.0

1.5
Ti

m
e

In
te

rv
al

(a) email-Eu

2 3 4 5 6 7 8
N

0.5

1.0

Ti
m

e
In

te
rv

al

(b) threads-math

2 3 4 5 6 7 8
N

2

4

6

8

Ti
m

e
In

te
rv

al

(c) coauth-DBLP

Fig. 10: Temporal hyperedges in real-world hypergraphs are
temporally local. The time intervals of N consecutive dupli-
cated temporal hyperedges is shorter in real-world temporal
hypergraphs than in randomized hypergraphs. The units of
time intervals in coauth-DBLP is years, and the others are
hours. We provide the full results in [29].

• Empirical discoveries: TH-motifs reveal interesting struc-
tural and temporal patterns in real-world hypergraphs. TH-
motifs also provide informative features that are useful in
predicting future hyperedges.

Reproducibility: The source code and datasets used in this
work are available at https://github.com/geonlee0325/THyMe.

Acknowledgements: This work was supported by National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2020R1C1C1008296) and Institute of Information
& Communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. 2019-0-00075, Artifi-
cial Intelligence Graduate School Program (KAIST)).

REFERENCES

[1] Y. Kook, J. Ko, and K. Shin, “Evolution of real-world hypergraphs:
Patterns and models without oracles,” in ICDM, 2020.

[2] M. T. Do, S.-e. Yoon, B. Hooi, and K. Shin, “Structural patterns and
generative models of real-world hypergraphs,” in KDD, 2020.

[3] G. Lee, M. Choe, and K. Shin, “How do hyperedges overlap in real-
world hypergraphs?–patterns, measures, and generators,” in WWW, 2021.

[4] A. R. Benson, R. Kumar, and A. Tomkins, “Sequences of sets,” in KDD,
2018.

https://github.com/geonlee0325/THyMe

[5] A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and J. Kleinberg,
“Simplicial closure and higher-order link prediction,” Proceedings of the
National Academy of Sciences, vol. 115, no. 48, pp. E11 221–E11 230,
2018.

[6] G. Lee, J. Ko, and K. Shin, “Hypergraph motifs: concepts, algorithms,
and discoveries,” PVLDB, vol. 13, pp. 2256–2269, 2020.

[7] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[8] S.-e. Yoon, H. Song, K. Shin, and Y. Yi, “How much and when do
we need higher-order information in hypergraphs? a case study on
hyperedge prediction,” in WWW, 2020.

[9] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in WSDM, 2017.

[10] Y. Li, Z. Lou, Y. Shi, and J. Han, “Temporal motifs in heterogeneous
information networks,” in MLG Workshop, 2018.

[11] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Temporal
motifs in time-dependent networks,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2011, no. 11, p. P11005, 2011.

[12] S. Gurukar, S. Ranu, and B. Ravindran, “Commit: A scalable approach
to mining communication motifs from dynamic networks,” in SIGMOD,
2015.

[13] U. Redmond and P. Cunningham, “Temporal subgraph isomorphism,”
in ASONAM, 2013.

[14] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the
transcriptional regulation network of escherichia coli,” Nature Genetics,
vol. 31, no. 1, pp. 64–68, 2002.

[15] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat,
M. Sheffer, and U. Alon, “Superfamilies of evolved and designed
networks,” Science, vol. 303, no. 5663, pp. 1538–1542, 2004.

[16] R. A. Rossi, N. K. Ahmed, A. Carranza, D. Arbour, A. Rao, S. Kim,
and E. Koh, “Heterogeneous graphlets,” ACM TKDD, vol. 15, no. 1, pp.
1–43, 2020.

[17] S. P. Borgatti and M. G. Everett, “Network analysis of 2-mode data,”
Social networks, vol. 19, no. 3, pp. 243–269, 1997.

[18] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization
of complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.

[19] P.-Z. Li, L. Huang, C.-D. Wang, and J.-H. Lai, “Edmot: An edge
enhancement approach for motif-aware community detection,” in KDD,
2019.

[20] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher, “Scalable motif-
aware graph clustering,” in WWW, 2017.

[21] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-order
graph clustering,” in KDD, 2017.

[22] A. Arenas, A. Fernandez, S. Fortunato, and S. Gomez, “Motif-based
communities in complex networks,” Journal of Physics A: Math Theor.,
vol. 41, no. 22, p. 224001, 2008.

[23] H. Zhao, X. Xu, Y. Song, D. L. Lee, Z. Chen, and H. Gao, “Ranking
users in social networks with higher-order structures,” in AAAI, 2018.

[24] Y. Yu, Z. Lu, J. Liu, G. Zhao, and J.-r. Wen, “Rum: Network represen-
tation learning using motifs,” in ICDE, 2019.

[25] R. A. Rossi, N. K. Ahmed, and E. Koh, “Higher-order network repre-
sentation learning,” in WWW Companion, 2018.

[26] R. A. Rossi, N. K. Ahmed, E. Koh, S. Kim, A. Rao, and Y. Abbasi-
Yadkori, “A structural graph representation learning framework,” in
WSDM, 2020.

[27] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao, “Graph
convolutional networks with motif-based attention,” in CIKM, 2019.

[28] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep inductive graph
representation learning,” IEEE TKDE, vol. 32, no. 3, pp. 438–452, 2018.

[29] “Online appendix,” 2021. [Online]. Available: https://github.com/
geonlee0325/THyMe/blob/main/supplements.pdf

APPENDIX

A. Details of DYNAMIC PROGRAMMING (DP)

The procedure count (lines 9-19) counts the instances of
TH-motifs that induce a set of ` connected static hyperedges.
That is, given a set s = {ẽ1, . . . , ẽ`} of ` connected static
hyperedges, count first constructs a time-sorted sequence
e(s) of temporal hyperedges whose nodes is one of s (line 10).
It also introduces a map C that maintains the counts of ordered

hyperedges of length at most `. Then count scans through
the temporal hyperedges in e(s) and tracks the subsequences
that occur within the temporal window that spans temporal
hyperedges within δ time units. As the temporal window
slides through the temporal hyperedges e(s), the count of the
sequences are computed based on the subsequences counted
in C. Refer to [9] for more intuition behind this dynamic
programming formulation.

Algorithm 3: DP: Preliminary Algorithm for Exact
Counting of TH-motifs’ Instances

Input : (1) temporal hypergraph: T = (V, E)
(2) time interval δ

Output: # of each temporal h-motif t’s instances: M [t]

1 S ← set of instances of static h-motifs in GT

2 for each instance {ẽi, ẽj , ẽk} ∈ S do
3 count({ẽi, ẽj , ẽk})
4 for each pair of overlapping hyperedges {ẽi, ẽj} ∈ ∧E do
5 count({ẽi, ẽj})
6 for each hyperedge ẽi ∈ EE do
7 count({ẽi})
8 return M

9 Procedure count(s = {ẽ1, . . . , ẽ`})
10 e(s)← sorted(I(ẽ1) ∪· · · ∪ I(ẽ`))
11 ws ← 1
12 C ← map initialized to 0
13 for each temporal hyperedge ei = (ẽi, ti) ∈ e(s) do
14 while tws + δ < ti do
15 decrement(ẽws)
16 ws ← ws + 1

17 increment(ẽi)

18 for each 〈ei, ej , ek〉 ∈ permutations({ẽi, ẽj , ẽk}) do
19 M [h(ẽi, ẽj , ẽk)] += C[concat(ẽi, ẽj , ẽk)]

20 Procedure increment(ẽ)
21 for each prefix in C.keys.reverse of length < ` do
22 C[concat(prefix, ẽ)] += C[prefix]

23 C[ẽ]← C[ẽ] + 1

24 Procedure decrement(ẽ)
25 C[ẽ]← C[ẽ]− 1
26 for each suffix in C.keys of length < `− 1 do
27 C[concat(ẽ, suffix)] -= C[suffix]

B. Details of Datasets

We provide the details of the eleven real-world temporal
hypergraphs from the following five distinct domains:
• email: Each node is an email account and each hyperedge

is the set of sender and receivers of the email.
• contact: Each node is a person and each hyperedge is a

group interaction among people.
• threads: Each node is a user and each hyperedge is a group

of users working in a thread.
• tags: Each node is a tag and each hyperedge is a set of tags

attached to the question.
• coauthorship: Each node is an author and each hyperedge

is a set of authors of the publication.

https://github.com/geonlee0325/THyMe/blob/main/supplements.pdf
https://github.com/geonlee0325/THyMe/blob/main/supplements.pdf

	I Introduction
	II Preliminaries and Related Works
	II-A Basic Concepts: Static and Temporal Hypergraphs
	II-B Static Hypergraph Motifs (h-motifs)
	II-C Other Related Works

	III Proposed Concepts
	IV Counting Algorithms
	IV-A Dynamic Programming (DP): Extension of paranjape2017motifs
	IV-B THyMe: Preliminary Version of the Proposed Algorithm
	IV-C THyMe+: Advanced Version of the Proposed Algorithm

	V Empirical Studies
	V-A Experimental Settings
	V-B Q1. Discoveries
	V-C Q2. Comparison with Static H-motifs
	V-D Q3. Speed and Efficiency
	V-E Q4. Further Analysis

	VI Conclusion
	References
	Appendix
	A Details of Dynamic Programming (DP)
	B Details of Datasets

