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Abstract

Core decomposition is a classic technique for discovering densely con-
nected regions in a graph with large range of applications. Formally, a
k-core is a maximal subgraph where each vertex has at least k neighbors.
A natural extension of a k-core is a (k, h)-core, where each node must
have at least k nodes that can be reached with a path of length h. The
downside in using (k, h)-core decomposition is the significant increase in
the computational complexity: whereas the standard core decomposition
can be done inO(m) time, the generalization can requireO

(

n2m
)

time,
where n and m are the number of nodes and edges in the given graph.
In this paper we propose a randomized algorithm that produces an
ǫ-approximation of (k, h) core decomposition with a probability of
1 − δ in O

(

ǫ−2hm(log2 n − log δ)
)

time. The approximation is
based on sampling the neighborhoods of nodes, and we use Chernoff
bound to prove the approximation guarantee. We also study distance-
generalized dense subgraphs, show that the problem is NP-hard, provide
an algorithm for discovering such graphs with approximate core de-
compositions, and provide theoretical guarantees for the quality of the
discovered subgraphs. We demonstrate empirically that approximat-
ing the decomposition complements the exact computation: computing
the approximation is significantly faster than computing the exact
solution for the networks where computing the exact solution is slow.

Keywords: distance-generalized core decomposition, sampling,

approximation algorithm, Chernoff bounds
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1 Introduction

Core decomposition is a classic technique for discovering densely connected
regions in a graph. The appeal of core decomposition is a simple and intu-
itive definition, and the fact that the core decomposition can be computed
in linear time. Core decomposition has a large range of applications such as
graph visualization [1], graph modeling [4], social network analysis [23], inter-
net topology modeling [7], influence analysis [19, 27], bioinformatics [2, 16],
and team formation [5].

More formally, a k-core is a maximal subgraph such that every vertex has
at least k degree. We can show that k-core form a nested structure: (k + 1)-
core is a subset of k-core, and that the core decomposition can be discovered
in linear time [3]. Core decomposition has been extended to directed [14],
multi-layer [12], temporal [13], and weighted [24] networks.

A natural extension of core decomposition, proposed by Bonchi et al. [6], is
a distance-generalized core decomposition or (k, h)-core decomposition, where
the degree is replaced by the number of nodes that can be reached with a path
of length h. Here, h is a user parameter and h = 1 reduces to a standard core
decomposition. Using distance-generalized core decomposition may produce
a more refined decomposition [6]. Moreover, it can be used when discover-
ing h-clubs, distance-generalized dense subgraphs, and distance-generalized
chromatic numbers [6].

Studying such structures may be useful in graphs where paths of length
h reveal interesting information. For example, assume a authorship network,
where an edge between a paper an a researcher indicate that the researcher
was an author of the paper. Then paths of length 2 contain co-authorship
information.

The major downside in using the distance-generalized core decomposition is
the significant increase in the computational complexity: whereas the standard
core decomposition can be done in O(m) time, the generalization can require
O
(

n2m
)

time, where n and m are the number of nodes and edges in the given
graph.

To combat this problem we propose a randomized algorithm that produces
an ǫ-approximation of (k, h) core decomposition with a probability of 1− δ in

O

(

hm logn/δ

ǫ2
log

nǫ2

log n/δ

)

⊆ O
(

ǫ−2hm(log2 n− log δ)
)

time.
The intuition behind our approach is as follows. In order to compute the

distance-generalized core decomposition we need to discover and maintain h-
neighborhoods for each node. We can discover the h-neighborhood of a node v
by taking the union of the (h− 1)-neighborhood of the adjacent nodes, which
leads to a simple dynamic program. The computational bottleneck comes from
the fact that these neighborhoods may become too large. So, instead of com-
puting the complete neighborhood, we have a carefully selected budget M .
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The moment the neighborhood becomes too large, we delete (roughly) half of
the nodes, and to compensate for the sampling we multiply our size estimate
by 2. This procedure is repeated as often as needed. Since we are able to keep
the neighbor samples small, we are able to compute the decomposition faster.

We use Chernoff bounds to determine an appropriate value for M , and
provide algorithms for maintaining the h-neighborhoods. The maintenance re-
quire special attention since if the h-neighborhood becomes too small we need
to bring back the deleted nodes.

Finally, we study distance-generalized subgraphs, a notion proposed
by Bonchi et al. [6] that extends a notion of dense subgraphs. Here the density
is the ratio of h-connected node pairs and nodes. We show that the prob-
lem is NP-hard and propose an algorithm based on approximate core maps,
extending the results by Bonchi et al. [6].

The rest of the paper is organized as follows. In Section 2 we introduce pre-
liminary notation and formalize the problem. In Section 3 we present a naive
version of the algorithm that yields approximate results but is too slow. We
prove the approximation guarantee in Section 4, and speed-up the algorithm
in Section 5. In Section 6 we study distance-generalized dense subgraphs. We
discuss the related work in Section 7. Finally, we compare our method empiri-
cally against the baselines in Section 8 and conclude the paper with discussion
in Section 9.

This work extends the conference paper [26].

2 Preliminaries and problem definition

In this section we establish preliminary notation and define our problem.
Assume an undirected graph G = (V,E) with n nodes and m edges. We

will write A(v) to be the set of nodes adjacent to v. Given an integer h, we
define an h-path to be a sequence of at most h + 1 adjacent nodes. An h-
neighborhood N(v;h,X) is then the set of nodes that are reachable with an
h-path in a set of nodes X . If X = V or otherwise clear from context, we will
drop it from the notation. Note that N(v; 1) = A(v) ∪ {v}.

We will write degh(v;X) = |N(v;h,X)| − 1, where X is a set of nodes and
v ∈ X . We will often drop X from the notation if it is clear from the context.

A k-core is the maximal subgraph of G for which all nodes have at least
a degree of k. Discovering the cores can be done in O(m) time by iteratively
deleting the vertex with the smallest degree [23].

Bonchi et al. [6] proposed to extend the notion of k-cores to (k, h)-cores.
Here, given an integer h, a (k, h)-core is the maximal graph H of G such that
|N(v;h)| − 1 ≥ k for each v ∈ V (H), that is, we can reach at least k nodes
from v with a path of at most h nodes. The core number c(v) of a vertex v is
the largest k such that v is contained in (k, h)-core H . We will call H as the
core graph of v and we will refer to c as the core map.

Note that discovering (k, 1)-cores is equal to discovering standard k-cores.
We follow the same strategy when computing (k, h)-cores as with standard
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cores: we iteratively find and delete the vertex with the smallest degree [6].
We will refer to the exact algorithm as ExactCore. While ExactCore is
guaranteed to produce the correct result the computational complexity dete-
riorates to O

(

n2m
)

. The main reason here is that the neighborhoods N(v;h)
can be significantly larger than just adjacent nodes A(v).

In this paper we consider approximating cores.

Definition 2.1 (approximative (k, h)-core). Given a graph G an integer h
and approximation guarantee ǫ, an ǫ-approximative core map c′ : V → N maps
a node to an integer such that |c′(v)− c(v)| ≤ ǫc(v) for each v ∈ V .

We will introduce an algorithm that computes an ǫ-approximative core
map with a probability of 1− δ in quasilinear time.

3 Naive, slow algorithm

In this section we introduce a basic idea of our approach. This version of the
algorithm will be still too slow but will approximate the cores accurately. We
will prove the accuracy in the next section, and then refine the subroutines to
obtain the needed computational complexity.

The bottleneck for computing the cores is maintaining the h-neighborhood
N(v;h) for each node v as we delete the nodes. Instead of maintaining the
complete h-neighborhood we will keep only certain nodes if the neighborhood
becomes too large. We then compensate the sampling when estimating the size
of the h-neighborhood.

Assume that we are given a graphG, an integer h, approximation guarantee
ǫ, and a probability threshold δ. Let us define numbers C = log(2n/δ) and

M = 1 +
4(2 + ǫ)

ǫ2
(C + log 8) . (1)

The quantity M will act as an upper bound for the sampled h-neighborhood,
while C will be useful when analyzing the properties of the algorithm. We will
see later that these specific values will yield the approximation guarantees.

We start the algorithm by sampling the rank of a node from a geometric
distribution r[v] = geo(1/2). Note that ties are allowed. During the algorithm
we maintain two key variables B[v, i] and k[v, i] for each v ∈ V and each index
i = 1, . . . , h. Here,

B[v, i] = {u ∈ N(v; i) | r[u] ≥ k[v, i]}

is a subset of i-neighborhood N(v; i) consisting of nodes whose rank r[u] ≥
k[v, i]. The threshold k[v, i] is set to be as small as possible such that |B[v, i]| ≤
M .

We can estimate c(v) from B[v, h] and k[v, h] as follows: Consider the quan-
tity d = |B[v, h] \ {v}|2k[v,h]. Note that for an integer k the probability of a
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vertex v having a rank r[v] ≥ k is 2−k. This hints that d is a good estimate
for c(v). We show in the next section that this is indeed the case but d is lack-
ing an important property that we need in order to prove the correctness of
the algorithm. Namely, d can increase while we are deleting nodes. To fix this
pathological case we estimate c(v) with max(d,M2k[v,h]−1) if k[v, h] > 0, and
with d if k[v, h] = 0. The pseudo-code for the estimate is given in Algorithm 1.

Algorithm 1: Estimate(v), estimates |N(v, h)| − 1 using B[v, h] and
k[v, h].

1 k ← k[v, h];

2 d← |B[v, h] \ {v}|2k;

3 if k > 0 then d← max(d,M2k−1);
4 return d;

To compute B[v, i] we have the following observation.

Proposition 3.1. For any v ∈ V and any i = 1, . . . , h, we have

B[v, i] = {u ∈ T | r[u] ≥ k[v, i]} , where

T = {v} ∪ {u ∈ B[w, i − 1] | w ∈ A(v)} .

Moreover, k[v, i] ≥ k[w, i − 1] for any w ∈ A(v).

Proof Let w ∈ A(v). Since N(w, i − 1) ⊆ N(v, i), we have k[v, i] ≥ k[w, i − 1].
Consequently, B[v, i] ⊆ T ⊆ N(v, i), and by definition of B[v, i], the claim follows.

�

The proposition leads to Compute, an algorithm for computing B[v, i]
given in Algorithm 2. Here, we form a set T , a union of sets B[w, i − 1],
where w ∈ A(v). After T is formed we search for the threshold k[v, i] ≥
maxw∈A(v) k[w, i−1] that yields at most M nodes in T , and store the resulting
set in B[v, i].

Algorithm 2: Naive version of Compute(v, i). Recomputes B[v, i] and
k[v, i] from scratch.

1 T ← (tj)j=1 ← {v} ∪
⋃

w∈A(v)B[w, i − 1] sorted by r[·];

2 k ← max {k[w, i− 1] | w ∈ A(v)};
3 if |T | > M then

4 k← max(k, r[t⌊M⌋+1] + 1);

5 B[v, i]← {u ∈ T | r[u] ≥ k};
6 k[v, i]← k;
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As the node, say u, is deleted we need to update the affected nodes. We do
this update in Algorithm 3 by recomputing the neighbors v ∈ A(u), and see
if B[v, i] and k[v, i] have changed; if they have, then we recompute B[w, i+ 1]
for all w ∈ A(v), and so on.

Algorithm 3: Naive version of Update(u). Deletes u and updates the
affected B[v, i] and k[v, i].

1 delete u from G;
2 U ← ∅;
3 foreach i = 1, . . . , h do

4 add neighbors of u to U ;
5 W ← ∅;
6 foreach v ∈ U do

7 Compute(v, i);
8 if B[v, i] or k[v, i] has changed then

9 add neighbors of v in W ;

10 if i = h then d[v]← Estimate(v) ;

11 U ←W ;

The main algorithm Core, given in Algorithm 4, initializes B[v, i] us-
ing Compute, deletes iteratively the nodes with smallest estimate d[v] while
updating the sets B[v, i] with Update.

Algorithm 4: Core(G, ǫ, C) approximative core decomposition. Setting
C = log(2n/δ) yields an ǫ-approximation with 1− δ probability.

1 foreach v ∈ V do

2 r[v]← geo(1/2);
3 B[v, 0]← {v};
4 k[v, 0]← 0;

5 M ← 1 + 4(2+ǫ)
ǫ2

(C + log 8);
6 foreach i = 1, . . . , h do

7 foreach v ∈ V do Compute(v, i) ;

8 c← 0;
9 while graph is not empty do

10 u← argminv d[v] (use k[v, h] as a tie breaker);
11 c← max(c, d[u]);
12 output u with c as the core number;
13 Update(u);
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4 Approximation guarantee

In this section we will prove the approximation guarantee of our algorithm.
The key step is to show that Estimate produces an accurate estimate. For
notational convenience, we need the following definition.

Definition 4.1. Assume d integers X = (x1, . . . , xd) and an integer M . Define

Si = |{j ∈ [d] | xj ≥ i}| and Ti = |{j ∈ [d] | xj ≥ i, j ≥ 2}|

to be the number of integers larger than or equal to i. Let k ≥ 0 be the smallest
integer for which Sk ≤M . Define

∆(X ;M) =

{

max
(

Tk2
k,M2k−1

)

, if k > 0,

Tk2
k, if k = 0 .

Note that if R = (r[w] | w ∈ N(v;h)) with r[v] being the first element in
R, then ∆(R;M) is equal to the output of Estimate(v).

Our first step is to show that ∆(X ;M) is monotonic.

Proposition 4.1. Assume M > 0. Let x1, . . . , xd be a set of integers. Select
d′ ≤ d. Then

∆(x1, . . . , xd′ ;M) ≤ ∆(x1, . . . , xd;M) .

Note that this claim would not hold if we did not have the M2k−1 term in
the definition of ∆(X ;M).

Proof Let k, Si, and Ti be as defined for ∆(x1, . . . , xd;M) in Definition 4.1. Also,
let k′, S′

i, and T ′
i be as defined for ∆(x1, . . . , xd′ ;M) in Definition 4.1.

Since S′
i ≤ Si, we have k′ ≤ k. If k′ = k, the claim follows immediately since also

T ′
i ≤ Ti. If k

′ < k, then

∆(x1, . . . , xd;M) ≥ M2k−1 ≥ M2k
′

≥ T ′
k′2k

′

and
∆(x1, . . . , xd;M) ≥ M2k−1 ≥ M2k

′−1,

proving the claim. �

Next we formalize the accuracy of ∆(X ;M). We prove the claim in
Appendix.

Proposition 4.2. Assume 0 < ǫ ≤ 1/2. Let R = R1, . . . , Rd be independent
random variables sampled from geometric distribution, geo(1/2). Assume C >
0 and define M as in Eq. 1. Then

|∆(R;M)− (d− 1)| ≤ ǫ(d− 1) (2)

with probability 1− exp (−C).
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We are now ready to state the main claim.

Proposition 4.3. Assume graph G with n nodes, ǫ > 0, and C > 0. For each
node v ∈ V , let c(v) be the core number reported by ExactCore and let c′(v)
be the core number reported by Core. Then with probability 1− 2ne−C

|c(v)− c′(v)| ≤ ǫc(v),

for every node in V . Moreover, if c(v) ≤ M , where M is given in Eq. 1, then
c(v) = c′(v).

We will prove the main claim of the proposition with two lemmas. In both
proofs we will use the variable τv which we define to be the value of d[v] when
v is deleted by Core.

The first lemma establishes a lower bound.

Lemma 4.1. The lower bound c′(v) ≥ (1 − ǫ)c(v) holds with probability 1 −
ne−C.

Proof For each node v ∈ V , let Rv be a rank, an independent random variable
sampled from geometric distribution, geo(1/2).

LetHv be the core graph of v as solved by ExactCore. Define Sv = N(v, h)∩Hv

to be the h-neighborhood of v in Hv. Note that c(v) ≤ |Sv | − 1. Let Rv be the list
of ranks (Rw;w ∈ Sv) such that Rv is always the first element.

Proposition 4.2 combined with the union bound states that

|∆(Rv;M)− (|Sv| − 1)| ≤ ǫ(|Sv| − 1) . (3)

holds with probability 1− ne−C for every node v. Assume that these events hold.
To prove the claim, select a node v and let w be the first node in Hv deleted by

Core. Let F be the graph right before deleting w by Core. Then

c′(v) ≥ c′(w) (Core picked w before v or w = v)

≥ τw

≥ ∆(Rw;M) (Hw ⊆ Hv ⊆ F and Prop. 4.1)

≥ (1− ǫ)(|Sw| − 1) (Eq. 3)

≥ (1− ǫ)c(w) (Sw = N(w, h) ∩Hw)

≥ (1− ǫ)c(v), (w ∈ Hv)

proving the lemma. �

Next, we establish the upper bound.

Lemma 4.2. The upper bound c′(v) ≤ (1 + ǫ)c(v) holds with probability 1 −
ne−C.
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Proof For each node v ∈ V , let Rv be an independent random variable sampled from
geometric distribution, geo(1/2).

Consider the exact algorithm ExactCore for solving the (k, h) core problem.
Let Hv be the graph induced by the existing nodes right before v is removed by
ExactCore. Define Sv = N(v, h) ∩Hv to be the h-neighborhood of v in Hv. Note
that c(v) ≥ |Sv| − 1. Let Rv be the list of ranks (Rw;w ∈ Sv) such that Rv is the
first element.

Proposition 4.2 combined with the union bound states that

|∆(Rv;M)− (|Sv| − 1)| ≤ ǫ(|Sv| − 1) . (4)

holds with probability 1− ne−C for every node v. Assume that these events hold.
Select a node v. Let W be the set containing v and the nodes selected before v

by Core. Select w ∈ W . Let F be the graph right before deleting w by Core. Let
u be the node in F that is deleted first by ExactCore. Let β be the value of d[u]
when w is deleted by Core. Then

τw ≤ β (Core picked w over u or w = u)

≤ ∆(Ru;M) (F ⊆ Hu and Proposition 4.1)

≤ (1 + ǫ)(|Su| − 1) (Eq. 4)

≤ (1 + ǫ)c(u) (Su = N(u, h) ∩Hu)

≤ (1 + ǫ)c(v) . (v ∈ F ⊆ Hu)

Since this bound holds for any w ∈ W , we have

c′(v) = max
w∈W

τw ≤ (1 + ǫ)c(v),

proving the lemma. �

We are now ready to prove the proposition.

Proof of Proposition 4.3 The probability that one of the two above lemmas does not
hold is bounded by the union bound with 2ne−C , proving the main claim.

To prove the second claim note that when d[v] ≤ M then d[v] matches accurately
the number of the remaining nodes that can be reached by an h-path from a node
v. On the other hand, if there is a node w that reaches more than M nodes, we are
guaranteed that d[w] ≥ M and k[w, h] > 0, implying that Core will always prefer
deleting v before w. Consequently, at the beginning Core will select the nodes in
the same order as ExactCore and reports the same core number as long as there
are nodes with d[v] ≤ M or, equally, as long as c(v) ≤ M . �

5 Updating data structures faster

Now that we have proven the accuracy of Core, our next step is to address
the computational complexity. The key problem is that Compute is called
too often and the implementation of Update is too slow.

As Core progresses, the set B[v, i] is modified in two ways. The first case
is when some nodes become too far away, and we need to delete these nodes
from B[v, i]. The second case is when we have deleted enough nodes so that we
can lower k[v, i] and introduce new nodes. Our naive version of Update calls
Compute for both cases. We will modify the algorithms so that Compute is
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called only to handle the second case, and the first case is handled separately.
Note that these modifications do not change the output of the algorithm.

First, we change the information stored in B[v, i]. Instead of storing just
a node u, we will store (u, z), where z is the number of neighbors w ∈ A(v),
such that u is in B[w, i − 1]. We will store B[v, i] as a linked list sorted by
the rank. In addition, each node u ∈ B[w, i − 1] is augmented with an array
Q = (qv | v ∈ A(w)). An entry qv points to the location of u in B[v, i] if u is
present in B[v, i]. Otherwise, qv is set to null.

We will need two helper functions to maintain B[v, i]. The first function
is a standard merge sort, MergeSort(X,Y ), that merges two sorted lists in
O(|X |+ |Y |) time, maintaining the counters and the pointers.

The other function is Delete(X,Y ) that removes nodes in Y from X ,
which we will use to remove nodes from B[v, i]. The deletion is done in by
reducing the counters of the corresponding nodes in X by 1, and removing
them when the counter reaches 0. It is vital that we can process a single node
y ∈ Y in constant time. This will be possible because we will be able to use
the pointer array described above.

Let us now consider calling Compute. We would like to minimize the num-
ber of calls of Compute. In order to do that, we need additional bookkeeping.
The first additional information is m[v, i] which is the number of neighbor-
ing nodes w ∈ A(v) for which k[w, i − 1] = k[v, i]. Proposition 3.1 states that
k[v, i] ≥ k[w, i− 1], for all w ∈ A(v). Thus, if m[v, i] > 0, then there is a node
u ∈ A(v) with k[v, i] = k[u, i − 1] and so recomputing B[v, i] will not change
k[v, i] and will not add new nodes in B[v, i].

Unfortunately, maintaining justm[v, i] is not enough. We may have k[v, i] >
k[w, i − 1] for any w ∈ A(v) immediately after Compute. In such case, we
compute sets of nodes

Xw = {u ∈ B[w, i − 1] | r[u] = k[v, i]− 1} ,

and combine them in D[v, i], a union of Xw along with the counter information
similar to B[v, i], that is,

D[v, i] = {(u, z) | z = |{w ∈ A(v) | u ∈ Xw}| > 0} .

The key observation is that as long as |B[v, i]|+ |D[v, i]| > M , the level k[v, i]
does not need to be updated.

There is one complication, namely, we need to compute D[v, i] in
O(M deg v) time. Note that, unlike B[v, i], the set D[v, i] can have more than
M elements. Hence, using MergeSort will not work. Moreover, a stock k-
ary merge sort requires O(M deg(v) log deg(v)) time. The key observation to
avoid the additional log factor is that D[v, i] does not need to be sorted. More
specifically, we first compute an array

a[u] = |{w ∈ A(v) | u ∈ Xw}|,
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and then extract the non-zero entries to form D[v, i]. We only need to com-
pute the non-zero entries so we can compute these entries in O(

∑

|Xw|) ⊆
O(M deg v) time. Moreover, since we do not need to keep them in order we
can extract the non-zero entries in the same time. We will refer this procedure
as Union, taking the sets Xw as input and forming D[v, i].

We need to maintain D[v, i] efficiently. In order to do that we augment
each node u ∈ B[w, i − 1] with an array (qv | v ∈ A(w)), where qv points to
the location of u in D[v, i] if u ∈ D[v, i].

The pseudo-code for the updated Compute is given in Algorithm 5. Here
we compute B[v, i] and k[v, i] first by using MergeSort iteratively and trim-
ming the resulting set if it has more than M elements. We proceed to compute
m[v, i] and D[v, i]. If m[v, i] = 0, we compute D[v, i] with Union. Note that if
m[v, i] > 0, we leave D[v, i] empty. The above discussion leads immediately to
the computational complexity of Compute.

Proposition 5.1. Compute(v, i) runs in O(M deg v) time.

The pseudo-code for Update is given in Algorithm 6. Here, we maintain a
stack U of tuples (v, Y ), where v is the node that requires an update, and Y
are the nodes that have been deleted from B[v, i] during the previous round.
First, if |B[v, i]|+ |D[v, i]| ≤M and m[v, i] = 0, we run Compute(v, i). Next,
we proceed by reducing the counters of Z in B[w, i + 1] and D[w, i + 1] for
each w ∈ A(v). We also update m[w, i+1]. Finally, we add (w,Z) to the next
stack, where Z are the deleted nodes in B[w, i + 1].

Proposition 5.2. Update maintains B[v, i] correctly.

Proof As Core deletes nodes from the graph, Proposition 3.1 guarantees that B[v, i]
can be modified only in two ways: either node u is deleted from B[v, i] when u is no
longer present in any B[w, i − 1] where w ∈ A(v), or k[v, i] changes and new nodes
are added.

The first case is handled properly as Update uses Delete whenever a node is
deleted from B[w, i− 1].

The second case follows since if |B[v, i]| + |D[v, i]| > M or m[v, i] > 0, then
we know that Compute will not change k[v, i] and will not introduce new nodes in
B[v, i]. �

Proposition 5.3. Assume a graph G with n nodes and m edges. Assume
0 < ǫ ≤ 1/2, constant C, and the maximum path length h. The running time
of Core is bounded by

O
(

hmM log
n

M

)

= O

(

hmCǫ−2 log
nǫ2

C

)

with a probability of 1− n exp(−C), where M is defined in Eq. 1.
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Algorithm 5: Refined version of Compute(v, i). Recomputes B[v, i] and
k[v, i] from scratch.

1 T ← (v, 1);
2 k ← max (k[w, i − 1] | w ∈ A(v));
3 foreach w ∈ A(v) do
4 T ←MergeSort(T, {(u, c) ∈ B[w, i − 1] | r[u] ≥ k});
5 if |T | > M then

6 k ← max(k, r[t⌊M⌋+1] + 1) ; // (tj) = T
7 T ← {u ∈ T | r[u] ≥ k};

8 B[v, i]← T ;
9 k[v, i]← k;

10 m[v, i]← |{w ∈ A(v) | k[w, i− 1] = k[v, i]}|;
11 D[v, i]← ∅;
12 if m[v, i] = 0 then

13 Xw ← {u ∈ B[w, i − 1] | r[u] = k − 1} for w ∈ A(v);
14 D[v, i]← Union({Xw | w ∈ A(v)});

Proof We will prove the proposition by bounding R1 + R2, where R1 is the total
time needed by Compute and the R2 is the total time needed by the inner loop in
Update.

We will bound R1 first. Note that a single call of Compute(v, i) requires
O(M deg v) time.

To bound the number of Compute calls, let us first bound k[v, i]. Proposition 4.2
and union bound implies that

M2k[v,i]−1 ≤ (1 + ǫ)c(v) ≤ 2n

holds for all nodes v ∈ V with probability 1− n exp(−C). Solving for k[v, i] leads to

k[v, i] ≤ 2 + log2
n

M
∈ O

(

log
n

M

)

. (5)

We claim that Compute(v, i) is called at most twice per each value of k[v, i]. To
see this, consider that Compute(v, i) sets m[v, i] = 0. Then we also set D[v, i] and
we are guaranteed by the first condition on Line 9 of Update that the next call of
Compute(v, i) will lower k[v, i]. Assume now that Compute(v, i) sets m[v, i] > 0.
Then the second condition on Line 9 of Update guarantees that the next call of
Compute(v, i) either keeps m[v, i] at 0 (and computes D[v, i]) or lowers k[v, i].

In summary, the time needed by Compute is bounded by

R1 ∈ O





∑

i,v

M deg(v) log
n

M



 = O
(

hmM log
n

M

)

.

Let us now consider R2. For each deleted node in B[v, i] or for each lowered k[v, i]
the inner for-loop requires O(deg v) time. Equation 5 implies that the total number
of deletions from B[v, i] is in O

(

M log n
M

)

, and that we can lower k[v, i] at most
O
(

log n
M

)

times. Consequently,

R2 ∈ O

(

h
∑

v

(M + 1) log
n

M
deg v

)

= O
(

hmM log
n

M

)

.
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Algorithm 6: Refined version of Update(u). Deletes u and updates the
affected B[v, i] and k[v, i].

1 U ← ∅;
2 foreach i = 1, . . . , h do

3 add (u,B[u, i− 1]) to U ;
4 B[u, i− 1]← ∅;
5 W ← ∅;
6 while U is not empty do

7 (v, Y )← pop entry from U ;
8 k ← k[v, i];
9 if |B[v, i]|+ |D[v, i]| ≤M and m[v, i] = 0 then

10 Compute(v, i);

11 if i = h then d[v]← Estimate(v) ;
12 if i < h and (Y 6= ∅ or k[v, i] 6= k) then
13 foreach w ∈ A(v), w 6= u do

14 X1 ← pointers of Y in B[w, i+ 1];
15 X2 ← pointers of Y in D[w, i+ 1];
16 Delete(B[w, i + 1], X1);
17 Delete(D[w, i + 1], X2);
18 Z ← nodes removed from B[w, i + 1];
19 if k[v, i] 6= k and k = k[w, i + 1] then
20 m[w, i + 1]← m[w, i + 1]− 1;

21 add (w,Z) to W ;

22 U ←W

23 delete u from G;

We have bounded both R1 and R2 proving the main claim. �

Corollary 5.1. Assume real values ǫ > 0, δ > 0, a graph G with n nodes and
m edges. Let C = log(2n/δ). Then Core yields ǫ approximation in

O

(

hm logn/δ

ǫ2
log

nǫ2

logn/δ

)

time with 1− δ probability.

Proposition 5.4. Core requires O(hmM) memory.

Proof An entry in B[v, i] requires O(deg v) memory for the pointer information.
An entry in D[v, i] only requires O(1) memory. Since |B[v, i]| ≤ M and |D[v, i]| ≤
M deg v, the claim follows. �
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In order to speed-up the algorithm further we employ two additional heuris-
tics. First, we can safely delay the initialization of B[v, i] until every B[w, i−1],
where w ∈ A(v), yields a core estimate that is below the current core number.
Delaying the initialization allows us to ignore B[v, i] during Update. Second,
if the current core number exceeds the number of remaining nodes, then we
can stop and use the current core number for the remaining nodes. While these
heuristics do not provide any additional theoretical advantage, they speed-up
the algorithm in practice.

6 Distance-generalized dense subgraphs

In this section we will study distance-generalized dense subgraphs, a notion
introduced by Bonchi et al. [6].

In order to define the problem, let us first define Eh(X) to be the node
pairs in X that are connected with an h-path in X . We exclude the node pairs
of form (u, u). Note that E(X) = E1(X).

We define the h-density of X to be the ratio of Eh(X) and |X |,

dns(X ;h) =
|Eh(X)|

|X |
.

We will sometimes drop h from the notation if it is clear from the context.

Problem 6.1 (Dense). Given a graph G and h find the subgraph X
maximizing dns(X ;h).

Dense can be solved for h = 1 in polynomial time using fractional
programming combined with minimum cut problems [15]. However, the
distance-generalized version of the problem is NP-hard.

Proposition 6.1. Dense is NP-hard even for h = 2.

To prove the result we will use extensively the following lemma.

Lemma 6.1. Let X be the densest subgraph. Let Y ⊆ X and Z∩X = ∅. Then

|Eh(X)| − |Eh(X \ Y )|

|Y |
≥ dns(X) ≥

|Eh(X ∪ Z)| − |Eh(X)|

|Z|

Proof Due to optimality dns(X) ≥ dns(X \ Y ). Then

|Eh(X)| − |Eh(X \ Y )|

|Y |
≥

|Eh(X)| − dns(X) (|X| − |Y |)

|X| − (|X| − |Y |)
= dns(X) .

Similarly, dns(X) ≥ dns(X ∪ Z) implies

|Eh(X ∪ Z)| − |Eh(X)|

|Z|
≤

dns(X) (|X|+ |Z|)− |Eh(X)|

(|X|+ |Z|)− |X|
= dns(X) ,

proving the claim. �
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Proof of Proposition 6.1 To prove the claim we will reduce 3Dmatch to our problem.
In an instance of 3Dmatch we are given a universe U = u1, . . . , un of size n and m
sets C of size 3 and ask whether there is an exact cover of U in C.

We can safely assume that C1 does not intersect with any other set. Otherwise,
we can add a new set and 3 new items without changing the outcome of the instance.

In order to define the graph, let us first define k = 12m and ℓ = 3k(3k − 1)/2 +
6k − 1. Note that k ≥ 12.

For each ui ∈ U , we add k nodes aij , where j = 1, . . . , k. For each aij , we add
2ℓ unique nodes that are all connected to aij . We will denote the resulting star with
Sij . We will select a non-center node from Sij and denote it by bij . Finally, we write
S′
ij = Sij \

{

aij , bij
}

.
For each set Ct ∈ C, we add a node, say pt, and connect it to bij for every ui ∈ C

and j = 1, . . . , k. We will denote the collection of these nodes with P . We connect
every node in P to p1.

Let X be the nodes of the densest subgraph for h = 2. Let Q = P ∩X and let R
be the corresponding sets in C.

To simplify the notation we will need the following counts of node pairs. First, let
us define α to be the number of node pairs in a single Sij connected with a 2-path,

α = E2(Sij) =

(

2ℓ+ 1

2

)

.

Second, let us define the number of node pairs connected with a 2-path using a single
node pt ∈ P . Since pt connects 3k nodes bij and reaches 3k nodes bij and 3k nodes
aij , we have

β =

(

3k

2

)

+ 6k .

Finally, consider W consisting of a single pt and the corresponding 3k stars. Let
us write γ = 3kα+ β to be the number of node pairs connected by a 2-path in W .

We will prove the proposition with a series of claims.
Claim 1: dns(X) > ℓ. The density of W as defined above is

dns(W ) =
3kα+ β

3k(2ℓ + 1) + 1
>

3kα+ ℓ

3k(2ℓ + 1) + 1
= ℓ .

Thus, dns(X) ≥ dns(W ) > ℓ.
Claim 2: R is disjoint. To prove the claim, assume otherwise and let Ct, with

t > 1, be a set overlapping with some other set in R.
Let us bound the number of node pairs that are solely connected with pt. The

node pt connects 3k + 1 nodes in V . Out of these nodes at least k + 1 nodes are
connected by another node in X. In addition, pt reaches to aij and bij , where ui ∈ Ct

and j = 1, . . . , k, that is, 6k nodes in total. Finally, pt may connect to every other
node in P , at most m − 1 nodes, and every aij connected to p1, at most 3k nodes.
In summary, we have

|E2(X)| − |E2(X \ {pt})| ≤

(

3k + 1

2

)

−

(

k + 1

2

)

+ 6k +m− 1 + 3k

= ℓ− k2/2 + 5k/2 +m+ 3k < ℓ ≤ dns(X) .

Lemma 6.1 with Y = {pt} now contradicts the optimality of X. Thus, R is disjoint.
Claim 3: Either Sij ⊆ X or Sij ∩ X = ∅. To prove the claim assume that

Sij ∩X 6= ∅.
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Assume that bij /∈ X. Then Sij ∩ X is a disconnected component with density
less than ℓ, contradicting Lemma 6.1. Assume that bij ∈ X and aij /∈ X. Then
deleting bij will reduce at most 3k +m− 1 < ℓ connected node pairs, contradicting
Lemma 6.1.

Assume that bij , aij ∈ X. If S′
ij ∩ X = ∅, then deleting aij will reduce at

most 2 connected node pairs, contradicting Lemma 6.1. Assume now there are u ∈
S′
ij ∩X and w ∈ S′

ij \X. Then |E2(X ∪ {w})|− |E2(X)| > |E2(X)|− |E2(X \ {u})|,
contradicting Lemma 6.1. Consequently, Sij ⊆ X.

Claim 4: If pt ∈ X, then X contains every corresponding Sij . To prove the claim
assume otherwise.

Assume first that there are no corresponding Sij in X for pt. If t > 1, then pt
reaches to at most m− 1+ 3k nodes. If t = 1, then p1 connects at most m− 1 nodes
and reaches to at most (m− 1)(3k + 1) nodes.

Both cases lead to

|E2(X)| − |E2(X \ {pt})| ≤

(

m− 1

2

)

+ (m− 1)(3k + 1) < ℓ < dns(X) ,

contradicting Lemma 6.1.
Assume there is at least one corresponding Sij in X but not all, say Si′j′ is

missing. Then

|E2(X)| −
∣

∣E2(X \ Sij)
∣

∣ <
∣

∣E2(X ∪ Si′j′ )
∣

∣− |E2(X)|,

contradicting Lemma 6.1.
Claim 5: No Sij without corresponding pt is included in X. To prove the claim

note that such Sij is disconnected and has density of ℓ, contradicting Lemma 6.1.
The previous claims together show that the density of X is equal to

dns(X) =
|Q|γ + (|Q| − 1)(6k) +

(|Q|
2

)

|Q|(3k(2ℓ+ 1) + 1)
,

which is an increasing function of |Q|. Since R is disjoint and maximal, the 3Dmatch

instance has a solution if and only if R is a solution. �

One of the appealing aspects of dns(X ;h) for h = 1 is that we can
2-approximate in linear time [8]. This is done by ordering the nodes with Ex-

actCore, say v1, . . . , vn and then selecting the densest subgraph of the form
v1, . . . , vi.

The approximation guarantee for h > 1 is weaker even if use ExactCore.
Bonchi et al. [6] showed that 2dns(Y ) ≥

√

2dns(X) + 1/4− 1/2 when we use
ExactCore.

Using Core instead of ExactCore poses additional challenges. In order
to select a subgraph among n candidates, we need to estimate the density of
its subgraph. We cannot use d[v] used by Core as these are the values that
Core uses to determine the order.

Assume that Core produced order of vertices v1, . . . , vn, first vertices
deleted first. To find the densest graph among the candidate, we essentially
repeat Core except now we delete the nodes using the order v1, . . . , vn. We
then estimate the number of edges with the identity

2|Eh(X)| =
∑

v∈X

degh(v;X) .
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We will refer to this algorithm as EstDense. The pseudo-code for EstDense

is given in Algorithm 7.

Algorithm 7: EstDense(G, v1, . . . , vn, ǫ, C) approximative dense sub-
graph. Setting C = log(n2/δ) yields an approximation with 1 − δ
probability.

1 foreach v ∈ V do

2 r[v]← geo(1/2);
3 B[v, 0]← {v};
4 k[v, 0]← 0;

5 M ← 1 + 4(2+ǫ)
ǫ2

(C + log 8);
6 foreach i = 1, . . . , h do

7 foreach v ∈ V do Compute(v, i) ;

8 R←
∑

v d[v];
9 foreach i = 1, . . . , n do

10 estimate dns(vi, . . . , vn) with R/(n− i+ 1);
11 Update(vi);
12 keep R updated when recomputing d[v] with Estimate;

13 return densest tested subgraph;

The algorithm yields to the following guarantee.

Proposition 6.2. Assume ǫ > 0, C > 0 and h. Define γ = 1−ǫ
1+ǫ

. For any given
k, let Ck be the (k, h)-core. Define

β = min
k

|Ck|

|Ckγ |

to be the smallest size ratio between Ck and Ckγ .
Let X be the h-densest subgraph.
Let c′ be an ǫ-approximative core map and let v1, . . . , vn be the correspond-

ing vertex order. Let Y = EstDense(G, v1, . . . , vn, ǫ, C) Then

2dns(Y ) ≥ γβ
(

√

2dns(X) + 1/4− 1/2
)

with probability 1− n2 exp (−C).

To prove the result we need the following lemma.

Lemma 6.2. For any given k, define C′
k = {v | c′(v) ≥ k}. Then

dns
(

C′
k(1−ǫ)

)

≥ βdns(Ck) .
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Proof Write F = C′
k(1−ǫ). Let v ∈ Ck. Then c′(v) ≥ (1 − ǫ)c(v) ≥ (1 − ǫ)k and so

v ∈ F . Thus Ck ⊆ F . Conversely, let v ∈ F . Then (1 + ǫ)c(v) ≥ c′(v) ≥ k(1− ǫ) and
so v ∈ Cγk. Thus F ⊆ Cγk. The definition of β now implies

dns(F ) =
|Eh(F )|

|F |
≥ β

|Eh(F )|

|Ck|
≥ β

|Eh(Ck)|

|Ck|

proving the claim. �

Proof of Proposition 6.2 Let c be the core map produced by ExactCore. For any
given k, define C′

k =
{

v | c′(v) ≥ k
}

.
Let u ∈ X be the first vertex deleted by ExactCore. Let b = degh(u;X) be its

h-degree. Write X′ = X \ {u}. Since X is optimal,

|Eh(X)|

|X|
≥

∣

∣Eh(X
′)
∣

∣

|X′|
.

Deleting u from X will delete b node pairs from Eh(X) containing u. In addition, ev-
ery node in the h-neighborhood of umay be disconnected from each other, potentially
reducing the node pairs by

(

b
2

)

. In summary,

|Eh(X)| −
∣

∣Eh(X
′)
∣

∣ ≤ b+

(

b

2

)

=

(

b+ 1

2

)

.

Combining the two inequalities leads to
(

b+ 1

2

)

≥ |Eh(X)| −
|Eh(X)|(|X| − 1)

|X|
=

|Eh(X)|

|X|
= dns(X) .

Solving for b results in

b ≥
√

2dns(X) + 1/4− 1/2 . (6)

Let Z be the nodes right before u is deleted by ExactCore. Note that c(u) ≥
degh(u;Z) ≥ degh(u;X) = b.

Let Ck be the smallest core containing u, that is, c(u) = k. By definition,
degh(v;Ck) ≥ k ≥ b, for all v ∈ Ck.

Let F = C′
k(1−ǫ). Lemma 6.2 now states that

2dns(F ) ≥ 2βdns(Ck) = β
1

|Ck|

∑

v∈Ck

degh(v;Ck) ≥ βk ≥ βb . (7)

Let d′(Z) be the estimated density for a subgraph Z.
Proposition 4.2 and the union bound state that

dns(Y ) ≥
1

1 + ǫ
d′(Y ) ≥

1

1 + ǫ
d′(F ) ≥ γdns(F ) (8)

with probability 1− n2e−C . Eqs. 6–8 prove the inequality in the claim. �

EstDense is essentially Core so we can apply Proposition 5.3.

Corollary 6.1. Assume real values ǫ > 0, δ > 0, a graph G with n nodes and
m edges. Let C = log(n2/δ). Then EstDense runs in

O

(

hm logn/δ

ǫ2
log

nǫ2

logn/δ

)

time and Proposition 6.2 holds with 1− δ probability.
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Finally, let us describe a potentially faster variant of the algorithm that we
will use in our experiments. The above proof will work even if replace Ck with
the most inner (exact) core. Since F = C′

k(1−ǫ) we can prune all the vertices

for which c′(v) < k(1− ǫ). The problem is that we do not know k but we can
lower bound it with k ≥ k′/(1+ ǫ), where k′ = maxv c

′(v). In summary, before
running Estimate we remove all the vertices for which c′(v) < γk′.

7 Related work

The notion of distance-generalized core decomposition was proposed by Bonchi
et al. [6]. The authors provide several heuristics to significantly speed-up the
baseline algorithm (a variant of an algorithm proposed by Batagelj and Za-
veršnik [3]). Despite being significantly faster than the baseline approach, these
heuristics still have the computational complexity in O(nn′(n′ +m′)), where
n′ and m′ are the numbers of nodes and edges in the largest h-neighborhood.
For dense graphs and large values of h, the sizes n′ and m′ can be close n and
m, leading to the computational time of O

(

n2m
)

. We will use these heuristics
as baselines in Section 8.

All these algorithms, as well as ours, rely on the same idea of iteratively
deleting the vertex with the smallest degh(v) and updating these counters upon
the deletion. The difference is that the previous works maintain these counters
exactly—and use some heuristics to avoid updating unnecessary nodes—
whereas we approximate degh(v) by sampling, thus reducing the computational
time at the cost of accuracy.

A popular variant of decomposition is a k-truss, where each edge is required
to be in at least k triangles [9, 17, 28–30]. Sarıyüce and Pinar [21], Sariyuce
et al. [22] proposed (r, s) nucleus decomposition, an extension of k-cores
where the notion nodes and edges are replaced with r-cliques and s-cliques,
respectively. Sarıyüce and Pinar [21] points out that there are several vari-
ants of k-trusses, depending on the connectivity requirements: Huang et al.
[17] requires the trusses to be triangle-connected, Cohen [9] requires them
to be connected, and Zhang and Parthasarathy [29] allows the trusses to be
disconnected.

A k-core is the largest subgraph whose smallest degree is at least k. A
similar concept is the densest subgraph, a subgraph whose average degree
is the largest [15]. Such graphs are convenient variants for discovering dense
communities as they can be discovered in polynomial time [15], as opposed to,
e.g., cliques that are inapproximable [31].

Interestingly, the same peeling algorithm that is used for core decomposi-
tion can be use to 2-approximate the densest subgraph [8]. Tatti [25] proposed a
variant of core decomposition so that the densest subgraph is equal to the inner
core. This composition is solvable in polynomial time an can be approximated
using the same peeling strategy.

A distance-generalized clique is known as h-club, which is a subgraph where
every node is reachable by an h-path from every node [20]. Here the path
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must be inside the subgraph. Since cliques are 1-clubs, discovering maximum
h-clubs is immediately an inapproximable problem. Bonchi et al. [6] argued
that (k, h) decomposition can be used to aid discovering maximum h-clubs.

Using sampling for parallelizing (normal) core computation was proposed
by Esfandiari et al. [10]. Here, the authors sparsify the graph multiple times
by sampling edges. The sampling probability depends on the core numbers:
larger core numbers allow for more aggressive sparsification. The authors then
use Chernoff bounds to prove the approximation guarantees. The authors were
able to sample edges since the degree in the sparsified graph is an estimate of
the degree in the original graph (multiplied by the sampling probability). This
does not hold for (k, h) core decomposition because a node w ∈ N(v;h) can
reach v with several paths.

Approximating h-neighborhoods can be seen as an instance of a cardinality
estimation problem. A classic approach for solving such problems is Hyper-
LogLog [11]. Adopting HyperLogLog or an alternative approach, such as [18],
is a promising direction for a future work, potentially speeding up the algo-
rithm further. The challenge here is to maintain the estimates as the nodes
are removed by Core.

8 Experimental evaluation

Our two main goals in experimental evaluation is to study the accuracy and
the computational time of Core.

8.1 Datasets and setup

We used 8 publicly available benchmark datasets. CaAstro and CaHep are
collaboration networks between researchers.1 RoadPa and RoadTX are road
networks in Pennsylvania and Texas.1 Amazon contains product pairs that
are often co-purchased in a popular online retailer.1 Youtube contains user-to-
user links in a popular video streaming service.2 Hyves and Douban contain
friendship links in a Dutch and Chinese social networks, respectively.3 The
sizes of the graphs are given in Table 1.

We implemented Core in C++4 and conducted the experiments using a
single core (2.4GHz). For Core we used 8GB RAM and for EstDense we
used 50GB RAM. In all experiments, we set δ = 0.05.

8.2 Accuracy

In our first experiment we compared the accuracy of our estimate c′(v) against
the correct core numbers c(v). As a measure we used the maximum relative

1http://snap.stanford.edu
2http://networkrepository.com/
3http://konect.cc/
4http://version.helsinki.fi/dacs

http://snap.stanford.edu
http://networkrepository.com/
http://konect.cc/
http://version.helsinki.fi/dacs
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Table 1: Sizes and computational times for the benchmark datasets. Here, n
is the number of nodes m is the number of edges, M is the internal parameter
of Core given in Eq. 1. The running times for the baselines lub and lb are
taken from [6]. Dashes indicate that the experiments did not finish in 20 hours.
For Youtube and Hyves, lub was run with 52 CPU cores. The remaining
experiments are done with a single CPU core.

h = 2

Dataset n m M Core lb lub

CaHep 12 008 118 489 607 3.53s 0.95s 1.19s
CaAstro 18 772 198 050 625 5.2s 5.52s 5.17s
RoadPA 1 088 092 1 541 898 787 7.72s 3.18s 36.14s
RoadTX 1 393 383 1 921 660 797 10.39s 4.21s 56.89s
Amazon 334 863 925 872 740 4.96s 2.51s 12.98s
Douban 154 908 327 162 709 6.39s 4.3s 6.76s
Hyves 1 402 673 2 777 419 797 1m22s 1m53s 7m21s
Youtube 495 957 1 936 748 756 1m11s 1m43s 3m12s

h = 3 h = 4

Dataset Core lb lub Core lb lub

CaHep 10.39s 2m8s 1m33s 22.34s 15m41s 2m3s
CaAstro 23.65s 9m20s 1m31s 20.81s 80m35s 6m13s
RoadPA 13.85s 6.75s 1m59s 23.64s 11.47s 2m20s
RoadTX 18.28s 8.44s 3m4s 30.9s 13.9s 3m28s
Amazon 17.26s 29.27s 51.92s 1m15s 4m56s 3m11s
Douban 57.78s 31m4s 3m41s 1m34s 912m42s 59m17s
Hyves 7m6s 702m44s 62m5s 12m3s — 800m39s
Youtube 5m12s — 53m12s 4m26s — 155m11s

error

max
v∈V

|c′(v)− c(v)|

c(v)
.

Note that Proposition 4.3 states that the error should be less than ǫ with high
probability.

The error as a function of ǫ for CaHep and CaAstro datasets is shown in
Figure 1 for h = 3, 4. We see from the results that the error tends to increase
as a function of ǫ. As ǫ decreases, the internal value M increases, reaching the
point where the maximum core number is smaller than M . For such values,
Proposition 4.3 guarantees that Core produces correct results. We see, for
example, that this value is reached with ǫ = 0.20 for CaHep, and ǫ = 0.15 for
CaAstro when h = 3, and ǫ = 0.35 for Amazon when h = 4.
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Figure 1: Relative error and computational time as a function of ǫ for CaHep,
CaAstro, and Amazon datasets and h = 3 (top row) and h = 4 (bottom row).

8.3 Computational time

Our next experiment is to study the computational time as a function of ǫ;
the results are shown in Figure 1. From the results we see that generally
computational time increases as ǫ decreases. The computational time flattens
when we reach the point when c(v) ≤ M for every M . In such case, the lists
B[v, i] match exactly to the neighborhoods N(v, i) and do not change if M
is increased further. Consequently, decreasing ǫ further will not change the
running time. Interestingly, the running time increases slightly for Amazon

and h = 4 as ǫ increases. This is most likely due to the increased number of
Compute calls for smaller values of M .

Next, we compare the computational time of our method against the base-
lines lb and lub proposed by Bonchi et al. [6]. As our hardware setup is
similar, we used the running times for the baselines reported by Bonchi et al.
[6]. Here, we fixed ǫ = 0.5. The results are shown in Table 1.

We see from the results that for h = 2 the results are dominated by lb.
This is due to the fact that most, if not all, nodes will have c(v) ≤ M . In
such case, Core does not use any sampling and does not provide any speed
up. This is especially the case for the road networks, where the core number
stays low even for larger values of h. On the other hand, Core outperforms
the baselines in cases where c(v) is large, whether due to a larger h or due
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to denser networks. As an extreme example, lub required over 13 hours with
52 CPU cores to compute core for Hyves while Core provided an estimate in
about 12 minutes using only 1 CPU core.

Interestingly enough, Core solves CaAstro faster when h = 4 than when
h = 3. This is due to the fact that we stop when the current core value plus
one is equal to the number of remaining nodes.
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Figure 2: Computational time as a function of number of edges applied to
synthetic data.

To further demonstrate the effect of the network size on the computation
time we generate a series of synthetic datasets. Each dataset is stochastic
blockmodel with 10 blocks of equal size, C1, . . . , C10. To add a hierarchical
structure we set the probability of an edge between nodes in Ci and Cj with
i < j to be 10−6i2. We vary the number of nodes from 10 000 to 100 000. The
computational times for our method, with h = 2, 3, 4 and ǫ = 0.5, are shown
in Figure 2. As expected, the running times increase as the number of edges
increase. Moreover, larger h require more processing time. We should stress
that while Corollary 5.1 bounds the running time as quasi-linear, in practice
the trend depends on the underlying model.

8.4 Dense subgraphs

Finally, we used EstDense to estimate the densest subgraph for h = 2, 3, 4.
We set ǫ = 0.5 and δ = 0.05. The results, shown in Table 2, are as expected.
Both the density and the size of the h-densest subgraphs increase as the func-
tion of h. The dense subgraphs are generally smaller and less dense for the
sparse graphs, such as, road networks.

In our experiments, the running times for EstDense were generally smaller
but comparable to the running times of Core. The speed-up is largely due to
the pruning of nodes with smaller core numbers. The exception was Youtube
with h = 3, where EstDense required over 23 minutes. The slowdown is due
to Core using lazy initialization of B[v, i] whereas EstDense needs B[v, h]
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Table 2: Densities and sizes of discovered dense subgraphs for the benchmark
datasets.

h = 2 h = 3 h = 4

Dataset dns(X) |X | dns(X) |X | dns(X) |X |

CaHep 494.77 1 383 1 372.14 3 998 3 121.32 7 069
CaAstro 570.55 3 525 2 955.16 10 321 6 280.64 15 100
RoadPA 5.18 19 496 10.74 4 407 18.94 15 556
RoadTX 6 65 10.6 908 18.28 19 530
Amazon 274.5 550 407.25 2 192 851.96 22 476
Douban 384.69 4 133 3 435.75 13 853 17 142.94 73 840
Hyves 15 135.53 31 884 31 832.31 224 136 142 173.06 448 330
Youtube 13 572.56 25 413 44 338.23 162 379 132 376.1 315 211

to be computed in order to obtain d[v]. This is also the reason why EstDense

requires more memory in practice.

9 Concluding remarks

In this paper we introduced a randomized algorithm for approximat-
ing distance-generalized core decomposition. The major advantage over
the exact approximation is that the approximation can be done in
O
(

ǫ−2hm(log2 n− log δ)
)

time, whereas the exact computation may require

O
(

n2m
)

time. We also studied distance-generalized dense subgraphs by prov-
ing that the problem is NP-hard and extended the guarantee results of [6] to
approximate core decompositions.

The algorithm is based on sampling the h-neighborhoods of the nodes. We
prove the approximation guarantee with Chernoff bounds. Maintaining the
sampled h-neighborhood requires carefully designed bookkeeping in order to
obtain the needed computational complexity. This is especially the case since
the sampling probability may change as the graph gets smaller during the
decomposition.

In practice, the sampling complements the exact algorithm. For the setups
where the exact algorithm struggles, our algorithm outperforms the exact ap-
proached by a large margin. Such setups include well-connected networks and
values h larger than 3.

An interesting direction for future work is to study whether the heuristics
introduced by Bonchi et al. [6] can be incorporated with the sampling approach
in order to obtain even faster decomposition method.
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A Proof of Proposition 4.2

We start with stating several Chernoff bounds.

Lemma A.1 (Chernoff bounds). Let X1, . . . , Xd be d independent Bernoulli

random variables with P (Xi = 1) = µ. Let S =
∑d

i=1 Xi. Then

P (S ≥ (1 + ǫ)dµ) < exp

(

−
ǫ2

2 + ǫ
dµ

)

, (9)

P (S ≤ (1− ǫ)dµ) < exp

(

−
ǫ2

2
dµ

)

, and (10)

P (|S − dµ| ≥ ǫdµ) < 2 exp

(

−
ǫ2

2 + ǫ
dµ

)

. (11)

Proof Eqs. 9–10 are standard multiplicative Chernoff bounds. Eq. 11 is obtained
with a union bound of Eqs. 9–10, completing the claim. �

To prove Proposition 4.2 we first need the following technical lemma.

Lemma A.2. Assume 0 < ǫ ≤ 1/2. Let R1, . . . , Rd be independent random
variables sampled from geometric distribution, geo(1/2). Define

Si = |{j ∈ [d] | Rj ≥ i}| and Ti = |{j ∈ [d] | Rj ≥ i, j ≥ 2}|

to be the number of variables {Rj} larger than or equal to i. Assume C > 0 and
define M as in Eq. 1. Assume that M ≤ d. Let ℓ ≥ 1 be an integer such that

M2ℓ−1 ≤ d < M2ℓ . (12)

Then with probability 1− exp (−C) we have

ℓ = 1 or Sℓ−2 > M, and Sℓ+1 ≤M, (13)

and
|Tk − µk(d− 1)| ≤ ǫµk(d− 1), (14)

where k = ℓ− 1, ℓ, ℓ+ 1 and µk = 2−k.

Proof First, note that Eq. 12 implies

2µℓ+1d = µℓd < M ≤ 4dµℓ+1 = 2−1dµℓ−2 . (15)

To prove the lemma, let us define the events

Ak = |Tk − µk(d− 1)| > ǫµk(d− 1),

and
B1 = Sℓ−2 ≤ M and B2 = Sℓ+1 > M .
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We will prove the result with union bound by showing that

P (Aℓ−1 or Aℓ or Aℓ+1 or B1 or B2)

≤ P (Aℓ−1) + P (Aℓ) + P (Aℓ+1) + P (B1) + P (B2)

≤ 2/8e−C + 2/8e−C + 2/8e−C + 1/8e−C + 1/8e−C .

To bound P (Ak), observe that P (Rj ≥ k) = µk . The Chernoff bound now states
that for k ≤ ℓ+ 1 we have

P (Ak) = P (|Tk − µk(d− 1)| > ǫµk(d− 1))

< 2 exp

(

−
ǫ2

2 + ǫ
µk(d− 1)

)

(Eq. 11)

< 2 exp

(

−
ǫ2

2 + ǫ
µℓ+1(d− 1)

)

(k ≤ ℓ+ 1)

≤ 2 exp

(

−
ǫ2

4(2 + ǫ)
(M − 1)

)

(Eq. 15, µℓ+1 ≤ 1/4)

= 2/8 exp (−C) . (Eq. 1)

Next, we bound B1, assuming ℓ > 1 as otherwise we can ignore the term, with

P (Sℓ−2 ≤ M) ≤ P (Sℓ−2 ≤ 2−1µℓ−2d) (Eq. 15)

≤ P (Sℓ−2 ≤ (1− ǫ)µℓ−2d) (ǫ ≤ 1/2)

< exp

(

−
ǫ2

2
µℓ−2d

)

(Eq. 10)

≤ exp
(

−ǫ2M
)

(Eq. 15)

< exp

(

−
ǫ2

4(2 + ǫ)
(M − 1)

)

= 1/8 exp (−C) (Eq. 1)

and B2 with

P (Sℓ+1 > M) ≤ P (Sℓ+1 > 2µℓ+1d) (Eq. 15)

≤ P (Sℓ+1 > (1 + 2ǫ)µℓ+1d) (ǫ ≤ 1/2)

< exp

(

−4
ǫ2

2 + 2ǫ
µℓ+1d

)

(Eq. 9)

≤ exp

(

−
ǫ2

2 + 2ǫ
M

)

(Eq. 15)

< exp

(

−
ǫ2

4(2 + ǫ)
(M − 1)

)

= 1/8 exp (−C) . (Eq. 1)

The bounds for P (B1), P (B2), and P (Ak) complete the proof. �
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Proof of Proposition 4.2 Let Si, Ti, and k be as defined in Definition 4.1 for
∆(R;M). Let ℓ be as defined in Eq 12. We can safely assume that M ≤ d.

Assume that the events in Lemma A.2 hold. Then Eq. 13 guarantees that k =
ℓ− 1, ℓ, ℓ+ 1.

Write Yi = Ti2
i and Zi = M2i−1. Eq. 14 guarantees that

|Yi − (d− 1)| ≤ ǫ(d− 1) (16)

for i = ℓ− 1, ℓ, ℓ+ 1. If k = 0 or Yk ≥ Zk, then ∆(R;M) = Yk and we are done.
Assume k > 0 and Yk < Zk. Then immediately

Zk > Yk ≥ (1− ǫ)(d− 1) .

To prove the other direction, first assume that k > ℓ − 1. By definition of k, we
have Sk−1 > M and consequently Tk−1 ≥ M . Thus,

Zk = M2k−1 ≤ Tk−12
k−1 = Yk−1 ≤ (1 + ǫ)(d− 1),

where the last inequality is given by Eq. 16. On the other hand, if k = ℓ− 1, then

Zk = M2k−1 = M2ℓ−2 ≤ d/2 ≤ d− 1 ≤ (1 + ǫ)(d− 1),

where the second inequality holds since k > 0 implies that d ≥ 2. In summary, Eq. 2
holds.

Since the events in Lemma A.2 hold with probability of 1− exp (−C), the claim
follows. �
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