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Abstract—In online display advertising, guaranteed contracts
and real-time bidding (RTB) are two major ways to sell impres-
sions for a publisher. For large publishers, simultaneously selling
impressions through both guaranteed contracts and in-house
RTB has become a popular choice. Generally speaking, a pub-
lisher needs to derive an impression allocation strategy between
guaranteed contracts and RTB to maximize its overall outcome
(e.g., revenue and/or impression quality). However, deriving the
optimal strategy is not a trivial task, e.g., the strategy should
encourage incentive compatibility in RTB and tackle common
challenges in real-world applications such as unstable traffic
patterns (e.g., impression volume and bid landscape changing).
In this paper, we formulate impression allocation as an auction
problem where each guaranteed contract submits virtual bids
for individual impressions. With this formulation, we derive the
optimal bidding functions for the guaranteed contracts, which
result in the optimal impression allocation. In order to address
the unstable traffic pattern challenge and achieve the optimal
overall outcome, we propose a multi-agent reinforcement learning
method to adjust the bids from each guaranteed contract, which
is simple, converging efficiently and scalable. The experiments
conducted on real-world datasets demonstrate the effectiveness
of our method.

I. INTRODUCTION

Online display advertising has become one of the most
influential business, with $59.8 billion revenue in FY 2019 in
US alone [1]. Typically when a user visits a publisher, e.g.,
a news website, there would be one or more ad impression
opportunities generated in real time. Advertisers are able to
acquire these opportunities to display their ads at certain cost
and these cost eventually become the revenue of the publisher.

For a publisher, there are two major ways to sell impressions.
The first one is through guaranteed contracts (also referred as
guaranteed delivery [2]). A guaranteed contract is an agreement
between an advertiser and a publisher by negotiating directly or
by going through a programmatic guaranteed mechanism [3].
The contract usually specifies the contract payment amount, the
campaign duration and the desired number of ad impressions.
The advertiser typically makes the payment before the ad
delivery starts and the publisher guarantees the desired number
of ad impressions. The publisher is also responsible for any
shortfall in the number of impressions delivered. A penalty is
usually incurred based on the volume of under-delivery.

The second way to sell impressions is through real-time
bidding (RTB). RTB allows advertisers to bid in real time for

impressions and does not guarantee the impression volume for
any advertiser [4]. In this paper, we focus on the second price
auction [5]. For each impression opportunity, the advertiser
who offers the highest bid wins the opportunity to display her
ad. The cost of the winner is the second highest bid in the
auction.

Despite the increasing popularity of RTB, there is still large
amount of the online display advertising revenue generated
from guaranteed contracts. For large publishers, simultaneously
selling impressions through both guaranteed contracts and in-
house RTB has become a popular choice. These publishers need
to derive impression allocation strategies between guaranteed
contracts and RTB. There are two main considerations when
publishers strategically allocate their impressions:
1) Maximizing the overall outcome: The overall outcome we

consider in this paper consists of both revenue and contract
impression quality (a formal definition can be found in
Section II). Revenue represents the short-term value to the
publisher. It associates with the revenue from guaranteed
contracts, the revenue from RTB, and the contract violation
penalties. Impression quality (e.g., click-through rate) of
the guaranteed contracts reflects the long-term revenue to
the publisher since advertisers of guaranteed contracts are
more and more concerned with the impression qualities.

2) Maintaining incentive compatibility in RTB: The pub-
lisher also needs to take care of the auction mechanism of its
in-house RTB. An incentive compatible auction mechanism1

is essential to facilitate truthful bidding and maximize the
efficiency.
Besides the considerations above, what makes it even

more challenging is the unstable traffic pattern in real-world
applications. Strategies derived based on a known collection
of impressions [6], [7], [8] or stochastic arrival models [9],
[10], [11], [12] may be inferior in such scenarios. First,
the traffic volume is vulnerable to unexpected changes such
as holiday sale events. Second, usually concurrent with the
traffic volume changes, the market price distribution of the
impressions can also deviate from the empirical one. Finally, the
unpredictable advertiser behaviors in RTB including modifying

1A mechanism is called incentive-compatible if every participant can achieve
the best outcome to themselves just by acting according to their true preferences.
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budget, bid, and target audience can also make the traffic
pattern complicated and dynamic [13].

To derive an optimal impression allocation strategy that
takes into account the above-mentioned considerations and
challenges, we propose to analyze the problem from another
perspective. Since the allocation is non-trivial and the envi-
ronment is highly dynamic, can the guaranteed contracts also
participate in the real-time auctions so that they can also enjoy
the liquidity and the impressions can be fully auctioned? More
specifically, can each guaranteed contract be treated as a bidding
agent which is able to submit bids for individual impressions
and the impression allocation is based on the submitted bids
from both guaranteed contracts and RTB? We will show that
such a setup can actually lead us to the optimal impression
allocation strategy. For each impression, the optimal bids of
each contract bidding agent j are determined by a critical
parameter αj , and the impression can be optimally allocated
based on an auction mechanism with the bids from RTB and
contract agents. It can be proved that the proposed mechanism
results in the theoretically maximum outcome (more details
see Section II). Meanwhile, the incentive compatibility, which
is important for auction efficiency, is also maintained.

However, although the impressions can be allocated in such
scheme, the optimal αj can only be obtained over a complete
impression set. Hence, an αj adjustment policy is a necessity
in real-world application, which aims to continuously adjust αj
to the optimal one under the current state (i.e., indicators about
contracts’ fulfillment status and RTB information). Meanwhile,
since each agent j has its own parameter αj , and all the
agents have a common goal of outcome maximization, it is
intuitive to apply multi-agent reinforcement learning (MARL)
to model this process. However, MARL method is faced with
some common challenges in industrial scenario, such as model
complexity, scalability and low converging efficiency. Thus,
we carefully design our modeling process and present a simple,
scalable, quickly converging MARL method.

To evaluate the effectiveness of our method, we conducted
experiments on large-scale real-world datasets. Compared
with other methods, we observed substantial improvements
on impression allocation results. Meanwhile, the converging
efficiency, scalability of our MARL method are also verified
empirically. Our main contributions can be summarized as
follows:
1) We propose an optimal impression allocation strategy in

display advertising with both guaranteed contracts and in-
house RTB. The proposed strategy maintains incentive
compatibility in RTB.

2) We devise an industrial applicable MARL method to
dynamically optimize impression allocation outcome, which
is simple, scalable and quickly converging.

3) Empirical studies on real-world industrial dataset demon-
strate the scalability and efficiency of our MARL method.
The rest of this paper is organized as follows. The optimal

impression allocation strategy is derived associated with optimal
bidding function in Section II. In Section III, we present an
efficient MARL method to learn the crucial parameter in
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Fig. 1: Impression allocation process of a publisher.

bidding function. Empirical study is shown in Section IV,
followed by the related work in Section V. We conclude the
paper in Section VI.

II. OPTIMAL IMPRESSION ALLOCATION

For the publishers who sell impressions through both
guaranteed contracts and in-house RTB, one of their impression
allocation motivations is to maximize the total revenue from
both contracts and RTB. Meanwhile, the impression quality of
the contracts can affect the satisfaction of the contract adver-
tisers and therefore affect the long-term revenue. As illustrated
by Fig. 1, the ultimate goal of impression allocation is to
maximize the overall outcome, i.e., simultaneously maximize
RTB revenue , contract revenue and contract impression quality.
Besides, whether the RTB part is incentive compatible is also
a critical issue to be considered.

A. Problem Formulation

Suppose there are n impressions indexed by i to be allocated
by the publisher. On the one hand, suppose that there are m
guaranteed contracts indexed by j to be served. For each
contract j, let dj be the demand impression volume and cj
be the unit price of each impression, so the prepaid contract
revenue is cjdj . Suppose the contract violation penalty of
contract j for each undelivered impression is pj , that is, if the
number of impressions served to contract j is fewer than dj ,
the publisher will have to be responsible for the under-delivery
and the penalty is pj for each undelivered impression. On
the other hand, for each impression i, RTB will also provide
a list of bids, of which we are mostly interested in the first
and second highest bids bi1 and bi2 under the second price
auction mechanism. If the impression is allocated to RTB, then
the publisher will earn bi2. Let xij be the binary indicator
whether an impression i is allocated to contract j and obviously
if
∑
j xij = 0 then the impression is allocated to RTB. Then

we are able to derive revenue from both guaranteed contracts
and RTB. Specifically, the revenue from guaranteed contracts
is RGC = Σjcjdj − Σjpjyj , where yj = dj − Σixij is the
impression under-delivery amount and the revenue from RTB is
RRTB = Σi(1−Σjxij)bi2. For contract business, a publisher
should consider the quality of the impressions allocated to
contracts, since the result of poor impression quality (e.g.,
low CTR) would drastically affect the future investments on
contract ads. In industrial application, it is common to introduce
a trade-off parameter between the units of impression quality
and revenue [6]. Thus, we let qij be the impression i’s quality



for contract j and λj be the quality weight2, then the total
contract impression quality is QGC = Σijλjxijqij .

Our goal of impression allocation is to maximize the overall
outcome, i.e., the sum of RGC , RRTB , and quality QGC . One
may curious about the reason why we do not consider the
quality of the RTB part, this is mainly because the RTB part is
fully auctioned and the impression quality is already considered
in the bids of each advertiser in RTB, e.g., if an advertiser
considers click as the quality of an impression, he or she can
only bid with a click price. Hence, we formulate the problem
of optimal impression allocation for outcome maximization as
the following linear programming problem:

maximize
xij ,yj

RGC +RRTB +QGC

s.t. Σixij + yj = dj , ∀j,
Σjxij ≤ 1, ∀i,
xij ≥ 0, ∀i, j,
yj ≥ 0, ∀j.

(LP1)

B. The Optimal Allocation Strategy

As demonstrated above, the optimal impression allocation
can be obtained by solving (LP1) if the impressions are
completely foreseen. However, the impression is unknown
until the end of the day and almost impossible to predict since
the unstable traffic pattern. Therefore we propose to solve
the problem from a different perspective. That is, guaranteed
contracts are regarded as bidding agents3, whose bids are
decided by the publisher, and participate in the real-time
auctions together with the RTB ads. The impression allocation
is finally decided by the auction results of RTB and contracts.
In this section, we prove that such a setup can actually lead
us to the optimal allocation strategy and derive the optimal
bidding functions of contract bidding agents.

Theorem 1. Suppose for each impression i, every contract j
submits a bid bij . Let k = argmaxj bij . Consider the allocation
strategy that allocates impression i to contract k if bik > bi2

and otherwise to RTB. The strategy results in the optimal
solution of outcome maximization problem defined by (LP1) if
the bid from each contract is:

bij = λj qij + α∗j , ∀i, j, (1)

where α∗j is the optimal solution to the dual problem of outcome
maximization problem (LP1) and α∗j ≤ pj .

Proof. The maximal revenue from RTB Σibi2, along with
the total payment from contracts Σjcjdj can be considered as
constants. Then, maximize Σij(1−xij)bi2+Σjcjdj−Σjyjpj+
Σijλjxijqij can be simplified as maximize − Σijxijbi2 −
Σjyjpj + Σijλjxijqij . Thus, the dual problem of (LP1) is as
follows:

2The quality weight can be also considered as a scaling parameter that
converts quality into money.

3Different from the bidding agents in RTB, the contract bidding agents
do not have budget, and the delivered bids are only used for the impression
allocation.

minimize
αj ,βi

Σiβi − Σjαjdj (LP2)

s.t. λjqij + αj − bi2 ≤ βi, ∀i, j, (2)
αj ≤ pj , ∀j,
βi ≥ 0, ∀i.

Suppose the optimal solution to (LP1) and (LP2) are x∗ij , y
∗
j

and β∗i , α
∗
j respectively. We denote impression i’s bid of

contract j as bij = λjqij+α
∗
j . According to the complementary

slackness theorem, we have

x∗ij (bij − bi2 − β∗i ) = 0, ∀i, j, (3)

(Σjx
∗
ij − 1) β∗i = 0, ∀i. (4)

∀i = 1..n; j = 1..m:
• If bij < bi2 then bij − bi2 − β∗i < 0. Based on Eq. (3)

we can infer that x∗ij = 0. Therefore if ∀j, bij < bi2 then∑
j x
∗
ij = 0, which means impression i is allocated to

RTB in the optimal solution of (LP1).
• If bij > bi2, we can infer that β∗i > 0 and

∑
j x
∗
ij = 1

according to Eqs. (2),(4), which means impression i is
allocated to guaranteed contracts. Let x∗ik > 0, then we
have bik = bi2 + β∗i based on Eq. (3). Therefore bij ≤
bi2 +β∗i = bik, i.e., k = arg maxj bij . This means in the
optimal solution of (LP1), the impression is allocated to
the contract with highest bid.

In summary, for each impression i, if we bid with bij =
λjqij + α∗j for each contract j, and allocate impressions with
the strategy demonstrated in Eq. (5), then we achieve the the
optimal allocation results of (LP1):

allocate to

{
RTB if ∀j, bij < bi2,

contract k otherwise,
(5)

where k = arg maxj bij .

C. Incentive Compatibility of RTB

Since simultaneously selling impressions through both
guaranteed contracts and in-house RTB has become a popular
choice for large publishers, the incentive compatibility of RTB
should be seriously considered. If the auction mechanism
in RTB is incentive compatible, truthful bidding strategy is
facilitated for the advertisers who participate in the auction,
and it will result in a locally envy-free equilibrium which
maximizes the efficiency [5].

According to the allocation strategy presented in Section
II-B, for each impression i, we simply compare the max bid
from contracts with the second highest bid from RTB, and then
allocate the impression to the one with the higher bid. From
the perspective of any RTB bidder, the social choice function
is monotone in every bid submitted by a RTB bidder, i.e.,
the impression allocation result (True or False) is monotone
with respect to her bids, and the critical value (payment) for
the winning RTB bidder is still the second highest price bi2.



According to the Theorem 9.36 in [14], the optimal allocation
strategy introduced in Section II-B will keep the incentive
compatibility of RTB.

III. A PRACTICAL MARL METHOD

Recall that all the guaranteed contracts are considered as
bidders (publisher proxies) to compete with RTB bidders in the
auction. The optimal bidding function of contracts is given by
Eq. (1), and the remaining problem of impression allocation is
the determination of the optimal bidding parameter α∗j . Since
the traffic pattern is unstable and the impression set is unknown
until the end of the day, it is impossible to obtain the optimal
α∗j by solving the dual problem of (LP1). Thus, in the real-
world scenario, we have to adjust the current (not optimal) αj
according to the current state (e.g., contract fulfillment rate,
cost per mille in RTB, etc.) to maximize the potential outcome.
In this section, we first formulate this αj adjustment problem
as a Markov Game, then we simplify the policy searching
process based on an important property in our scenario, last we
present an industry-applicable parameter adjustment approach
via multi-agent reinforcement learning (MARL).

A. Formulation as A Markov Game

We formulate the impression allocation process as an Markov
Game, where there are m contract agents and each agent
j ∈ [1..m] adjusts its αj in order to achieve the global outcome
maximization. A Markov game is defined by a set of states S
describing the status of impression allocation, a set of observa-
tions Oj indicating the observed information of the current state
from the perspective of agent j, a set of actions A1, ...,Am
where Aj ⊆ R represents the action space of agent j. At each
time step t, each agent j observes oj,t and then delivers an
action δj,t to adjust αj,t according to its policy πj : Oj 7→ Aj .
Then, the state transfers to a next state according to the state
transition dynamics T : S×A1×A2×...×Am 7→ Ω(S) where
Ω(S) is a collection of probability distributions over S. The
environment returns an immediate reward to each agent based
on a function of current state and all the agents’ actions as
rj,t : S ×A1×A2× ...×Am 7→ R. The goal of each agent is
to maximize its the total expected return Rj =

∑T
t=1 γ

t−1rj,t
where γ is a discount factor and T is the time horizon. The
detailed information can be found as below:
Oj : The observation oj,t of agent j at time step t should in

principle reflect the contract status, which mainly includes
the following three parts: first, the time information, which
tells the agent the current stage of the impression alloca-
tion process; second, the contract information, including
demand fulfillment status and speed of contract j; third,
the context information of other contracts’ fulfillment
status, which facilitates the global optimization.

Aj : At time step t, each agent j delivers action δj,t ∈ Aj
to modify αj,t to αj,t+1, typically taking the form of
αj,t+1 = min{αj,t + δj,t · pj , pj}, where pj is the unit
under-delivery penalty of contract j.

rj,t: Since the goal of impression allocation is to maximize
the outcome presented in Section II-A, the reward is

defined as the resulting outcome of the auction between
time step t and t + 1. Specifically, let the impression
set between time step t and t + 1 be I, then rj,t =
Σk(1−Σjxkj)bk2+Σkjλjxkjqkj−1t=TΣjpjyj , k ∈ I .

T : We apply a model-free RL method to solve the impression
allocation problem, so that the transition dynamics could
not be explicitly modeled.

γ: The reward discount factor γ is set to 1 since the
optimization goal of the impression allocation problem is
to maximize the return regardless of time.

Usually, the optimal policies in a Markov game are difficult
to learn due to some common challenges such as high model
complexity, unstable return (i.e., ΣjΣtrj,t) caused by joint
agents’ updating in a sequential decision process. Fortunately,
as for our problem, there is an important property that can
simplify the policy searching process. Next, we first present this
important property and then show the details of our method.

B. The Sub-problem in Impression Allocation

In Theorem 1, we derive the optimal bidding function
for the impression allocation problem. At each step, with
contracts partially fulfilled, agents would face a sub-problem
of impression allocation and are required to take actions based
on the current state. We prove that the sub-problem can be
formulated in the same form as (LP1) and the optimal action
for each agent j is shown by the following Theorem 2.

Theorem 2. For a sub-problem at each time step t, the optimal
action sequence for each agent j ∈ [1, ..,m] is to modify its
current αj,t to the optimal α∗j,t, and keep it fixed for all its
following time steps.

Proof. At any time step t, since contracts may have already
won several impressions, the demand of contracts for the
subsequent impressions are refreshed. Specifically, let ej be
the impression that contract j has won, I be the remaining
impression set at time step t. For impression i ∈ I, the
remaining demand of contract j can be updated as d′j = dj−ej ,
the impression under-delivery amount of contract j as y′j =
d′j−Σijxij . Then, the components of outcome can be updated
as: R′GC = Σjcjd

′
j − Σjpjy

′
j , R

′
RTB = Σi(1 − Σjxij)bi2,

and Q′GC = Σijλjxijqij . Therefore, the sub-problem can be
formulated as the following linear programming, which shares
the same form of (LP1):

maximize
xij ,y′j

R′GC +R′RTB +Q′GC

s.t. Σijxij + yj = d′j , ∀j, i ∈ I,
Σjxij ≤ 1, ∀i ∈ I,
xij ≥ 0, ∀j, i ∈ I,
yj ≥ 0, ∀j.

(LP2)

Similarly, the optimal bid can be derived as b′ij = λj qij +
α∗j,t, where α∗j,t is the optimal parameter of sub-problem at time
step t. Thus, for the sub-problem of impression allocation, the
optimal action is to adjust the current parameter αj,t of contract



j to α∗j,t. After taking the optimal action, for any contract j,
the αj,t would be the optimal one. Thus, the following optimal
actions would be keeping the parameters fixed until the end of
the episode.

C. Multi-agent Reinforcement Learning to Impression Alloca-
tion (MARLIA)

Based on what has be introduced above, in this section,
we present our policy searching method, named Multi-Agent
Reinforcement Learning to Impression Allocation (MARLIA).
Firstly, we apply an actor-critic reinforcement learning (RL)
model [15] as the implementation of our method for its
simplicity4. Secondly, to enhance the scalability and reduce
the model complexity, we let all agents share a same model
and be differentiated through context information included
in each agent observation (e.g., other contracts’ fulfillment
status). Thirdly, also most importantly, based on Theorem 2,
the learning processes of actors and critics are simplified, which
can be interpreted from the following two aspects:
• At time step t, the mission of each agent j is to make a

single optimal decision which adjusts current αj,t to α∗j,t
and keep it fixed for the following time steps rather than
sequentially adjusting it, which significantly reduces the
learning difficulty.

• The learning process of the critic Q is simplified as
minimizing the difference between v and Q(oj,t, δj,t) where
v is exactly the outcome produced by the fixed parameters
αk,t, k ∈ [1, ..,m], over the remaining impression set.
Compared with common practice of updating Q(oj,t, δj,t)
towards rj,t + γQ(oj,t+1, πj(oj,t+1)) (more details see
temporal-difference method [15]), v more clearly indicates
whether the action δj,t would leads to a better final outcome.
This makes the learning process of Q easier and, in turn, Q
will boost the policy convergence.
To be more concrete, MARLIA is presented in Algo. 1.

IV. EXPERIMENTAL EVALUATION

In this section, we first introduce the experimental setup,
then we compare MARLIA with existing methods and show
its advantages in outcome maximization, last we investigated
the converging efficiency and scalability of MARLIA, which
is critical in real-world industrial application.

A. Experimental Setup

1) Dataset: The experiment datasets are from a large
advertising platform. The datasets consists of two publishers,
and for each publisher, the ad serving logs are provided on
May 17th-19th and June 17th-19th in 2020, and the contract
demands are provided on May 18th-19th and June 18th-19th
in 2020. We make each adjacent days of data as a training and
testing pair, i.e., the previous day of impression data is used for
training under the demand of the latter day, and the latter day of
impression data with its demand is used for testing. Therefore
there are 4 training sets and 4 test sets for each publisher.

4Without loss of generality, other actor-critic RL models also can be applied
in our scenario.

ALGORITHM 1: MARLIA
1 Initialize a random process N for action exploration;
2 Initialize replay memory M with capacity N ;
3 Initialize policy πθ with weights θ;
4 Initialize state action value function Qη with weights η;
5 Set batch size to BS;
6 while not convergent do
7 Set αj,1 = α∗j,1 +N1;
8 Each agent j bids with αj,1 via Eq. (1) between

time step 1 and time step 2;
9 Calculate reward rj,1;

10 for t = 2 to T do
11 for agent j = 1 to m do
12 Observe state oj,t;
13 Get action δj,t = πθ(oj,t)+Nt ;
14 Set αj,t = min{αj,t−1 + δj,t · pj , pj};
15 end
16 Calculate reward rj,t;
17 Set v = rj,t;
18 for t′ = t+ 1 to T do
19 Impression allocation with αj,t via Eq. (1);
20 Calculate reward rj,t′ ;
21 Set v = v + rj,t′ ;
22 end
23 Store (oj,t, δj,t, v) in M;
24 Sample BS (ok, δk, vk) tuples from M;
25 Update Q by minimizing the loss

L(η) = 1
BS Σk(vk −Qη(ok, δk))2 ;

26 Update policy using sampled policy gradient:

27 ∇θJ ≈
1

BS
∑
k∇θπ(ok)∇δQπ(ok, δ)|δ=π(ok);

28 end
29 end

In total, the data contains more than 36 millions impressions
with the detailed information, including time, market price and
predicted click-through rate5 for each contract bidder.

2) Evaluation Metrics: The goal of impression allocation
is to maximize the overall outcome. Based on the optimal
impression allocation formulated by (LP1), the theoretically
optimal outcome on the testing dataset can be obtained, denoted
by R∗. Let R be the actual outcome of the applied policy. The
ratio between R and R∗, i.e., R/R∗, is a simple and effective
metric to evaluate the policy. For MARL algorithms, the
convergence efficiency is also critical for practical effectiveness.
It can be measured by converging time.

3) Implementation Details: The agents take action in every
15 minutes, so the T in Algo. 1 is 96. We use two fully
connected neural network, each of them with 2 hidden layers
and 32 nodes per layer, to implement the policy πθ and state
action value function Qη, respectively. The mini-batch size
is set to 32 and the replay memory size is set to 100 000.

5Without loss of generality, we consider the click-through rate as impression
quality.



The action range is set to [−0.1, 0.1] and the action noise is
implemented by a normal distribution generator with µ = 0
and σ = 0.05. We set the learning rate of actor and critic to
1× 10−5 and 1× 10−3 respectively. In our case, the model
selection criterion in training process is choosing the best
R/R∗ model with initial α∗j s from the day before the testing
date within 6 hours training time. For practical considerations,
for each day, we randomly sample 10% of the data for model
training, and use GNU Linear Programming Kit (GLPK) to
solve the dual problem of (LP1) to estimate the R∗ and α∗j .
In the evaluation period, we use 100% of the data for testing.
All experiments are carried on a Macbook Pro with 2.6 GHz
Intel Core i7 and 16 GB 2667 MHz DDR4.

4) Compared Methods:
1) Fixed Parameter (FP): A method that fixes the αj as the

α∗j from training data for each contract, and delivers bids
according to Eq. (1) in testing period.

2) MSVV: A classical algorithm for online ad allocation [16].
We set the bid for each contract as (pj+λjqij) ·(1−exj−1),
where xj is the the fraction of the bidder’s budget that has
been spent so far, and the bid of RTB as bi2 · (1− e−1).

3) PID Controller (PID): A widely used technique in display
advertising [17] to fulfill contracts by even pacing. We adopt
this technique to modify αj in Eq. (1) to satisfy contracts’
demand.

4) MARLIA: The MARL to Impression Allocation method
we proposed in this paper.

B. Evaluation Results

We conduct experiments to compare the performance of
FP, MSVV, PID and MARLIA. The initial parameter αj,1
for Eq. (1) is set as the optimal one of the training data. As
stated in Section 1, due to the unstable incoming traffic, the
impression volume and market price in the testing data deviate
from that of training data. To present the performances of
different methods under different traffic patterns, the statistical
information is summarized in Table I, and the experimental
results based on testing dataset are summarized in Table II.
We can see that MARLIA outperforms all methods, and the
averaged improvements over FP, MSVV and PID (for publisher
1 / for publisher 2) are 5.8%/7.2%, 10.8%/8.8% and 3.1%/4.0%
respectively.

To further investigate the behaviors of all methods, we go
deep into the detailed results of all methods of publisher 1 on
2020/05/19. As shown by Fig. 2a, we illustrate the RGC/R∗,
RRTB/R

∗, QGC/R∗ and R/R∗ of all methods.
• FP: FP is a simple strategy and may achieve good results

when the environments between training and testing datasets
is similar. However, when the bidding competition becomes
fiercer or the impression volume has a shortage risk, FP
would still bid with the fixed αj,t at any time step t, which
usually makes the bid too low to win sufficient impressions
and results in large under-delivery penalty. It can be observed
in Fig. 2a, given the impression difference is -3.5% and the
market price difference is 4.3%, although the RRTB and

RGC RRTB QGC outcome
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
FP
MSVV
PID
MARLIA

(a)

(b)

Fig. 2: (a) The detailed results of all methods of publisher 1 on
2020/05/19, including RGC/R

∗, RRTB/R
∗, QGC/R

∗ and R/R∗.
(b) The training process of MARLIA on different datasets of Publisher
1.

QGC is slightly larger than MARLIA, the severe shortage
of RGC affects the final outcome.

• MSVV: MSVV takes the RTB revenue into consideration
by trading off between the outcome from contracts and that
from RTB for each impression arrival. However, since it is
unaware of the subsequent impression distribution, it may
allocate impressions to contract in early phase of the whole
allocation process, resulting in great loss of future QGC .
Different from MSVV, MARLIA learns from the training
data to make better decisions to maximize the overall outcome.
It can be observed in Fig. 2a, due to such defect, MSVV
gains low QGC compared with MARLIA and finally results
in low outcome.

• PID: PID tries to adjust αj,t to pace impression acquisition,
however, it has two drawbacks in our application. First,
it is critical for a PID strategy to obtain a proper target,
which is the target impression volume to be allocated to the
contract at each step. In practice, it is tricky and needs expert
knowledge to be continuously optimized. Second, different
from MARLIA, PID strategy is usually designed for an
individual agent. It is hard to consider global impression
allocation between different agents or balance RTB revenue



TABLE I: The datasets statistics. The difference means the daily relative change between adjacent days.

publisher1 publisher2

Dates Impressions Contracts Demands Impression Volume
Difference

Market Price
Difference Impressions Contracts Demands Impression Volume

Difference
Market Price

Difference

05/17 4.34M - - - - 2.07M - - - -
05/18 4.20M 45 1.62M -3.5% 4.8% 2.01M 31 1.00M -2.8% 4.0%
05/19 4.05M 49 1.72M -3.5% 4.3% 1.95M 30 1.01M -3.4% 3.0%
06/17 4.14M - - - - 2.07M - - - -
06/18 3.90M 124 2.06M -5.7% 4.9% 1.89M 72 1.20M -5.2% 4.4%
06/19 3.91M 126 2.21M 0.1% 5.0% 1.91M 79 1.41M 1.2% 5.4%

TABLE II: The R/R∗ on 8 testing datasets of FP, MSVV, PID and
MARLIA.

publisher1 publisher2

Dates FP MSVV PID MARLIA FP MSVV PID MARLIA

05/18 0.851 0.866 0.938 0.945 0.846 0.883 0.932 0.954
05/19 0.909 0.849 0.923 0.949 0.928 0.878 0.929 0.953
06/18 0.902 0.863 0.893 0.951 0.870 0.874 0.885 0.950
06/19 0.950 0.871 0.949 0.974 0.919 0.878 0.926 0.964

Average 0.903 0.862 0.926 0.955 0.891 0.878 0.918 0.955

and contract fulfillment. As shown by Fig. 2a, PID tries
to fulfill every contract and results in relatively low RRTB ,
which affects its final outcome.

• MARLIA: Compared with the above methods, MARLIA
learns an αj,t adjustment policy based on the current state
to maximize the future outcome. It can be found in Fig. 2a
that MARLIA does a good job in balancing different part of
outcome.

C. Convergence Efficiency and Scalability

In application, FP, MSVV and PID have little training cost,
while complicated methods such as MARL ones commonly
suffered from convergence efficiency and scalability challenges.
Besides, for an impression allocation task, it is of great necessity
to accomplish the training process in an acceptable period of
time. In order to show the converging efficiency and scalability
of MARL, the training process of MARLIA on the datasets
of publisher 1 are illustrated by Fig. 2b. It can be seen that
MARLIA will converge to a satisfying R/R∗ (e.g. greater than
0.9) in 1200 episodes (' 6 hours on a laptop) regardless of
the contract number. Thus the proposed MARLIA is scalable
and applicable in industrial scenario.

V. RELATED WORK

Impression allocation for outcome maximization is one of
the most important issues to monetize traffic for a publisher.
Some algorithms have been proposed to help publishers allocate
impressions to contracts without consideration of RTB [18],
[19], [20]. [7] is the first work considering contracts as
bidders to compete with RTB, but the goal is to maximize
the representativeness of contract impressions. [2] proposes a
revenue maximization strategy based on allocating and pricing
the future contract impressions, which does not involve RTB
and the efficiency is not optimized. To maximize the outcome,
[6] tries to learn a stochastic policy to deliver reserve price

for each impression. However, for a repeated auction model,
in any equilibrium, reserve price will make bidders in an ad
exchange tend to shade their bids (not incentive compatible)
[21]. Besides, the contract first strategy applied in [6] has
also been proved not optimal in our experimental evaluations.
Recently, a new strategy maximizing the total revenue is
proposed in [8]. However, the challenge of unstable traffic
patterns is not discussed.

Impression allocation for outcome maximization is one of the
most important issues to monetize traffic for a publisher. Some
algorithms have been proposed to help publishers allocate
impressions to contracts without consideration of RTB[18],
[19], [20]. As RTB becomes increasingly important, how to
maximize the profit considering both RTB and guaranteed
contracts starts to be an open question. [7] was the first work
considering contracts as bidders to compete with RTB: the
publisher is regarded as a bidder and the impression would be
allocated to the bidder with the highest bidd price. However, the
goal of [7] was to maximize the representativeness of contract
impressions from the advertisers’ perspective. [2] proposed
a revenue maximization strategy based on allocating and
pricing the future contract impressions, but the allocation was
determined in advance rather than through RTB. To maximize
the outcome, [6] tries to learn a stochastic policy to deliver
reserve price for each impression. However, it is known that,
for a repeated auction model, in any equilibrium, reserve price
will make bidders in an ad exchange tend to shade their bids
(not incentive compatible) [21]. Besides, the contract first
strategy applied in [6] has also been proved not optimal in our
experimental evaluations. Recently, a new strategy maximizing
the total revenue was proposed in [8]. However, the challenge
of unstable traffic patterns was not discussed or addressed.

Reinforcement learning (RL) has been applied to solve a
wide range of problems. Specifically in the computational
advertising domain [22], [23], [24], RL has been leveraged to
optimize bidding strategies [25], [13]. Traditional reinforcement
learning approaches achieved a huge success in single agent
settings, but delivered poor performance in MARL [26]. One
issue is that simply considering other agents as a part of the
environment often breaks the convergence guarantee and makes
the learning process unstable [27]. Nash equilibrium algorithms
have been proposed to address this problem [28]. However, the
computational complexity of directly solving Nash equilibrium
confines such algorithms within handful agents and prohibits
them from real-world applications. Following this direction,



[29] tries to improve the scalability via leveraging action
information from neighboring agents, while the concept of
neighborhood is hard to be defined in the advertising context.

VI. CONCLUSION

In online display advertising, guaranteed contracts and real-
time bidding (RTB) are two major ways to sell impressions
for a publisher, especially for those large publishers with
in-house RTB. In this paper, we proposed a strategy to
maximize the outcome of a publisher by allocating impressions
between guaranteed contracts and RTB. We proposed the
outcome maximization strategy by deriving the optimal bidding
function when contracts are treated as bidders. Meanwhile,
the impression allocation strategy can also keep the incen-
tive compatibility of RTB, making truthful bidding still the
dominant strategy. In order to implement the strategy with
the practical challenges such as unstable traffic patterns, we
proposed an efficient MARL method, MARLIA, to adjust the
critical parameter αj for contract j. Meanwhile, based on
the important property of the impression allocation problem,
the learning efficiency is significantly boosted, and making
the deploy of our method in industrial scenario is feasible.
Experimental evaluations on large-scale real-world datasets
demonstrate that MARLIA outperforms other baselines in
outcome maximization. Meanwhile, empirical studies also show
that MARLIA converges quickly regardless of the contract
amount, which is important in industrial application.
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