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Abstract—In this paper, we present SSDNet, a novel deep
learning approach for time series forecasting. SSDNet combines
the Transformer architecture with state space models to provide
probabilistic and interpretable forecasts, including trend and
seasonality components and previous time steps important for
the prediction. The Transformer architecture is used to learn
the temporal patterns and estimate the parameters of the state
space model directly and efficiently, without the need for Kalman
filters. We comprehensively evaluate the performance of SSDNet
on five data sets, showing that SSDNet is an effective method in
terms of accuracy and speed, outperforming state-of-the-art deep
learning and statistical methods, and able to provide meaningful
trend and seasonality components.

Index Terms—time series forecasting, time series decomposi-
tion, state space model, deep learning

I. INTRODUCTION

Time series forecasting is an important task in many prac-
tical applications, e.g. predicting electricity demand, stock
prices, immune response and disease progression over time.

Statistical methods such as ARIMA and exponential
smoothing are well established for time series forecasting and
are a part of the more general framework of State Space
Models (SSMs) [1]. SSMs are considered interpretable models
as components such as trend and seasonality can be extracted
and used for decision making and explanation. However, they
are not able to infer shared patterns from a set of related time
series as each time series is fitted independently [2], [3].

Deep learning methods have been recently investigated as
a promising alternative, due to their ability to learn from raw
data with minimum domain knowledge and to extract complex
patterns, including shared patterns across related time series.
Prominent examples include DeepAR [4], a probabilistic fore-
casting model based on Long Short Term Memory (LSTM)
neural networks, DeepSSM [5] which combines SSM with
LSTM, Deep Factor models [6] which combine LSTM with
a local probabilistic model, and LogSparse Transformer [3]
and Informer [7], which are modifications of the Transformer
architecture [8] for time series forecasting. However, deep
learning models are difficult to interpret; generating inter-
pretable forecasts is crucial for adopting these systems in
practical applications.

Approaches for producing interpretable forecasts using deep
learning models have been recently proposed. For example,

Guo et al. [9] and Li et al. [10] explored the structure of LSTM
and DeepSSM attempting to learn the variable importance for
prediction. Oreshkin et al. [2] developed the deep learning
architecture N-BEATS. They showed that its interpretable
configuration (N-BEATS-I) is able to successfully learn and
output the trend and seasonality components of the forecast,
which is useful for forecasting practitioners. However, N-
BEATS is designed for univariate time series, it provides point
forecasts and has limited ability to model trends with varying
slope because it uses a deterministic trend model. In this paper,
we present a new forecasting approach to address these issues.

The main contributions of this work are as follows:

1) We present a new forecasting approach, called State
Space Decomposition Neural Network (SSDNet), which
combines the Transformer deep learning architecture with
a SSM. SSDNet combines the advantages of deep learn-
ing (learning from raw data without intensive feature
engineering and ability to infer shared patterns from
related time series) with the interpretability of SSM
models. It employs the Transformer architecture to learn
the temporal pattern and directly estimate the parameters
of SSM. To facilitate interpretability, we used a fixed form
SSM to provide trend and seasonality components and
the attention mechanism of the Transformer to identify
which parts of the past history are most important for the
prediction.

2) We evaluate the performance of SSDNet on five time
series forecasting tasks. The results show that SSD-
Net achieved higher accuracy than the state-of-the-art
deep learning models DeepAR, DeepSSM, LogSparse
Transformer, Informer and N-BEATS and the statistical
models SARIMAX and Prophet. SSDNet was also able to
provide interpretable results by showing nonlinear trend
and seasonality components. To evaluate the effectiveness
of the fixed form SSM part, we conduct an ablation
study by replacing the Transformer with LSTM, and this
architecture also showed competitive results.

II. PROBLEM FORMULATION

We consider three tasks: 1) solar power forecasting, 2) elec-
tricity demand forecasting and 3) exchange rate forecasting.
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Fig. 1: Partial autocorrelation graphs for (a) Sanyo and Han-
ergy, (b) Solar, (c) Electricity and (d) Exchange data sets

Accurate forecasting of the generated solar power and the elec-
tricity demand is needed for optimal scheduling of generators
and large-scale integration of solar into the electricity grid.
Over-prediction may lead to wasting energy, under-prediction
may result in blackouts. Exchange rate forecasting is used to
derive future monetary value, earn profits and avoid risks in
international business environments.

A. Data Sets

We use five data sets: Sanyo [11], Hanergy [12], Solar
[13], Electricity [14] and Exchange [15]; their statistics are
summarised in Table I.

Sanyo and Hanergy contain solar power generation
data from two PV plants in Australia - from 01/01/2011
to 31/12/2016 (6 years) for Hanergy and 01/01/2011 to
31/12/2017 (7 years) for Sanyo. Only the data between 7am
and 5pm is considered and was aggregated at half-hourly
intervals. For both datasets, weather and weather forecast data
was also collected (see [16] for more details) and used as
covariates. Solar contains solar power data from 137 PV plants
in Alabama, USA, from 01/01/2006 to 31/08/2006. Electric-
ity contains electricity consumption data for 370 households
from 01/01/2011 to 07/09/2014. The Solar and Electricity
data is aggregated into 1-hour intervals. Exchange contains
daily exchange rate data for 8 countries from 01/01/1990 to
31/12/2016. Following [3], [16], [17], calendar features are
added according to the granularity of the datasets: Sanyo
and Hanergy use month, hour-of-the-day and minute-of-the-
hour, Solar uses month, hour-of-the-day and age, Electricity
uses month, day-of-the-week, hour-of-the-day and age and
Exchange uses month, day-of-the-week and age.

Fig. 1 shows the partial autocorrelation plots for each data
set. Fig. 1 (a) shows the results for both Sanyo and Hanergy
since they have a similar partial autocorrelation pattern; both
datasets include only 1 time series. Fig. 1 (b), (c) and (d)
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Fig. 2: Time series additive decomposition for (a) Sanyo, (b)
Hanergy, (c) Solar, (d) Electricity data sets and (e) one series
from Exchange data set

show the results for Solar, Electricity and Exchange datasets
respectively. All plots are for 8 time series for consistency
since 8 is the common number of time series in the three
datasets, see Table I.

Fig. 2 shows the additive decomposition results for a period
of 7 days for Sanyo, Hanergy, Solar and Electricity. For
Exchange we just show one time series as this dataset doesn’t
have a clear seasonality and additive decomposition methods
cannot be applied.

We can see that all time series except Exchange exhibit
seasonality and repetitive patterns with high partial autocor-
relation, and sometimes there are also significant short-term
trend variations. For the Exchange set, there is no clear
repetitive pattern and its partial autocorrelation at lag 1 is the
only significant one.

All data was normalized to have zero mean and unit
variance.

B. Problem Statement

Given is: 1) a set of N univariate time series (solar,
electricity or exchange series) {Yi,1:Tl

}Ni=1, where Yi,1:Tl
:=

[yi,1, yi,2, ..., yi,Tl
], Tl is the input sequence length, and yi,t ∈

< is the value of the ith time series (generated PV solar power
or consumed electricity) at time t; 2) a set of associated time-
based multi-dimensional covariate vectors {Xi,1:Tl+Th

}Ni=1,



start date end date granularity Ld N nT nC Tl Th
Sanyo 01/01/2011 31/12/2016 30 minutes 20 1 4 3 20 20

Hanergy 01/01/2011 31/12/2017 30 minutes 20 1 4 3 20 20
Solar 01/01/2006 31/08/2006 1 hour 24 137 0 3 24 24

Electricity 01/01/2011 07/09/2014 1 hour 24 370 0 4 168 24
Exchange 01/01/1990 31/12/2016 1 day 1 8 0 3 30 20

TABLE I: Dataset statistics. Ld - number of steps per day, N - number of series, nT - number of time-based features, nC -
number of calendar features, Tl - length of input series, Th - length of forecasting horizon.

where Th denotes the length of the forecasting horizon. The
covariates for the Sanyo and Hanergy datasets include: weather
data {W1i,1:Tl

}Ni=1, weather forecasts {WFi,Tl+1:Tl+Th
}Ni=1

and calendar features {Zi,1:Tl+Th
}Ni=1, while the covariates

for the Solar, Electricity and Exchange datasets include only
calendar features. Our goal is to predict the future values
of the time series {Yi,Tl+1:Tl+Th

}Ni=1, i.e. the PV power or
electricity usage for the next Th time steps after Tl.

Specifically, SSDNet produces the probability distribution
of the future values, given the past history:

p (Yi,Tl+1:Tl+Th
| Yi,1:Tl

,Xi,1:Tl+Th
; Φ)

=

Tl+Th∏
t=Tl+1

p (yi,t | Yi,1:t−1,Xi,1:t; Φ) ,
(1)

where Φ denotes the parameters of SSDNet, and the input of
SSDNet at step t is the concatenation of yi,t−1 and xi,t. The
models are applicable to all time series, so the subscript i will
be omitted in the rest of the paper for simplicity.

III. RELATED WORK

DeepSSM [5] combines SSMs with Recurrent Neural Net-
works (RNNs). A RNN is used to generate the parameters
of a linear Gaussian SSM for time series forecasting and
Kalman filter is used to derive posterior knowledge. DeepSSM
is considered interpretable because it can recover the SSM
parameters and they can be inspected. The Deep Factor model
DF-LDS [6] is a variation of DeepSSM that can handle non-
Gaussian observations and it also uses Kalman filters.

Although Kalman filters have been successfully used in
linear dynamic systems for decades, the need for covariance
matrix inversions is computationally expensive and limits their
applicability for processing large data sets [18], [19]. In con-
trast, Eleftheriadis et al. [20] proposed Gaussian Process State
Space Model (GPSSM) merging Gaussian process with a bi-
directional RNN to approximate the posterior of a non-linear
system. However, GPSSM has high complexity of inference
(O(T ) per time step) which is a disadvantage for forecasting
multi-horizon large data sets.

N-BEATS [2] is a novel deep neural architecture using back-
ward and forward residual links and stacks of fully connected
layers for univariate point forecasting. Each N-BEATS layer
contains a number of blocks which produce partial forecasts;
these forecasts are aggregated at stack level and then network
level in hierarchical fashion. The final forecast is the sum
of the partial forecasts of all blocks. N-BEATS can produce
interpretable forecasting results without expert knowledge

by employing a fixed form of block function to generate
prediction with decomposition components. The interpretable
version (N-BEATS-I) uses the deterministic polynomial trend
model and assumes a stationary trend with constant slope.
However, the local trend of time series over a short period
(one or a few days) could vary significantly and inconsistently
- e.g. the solar power generation or electricity consumption
could decrease suddenly due to temporary cloud coverage or
irregular activities of users (see Fig. 2). Hence, a stochastic
model which assumes a nonstationary trend with varying slope
would be more suitable for such cases [21] and this is what
we use in SSDNet.

In summary, compared to DeepSSM, the proposed SSDNet:
i) employs the Transformer architecture to learn temporal pat-
terns, and estimates the parameters of SSM and the probability
term directly instead of using Kalman filters; ii) uses the SSM
with fixed and non-trainable transition matrix at the decoder to
generate decomposition results within the forecasting horizon,
while DeepSSM uses a more flexible SSM along all time steps;
iii) combines Mean Absolute Error (MAE) and Negative Log-
Likelihood (NLL) together as loss function to achieve accu-
rate point and probabilistic forecasting results simultaneously
instead of using NLL only; iv) shows better interpretability
by using a stochastic decomposition technique in the form of
SSM with an innovation term to model nonlinear trend and
seasonality components and attention mappings to show the
importance of historical time steps for forecasting. Compared
to N-BEATS, SSDNet can model trend with nonlinear slope,
provide probabilistic forecasts and also better utilizes the
covariates.

IV. SSDNET

The aim of SSDNet is to model temporal patterns effectively
in order to provide accurate probabilistic and interpretable
forecasts.

A. Network Architecture

Fig. 3 illustrates the architecture of SSDNet. SSDNet is
based on the encoder-decoder framework and uses two key
components: SSM and Transformer. SSM (in its fixed form)
provides interpretable forecasting results, and the Transformer
learns temporal patterns and estimates the SSM parameters
from its decoder.

The feedforward process of SSDNet includes two steps.
First, the Transformer of SSDNet processes the historical
time steps and generates the latent components to estimate
the parameters of SSM and the variance of the forecasted



αTL
+2

Encoder

yTl;xTl+1

Decoder

oTl+1

ŷT-1;xT

cTl+1

αTl+1

ŷTl+1

ITl+1

ŷTl+1;xTl+2

αTl oTl+2

cTl+2

αTl+2

ŷTl+2

ITl+2

oT

cT

αT

ŷT

IT

SSM

y0:Tl-1;x1:Tl

Transformer

Fig. 3: Structure of SSDNet

distribution. Second, SSM takes the state vector from the
previous time step and uses it to predict the mean of the
distribution. Unlike classical SSMs which decompose time
series and estimate parameters via Kalman filter, we learn
the SSM parameters using the Transformer architecture via
attention mechanism and then combine the decomposition
components (trend, seasonality and probability terms) in a
form of SSM to produce the forecasting results.

As shown in Fig. 3, the Transformer extracts latent com-
ponents ot from historical time series y1:Tl

, x1:Tt
in Eq. (2),

and the latent components are further used to estimate the
parameters of SSM. Note that the Transformer could be
replaced by any sequence model to extract ot and learn the
parameters of SSM. In Section VB, we evaluate the use
of LSTM instead of Transformer in SSDNet; this modified
architecture is called SSDNet-LSTM.

ot = f(y1:Tl
, x1:Tt) (2)

Then, we employ additive time series decomposition model
in the form of SSM and generate the prediction ŷt at step t by
summing up the trend component Tt, seasonality component
St and probability component It. We decompose the times
series using SSM and generate the forecasting result as:

ŷt = zTt αt + It, t = 1, . . . , Th (3)

αt+1 = Γtαt + ct (4)

It ∼ N (0, σ2
It) (5)

where the latent state vector αt ∈ <s×1 contains trend Trt
and seasonality St, s is the number of seasonality and It is
sampled from the Gaussian distribution with zero mean and
σ2
It

variance.
Different from the traditional SSMs, we remove the random

noise term from the state transition in Eq. (4) to prevent the
state noise propagation and estimate the probabilistic term It
directly as shown in Eq. (3). The SSM part of SSDNet does
not process historical series directly but instead utilizes the
latent component generated by the Transformer and encodes
the information of the time steps before the forecasting horizon
in the initial state vector αTl

. We also introduce the innovation
term ct ∈ <s×1 in the state transition Eq. (4) to allow SSDNet
to learn stochastic trends with fluctuations in time series. This

is necessary as the simple summation of linear trend and
seasonality components cannot model complex series effec-
tively and would introduce large residuals (see Fig. 2). While
the traditional SSMs need to use Kalman filter to update the
posterior and derive the covariance matrix to optimize noise
terms, SSDNet uses the Transformer architecture resulting in
less matrix computation and memory usage.

The innovation term ct and the variance σ2
It

are learnt from
the latent factor ot directly, as illustrated in Eq. (6) and (7).
The use of the Softplus function ensures that SSDNet always
generates positive variance, and the HardSigmoid function [22]
is used for a speed-up:

σ2
It = gs(ot) =Softplus(Linear(ot))

= log(1 + exp(Linear(ot)))
(6)

ct = gc(ot) =HardSigmoid(Linear(ot))− 0.5

=

 −0.5 if x ≤ −3
0.5 if x ≥ +3
Linear(ot)/6 otherwise

(7)

The parameters state vector αt, state transition matrix Γt
and result transition matrix zt that determine the structure of
SSM in Eq. (3) and (4) are shown below:

αt =

(
Trt

S1:s−1,t

)
, zt =

 1
1
0s−2

 , (8)

Γt =

 1 0′s−2 0
0 −1′s−2 −1

0s−2 Is−2 0s−2


Note that Γt and zt are non-trainable and fixed for all

time steps. In this work, we assume that the trend follows
a random walk process, and other processes such as moving
average could be modelled by adjusting the first row of the
transition matrix Γt. The initial trend Tr0 and seasonality
S−s+1, ..., S−1, S0 values of the state vector α0 are unknown
and need to be generated based on the latent components, they
are learned from historical steps:

α0 = gc(oTl+1
) = HardSigmoid(Linear(oTl+1

))− 0.5 (9)

Alternatively, the forecasting result (3) could be written as
the aggregation of the predicted trend, seasonality and variance
to provide probabilistic result:

ŷt ∼ N (Trt + St, σ
2
It) (10)

where we consider the real-world data follows a Gaussian
distribution (other distribution function could be used in Eq.
(5) for higher flexibility), and predictions are sampled from
the distribution. The ρ-quantile output could be generated via
the inverse cumulative probability distribution: ŷt = F−1t (ρ).

At step t, Eq. (4) could be written in an additive form, where
the trend and seasonality evolve by adding the innovation term
at each time step, as shown in Eq. (11) and (12). The trend and
seasonality models are based on the classic random walk and



dummy seasonal, and the change of trend and seasonality are
dominated by the innovation variable. The innovation variable
for trend can be different at every time step and allow SSDNet
to model the nonstationary trend with varying slope. For the
extreme case when all innovation terms are zero, the trend
would be constant and the seasonality over all periods will be
the same.

Trt = Trt−1 + ct[1] (11)

St = −
s−1∑
j=1

St−j + ct[2] (12)

Theorem 1. ∀t > 0 and t ∈ Z, the range of trend Trt and
seasonality St of SSDNet are bounded: Trt ⊂ [−(t + 1) ×
0.5, (t+ 1)× 0.5], St ⊂ [−(s− 1 + t)× 0.5, (s− 1 + t)× 0.5].

Proof. Assume that innovation term ct, trend and seasonality
have maximum values: 1) ct outputs its maximum value of 0.5
at all time steps, 2) the initial trend has its maximum value
Tr0 = 0.5 and 3) the seasonality has its maximum value of
S0 = −

∑s−1
j=1 −0.5 = 0.5× (s− 1).

Following Eq. (11) and (12), the trend and seasonality
increase using the innovation terms with maximum values of
ct[1] = 0.5 and ct[2] = 0.5 respectively at each time step.

Considering the initial values and increments together, the
maximum values of the trend and seasonality are (t+1)×0.5
and (s − 1 + t) × 0.5 at time step t, correspondingly. Since
gc(.) is a symmetric activation function, its lower bound is the
negative value of its upper bound, hence the minimum values
of trend and seasonality are the negative of their maximum
values.

Theorem 1 implies that the upper and lower bound of the
SSDNet trend and seasonality components expand in the time
domain and SSDNet can model time series where the variation
in the seasonal pattern increases over time. The variation of
the trend component is significantly smaller than that of the
seasonality and helps SSDNet to model a slow-moving trend
and significantly varying seasonality. The constraints of both
components help SSDNet to learn an inherent structure and
allow αt to generate meaningful waveform (observable in
our case studies) and enable the interpretability of forecasting
results.

In our case since the data is normalized to have zero mean
and unit variance, when visualizing trend and seasonality
components, the bias (data mean) is added to the trend and
both the trend and seasonality are scaled (data variance) back.

B. Loss Function

SSDNet needs to provide both accurate point and proba-
bilistic forecasts. Accordingly, we developed the loss function
shown in Eq. (13), which considers both the point and prob-
abilistic forecasts by combining the MAE and NLL using the
regularization parameter a: higher a allows the model to pay
more attention to the probabilistic forecast. The point forecast

is ŷt and it consists of trend and seasonality. The parameters
of SSDNet are optimized by minimizing this function.

L(ŷTl+1:T , σ
2
ITl+1:T

, yTl+1:T , a)

= a×NLL(ŷTl+1:T , σ
2
ITl+1:T

, yTl+1:T )

+ MAE(ŷTl+1:T , yTl+1:T )

=− a

2Th
×
(
Th log(2π) +

T∑
t=Tl+1

log
∣∣σ2
It

∣∣
+

T∑
t=Tl+1

(yt − ŷt)2σ−2It
)

+
1

Th

T∑
t=Tl+1

|yt − ŷt|

(13)

V. EXPERIMENTS

We compare the performance of SSDNet with nine
other models: six state-of-the-art autoregressive deep learn-
ing models (DeepAR, DeepSSM, N-BEATS-G, N-BEATS-I,
LogSparse Transformer and Informer), a SSM (SARIMAX),
an interpretable regression model (Prophet) and a persistence
model:
• Persistence is a typical baseline in forecasting and con-

siders the time series of the previous day as the prediction
for the next day. For the Exchange dataset we use the last
20 steps of the input sequence.

• SARIMAX [1] is an extension of the ARIMA and can
handle seasonality with exogenous factors.

• Prophet [23] is an interpretable regression model predict-
ing trend, seasonality and holiday components.

• DeepAR [4] is a widely used sequence-to-sequence prob-
abilistic forecasting model.

• DeepSSM [5] fuses SSM with RNNs to incorporate
structural assumptions and learn complex patterns from
the time series. It is the state-of-the-art deep forecasting
model that employs SSM.

• N-BEATS [2] is based on backward and forward residual
links and stacks of fully connected layers. N-BEATS-G
provides generic forecasting results, while N-BEATS-I
provides interpretable results by decomposing the time
series into trend and seasonality. We introduced covariates
to N-BEATS at the input of each block to facilitate
multivariate series forecasting.

• LogSparse Transformer [3] is a recently proposed varia-
tion of the Transformer architecture for time series fore-
casting with convolutional attention and sparse attention;
it is denoted as ”LogTrans” in Table III.

• Informer [7] is a Transformer-based forecasting model
based on the ProbSparse self-attention and self-attention
distilling. We modified the Informer to provide proba-
bilistic results by using Eq. (6) as the output layer.

All models were implemented with PyTorch 1.6 on Tesla
T4 16GB GPU under Linux environment. The deep learning
models were optimized by mini-batch gradient descent with
the Adam optimizer and a maximum number of epochs 200.
We used Bayesian optimization for hyperparameter search
for all deep learning models with maximum number of 20



λ δ dhid nl dk&v nh

Sanyo 0.005 0 12 2 6 2
Hanergy 0.005 0 16 3 6 3

Solar 0.005 0.1 16 3 6 3
Electricity 0.001 0.1 24 3 8 2
Exchange 0.005 0 12 2 4 3

TABLE II: Hyperparameters for SSDNet

iterations. The hyperparameters with a minimum loss on the
validation set were selected. The models used for comparison
were tuned based on the authors’ recommendations. The
probabilistic forecasting models use the NLL loss, and the
point forecasting model (N-BEATS) uses the mean squared
loss.

Following the experimental setup in [3], [16] and [17], we
used the following training, validation and test split: for Sanyo
and Hanergy - the data from the last year as test set, the second
last year as validation set for early stopping and the remaining
data (5 years for Sanyo and 4 years for Hanergy) as training
set; for Solar and Electricity - the last week data as test set
(from 25/08/2006 for Solar and 01/09/2014 for Electricity),
the week before as validation set and the remaining data
as training set. For the Exchange dataset, we used the 480
working days from 02/02/2015 is test set, the 480 working
days before as validation set and the remaining data as training
set. For all data sets, the data preceding the validation set is
split in the same way into three subsets and the corresponding
validation set is used to select the best hyperparameters.

For the Transformer-based models, we used learnable posi-
tion and ID (for Solar, Electricity and Exchange sets) embed-
ding. For SSDNet, the seasonality s was set to 20 for Sanyo,
Hanergy and Exchanges and 24 for Solar and Electricity, the
loss function regularization parameter a was fixed as 0.5, the
learning rate λ was fixed, the dropout rate δ was chosen from
{0, 0.1, 0.2}, the hidden layer dimension size dhid and number
of layers nl were chosen from {8, 12, 16, 24, 32} and {2, 3,
4}, the query and value’s dimension size dk&v and number of
heads nh were chosen from {4, 6, 8, 12} and {2, 3, 4}. The
selected best hyperparameters for SSDNet are listed in Table
II and used for the evaluation of the test set.

Following [3]–[5], [16], [17], we report the standard ρ0.5
and ρ0.9-quantile losses. Note that ρ0.5 is equivalent to the
Mean Absolute Percentage Error (MAPE) [24]. Given the
ground truth y and ρ-quantile of the predicted distribution ŷ,
the ρ-quantile loss is given by:

QLρ(y, ŷ) =
2×

∑
t Pρ (yt, ŷt)∑
t |yt|

,

Pρ(y, ŷ) =

{
ρ(y − ŷ) if y > ŷ
(1− ρ)(ŷ − y) otherwise

(14)

A. Accuracy Analysis

The ρ0.5 and ρ0.9 losses are shown in Table III. As N-
BEATS and Persistence do not produce probabilistic forecasts,
only the ρ0.5-loss is reported for them. We can see that overall
SSDNet is the most accurate model - it outperforms all the
other methods on all data sets except Electricity and Exchange.

For the Electricity data set, SSDNet has the best ρ0.9-loss
and second-best ρ0.5-loss among the probabilistic forecasting
models and is also the best among the interpretable models
(N-BEATS-I, DeepSSM and Prophet). For the Exchange data
set, SSDNet is the second-best model after SARIMAX.

SSDNet performs better than DeepSSM on all datasets
which indicates that the proposed new architecture, loss func-
tion and the use of fixed SSM were beneficial.

The two N-BEATS models perform well on Solar and
Electricity (univariate data sets) but much worse on Sanyo
and Hanergy (multivariate, including the weather features); a
possible reason is that N-BEATS was designed for univari-
ate forecasting and our modification to handle multivariate
datasets was not sufficiently effective in this case.

We further investigated the performance on the Exchange
dataset, for which the deep neural network models, including
the proposed SSDNet, performed worse than SARIMAX. This
finding is consistent with [25], and the reason is that Exchange
is the only data set without repetitive patterns and a seasonal
component. Fig. 5 and Fig. 6 show the predictions of SSDNet
and SARIMAX for 2 test samples from the Exchange data
set. We can see that SSDNet tends to generate predictions
with a smooth trend and some variations, while SARIMAX
tends to generate predictions that do not vary much with time.
Hence, the success of SARIMAX on the Exchange data set
can be explained with the characteristics of this data set - it is
more stable and does not have strong repetitive patterns and
seasonality, as shown in Section IIA and Fig. 1.

Another interesting finding for Exchange is that when we
simply use the last time step value YTl

of the input series
as the predictions YTl+1:Tl+Th

, we obtain ρ0.5-loss of 0.010
which is as good as SARIMAX and outperforms all other
models. However, SSDNet and the other deep learning models
demonstrate significantly higher accuracy than SARIMAX on
the other four data sets which include repetitive patterns.

B. Ablation Analysis

To evaluate the effectiveness of the SSM part of SSDNet,
we conducted additional analysis - an ablation study. Table IV
shows the performance of SSDNet-LSTM, which is SSDNet
with the Transformer part replaced by LSTM. Thus, we keep
the SSM part for decomposition and prediction the same
but replace the Transformer with LSTM for SSM parameters
estimation.

SSDNet-LSTM is compared with DeepAR [4] and
DeepSSM [5]. DeepAR uses LSTM to generate predictions
directly and DeepSSM uses LSTM and Kalman filter to
estimate the parameters of SSM, while SSDNet-LSTM can
be considered as a combination of DeepAR and our proposed
SSM or as a variation of DeepSSM by replacing the classic
SSM with our proposed SSM without a Kalman filter.

Table IV shows that SSDNet-LSTM outperforms both
DeepAR and DeepSSM, indicating the effectiveness of the
SSM part for decomposition and foresting. SSDNet-LSTM
is also competitive with SSDNet which shows the robustness
and flexibility of our fixed form SSM - its parameters can be



Sanyo Hanery Solar Electricity Exchange
Persistence 0.154/- 0.242/- 0.256/- 0.069/- 0.016/-
SARIMAX 0.124/0.096 0.145/0.098 0.256/0.192 0.196/0.079 0.010/0.006

Prophet 0.104/0.054 0.152/0.079 0.268/0.169 0.112/0.055 0.017/0.013
DeepAR 0.070/0.031 0.092/0.045 0.222�/0.093� 0.075�/0.040� 0.014/0.009

DeepSSM 0.042/0.023 0.070/0.053 0.223/0.181 0.083�/0.056� 0.014/0.012
LogTrans 0.067/0.036 0.088/0.047 0.210�/0.082� 0.059�/0.034� 0.017/0.008
Informer 0.046/0.022 0.084/0.046 0.215/0.115 0.068/0.033 0.014/0.009

N-BEATS-I 0.091/ 0.154/- 0.215/- 0.102/- 0.014/-
N-BEATS-G 0.077/- 0.132/- 0.212/- 0.061/- 0.018/-

SSDNet 0.040/0.020 0.059/0.032 0.209/0.074 0.068/0.033 0.013/0.006

TABLE III: ρ0.5/ρ0.9-loss of data sets with various granularities. � denotes results from [3].

Sanyo Hanery Solar Electricity Exchange
DeepAR 0.070/0.031 0.092/0.045 0.222�/0.093� 0.075�/0.040� 0.014/0.009

DeepSSM 0.042/0.023 0.070/0.053 0.223/0.181 0.083�/0.056� 0.014/0.012
SSDNet 0.040/0.020 0.059/0.032 0.209/0.074 0.068/0.033 0.013/0.006

SSDNet-LSTM 0.040/0.020 0.066/0.037 0.205/0.075 0.071/0.037 0.012/0.006

TABLE IV: Ablation study - ρ0.5/ρ0.9-loss. � denotes results from [3].

Sanyo Hanery Solar Exchange
DeepSSM 25163±201 9750±135 224343±692 71188±343
SSDNet 6006±91 3081±91 61720±206 13817±62

SSDNet-LSTM 5153±68 2079±29 56989±127 7890±99

TABLE V: Training time per epoch (milliseconds) - comparison of DeepSSM and SSDNets on Sanyo, Hanergy, Solar and
Exchange data sets.

Sanyo Hanery Solar Exchange
DeepSSM 242±54 233±6 278±9 250±7
SSDNet 411±177 438±132 573±215 389±125

SSDNet-LSTM 254±4 257±8 299±12 270±5

TABLE VI: Testing time (milliseconds) - comparison of DeepSSM and SSDNets on Sanyo, Hanergy, Solar and Exchange data
sets.

estimated by different architectures - the Transformer, LSTM
and other neural network models.

C. Speed Analysis

We evaluate the training and testing time of the two SSDNet
models (SSDNet and SSDNet-LSTM) and compare them with
DeepSSM which also employs SSM. All models are trained
on the same computer configuration; we report the average
elapsed time and the standard deviation of 10 runs. Table V
and VI show the training time per epoch and testing time in
milliseconds for the Sanyo, Hanergy, Solar and Exchange data
sets. No speed test was conducted for the Electricity data set
as we report the accuracy results from their papers [3], [5] and
the values of the hyperparameters used are not known.

Comparing the training speed, we can see that both SSDNet
and SSDNet-LSTM, which do not use Kalman filter, are
significantly faster than DeepSSM - the average training speed
per epoch of DeepSSM is 390.48% and 458.24% times slower
than SSDNet and SSDNet-LSTM respectively. In terms of
testing speed, DeepSSM is the fastest, very closely followed
by SSDNet-LSTM (7.68% slower) and then SSDNet. This is
because the Kalman filter in DeerSSM is not required for
inference and the architecture of LSTM used by DeepSSM
is simpler than the Transformer used by SSDNet.

Overall, the training speed of SSDNet and SSDNet-LSTM
is significantly improved due to the changes in SSM and their
testing speed is competitive with DeepSSM.

D. Interpretability Analysis

Fig. 4 presents the SSDNet output for a 7-day test set
sample for the Sanyo, Hanergy, Solar and Electricity data
sets, and Fig. 5 presents the SSDNet output for 2 test samples
from the Exchange data set. We can see that the results are
interpretable: the trend is smooth and monotonically decreas-
ing or increasing, the seasonality shows regular and cyclic
fluctuations (except for the Exchange data set which doesn’t
have seasonality).

SSDNet can model a rapidly changing trend - for example,
in Fig. 4 (d), the solar power generation drops rapidly on day
7 and SSDNet correctly outputs a declining trend. SSDNet can
not only learn smooth seasonal patterns but also has the ability
to learn seasonal patters with small random fluctuations (e.g. at
days 1 and 6 of Fig. 4 (a)) due to the introduction of innovation
term ct. For the Exchange data set which doesn’t have clear
seasonality, the peak-to-peak magnitude of the learned SSDNet
seasonal component is small.

Fig. 7 (a) presents the results for 8 consecutive days from
the test set for the Electricity data - 7-day past history and
1-day forecasting output of SSDNet, and shows obvious daily
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Fig. 4: Actual vs SSDNet predicted data with trend and
seasonality components and 95% confidence intervals: (a) and
(b) - Sanyo; (c) and (d) - Hanergy; (e) and (f) - Solar; (g) and
(h) - Electricity data sets
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Fig. 5: Actual vs SSDNet predicted data with trend and
seasonality components and 95% confidence intervals for
Exchange data set
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Fig. 6: Actual vs SARIMAX predicted data and 95% confi-
dence intervals for Exchange data set
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Fig. 7: SSDNet case study on Electricity data set (a) actual vs
predicted data; (b) attention patterns of the first head in the
last layer and (c) attention patterns of the second head in the
last layer

seasonality. Fig. 7 (b) and (c) show the attention patterns of
two heads in the last multi-head attention layer of SSDNet.
The attention mappings show the importance of the previous
time steps for predicting the future time steps.

The first head tends to attend to the first and seventh day



before the predicted day, which is consistent with the weekly
cycle of electricity data. The second head attends to almost
all days. A possible explanation is that the first head mainly
focuses on learning the seasonality, while the second head
mainly focuses on learning the trend.

VI. CONCLUSION

We presented SSDNet, a novel deep learning approach,
for probabilistic and interpretable forecasting of time series
data. SSDNet combines the advantages of deep learning with
the interpretability of SSM models. SSDNet employs the
Transformer architecture to learn the temporal patterns, extract
latent components and estimate the parameters of SSM. It then
applies SSM to generate the interpretable forecasting results
with nonstationary trend and seasonality components. SSDNet
also applies attention mechanism to visualize the important
past time steps for the predicted future steps.

We evaluated the performance of SSDNet on five time series
forecasting tasks. The results show that in terms of accu-
racy SSDNet outperformed the state-of-the-art deep learning
models DeepSSM, DeepAR, LogSparse Transformer, Informer
and N-BEATS, and the statistical models SARIMAX and
Prophet. It was also able to provide interpretable results by
showing clear trend and seasonality components. Our ablation
study showed the effectiveness of the SSM part and that
SSDNet with LSTM instead of Transformer also performed
well. SSDNet was also much faster to train than DeepSSM.
Hence, the results show that SSDNet is a promising method
for time series forecasting.
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