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Abstract—Considerable research effort has been guided to-
wards algorithmic fairness but real-world adoption of bias
reduction techniques is still scarce. Existing methods are either
metric- or model-specific, require access to sensitive attributes at
inference time, or carry high development or deployment costs.
This work explores the unfairness that emerges when optimizing
ML models solely for predictive performance, and how to mitigate
it with a simple and easily deployed intervention: fairness-aware
hyperparameter optimization (HO). We propose and evaluate
fairness-aware variants of three popular HO algorithms: Fair
Random Search, Fair TPE, and Fairband. We validate our
approach on a real-world bank account opening fraud case-
study, as well as on three datasets from the fairness literature.
Results show that, without extra training cost, it is feasible to find
models with 111% mean fairness increase and just 6% decrease
in performance when compared with fairness-blind HO.

Index Terms—fairness, hyperparameter, optimization

I. INTRODUCTION

Algorithmic bias arises when a Machine Learning (ML)
model displays disparate error rates across sub-groups of the
population, hurting individuals based on ethnicity, age, gender,
or any other sensitive attribute [1]]-[3]]. This has several causes,
from historical biases encoded in the data, to misrepresented
populations in data samples, noisy labels, development deci-
sions (e.g., missing values imputation), or simply the nature
of learning under severe class-imbalance [4]].

Despite growing awareness, as of today, most companies are
unsure of the cost implications of tackling algorithmic bias,
not only from model performance degradation but also from
extra development costs (both human and computational). The
current ML landscape lacks practical methodologies and tools
to seamlessly integrate fairness objectives and bias reduction
techniques in existing real-world ML pipelines [5]. As a
consequence, treating fairness as a primary objective when
developing ML systems is not yet standard practice.

Existing bias reduction techniques only target specific stages
of the ML pipeline (e.g., data sampling, model training), and
often only apply to a single fairness definition or family of ML
models [6], [7]], limiting their adoption in practice. Moreover,
the absence of major breakthroughs in algorithmic fairness
suggests that an exhaustive search over all models and bias
reduction techniques is necessary to find optimal trade-offs.
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Fig. 1: Fairness-performance Pareto frontier (blue line) on the
in-house Account Opening Fraud dataset (left), the Donors
Choose dataset (middle), and the COMPAS dataset (right).

This work explores, in the context of a large-scale real-
world case-study of account opening fraud, the unfairness that
emerges from traditional ML model development, and how to
mitigate it with a simple and easily deployed intervention:
fairness-aware HO. By making the hyperparameter search
fairness-aware, we enable ML practitioners to adapt pre-
existing business operations to accommodate fairness with
controllable extra cost and little implementation friction.

Figure shows the fairness-performance Pareto frontiers [8]]
obtained from training 10K different hyperparameter config-
urations of 5 ML algorithms on each of three real-world
datasets. We observe a large spread over the fairness met-
ric at any level of predictive performance, indicating it is
clearly possible to select fairer models without a significant
performance decrease. Based on this insight, we extend three
popular hyperparameter tuners (Random Search, TPE [9]] and
Hyperband [10]) to optimize for both predictive performance
and fairness through a weighted scalarization. As budget is
often limited in real-world scenarios, we give special focus to
Fairband (our extension to Hyperband), and propose a heuristic
to automatically find an adequate fairness-performance trade-
off using this tuner (dubbed FB-auto).

We apply our approach on a real-world bank account
opening fraud detection problem. When developing ML mod-
els to detect fraud, banks optimize for a single metric of
predictive performance (e.g., fraud recall). However, as shown
in our experiments, the models with highest fraud recall have
disparate false positive rates (FPR) on specific groups of
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applicants. In this context, a false positive is a legitimate
individual that was denied access to a bank account and its
line of credit, an essential service for economic well being and
social mobility [[11]. Therefore, we consider a model to be fair
if the probability of a legitimate applicant being denied access
to a bank account is independent from their membership to a
protected group (e.g., FPR parity across age groups).

By applying our fairness-aware HO strategies we were able
to find models with 111% improved fairness and just 6% drop
in fraud recall when compared to standard HO.

The summary of our contributions are as follows:

o An approach for promoting model fairness that can be
easily plugged into current ML pipelines with no extra
development or computational cost.

e A set of competitive fairness-aware HO algorithms for
multi-objective optimization (MOOQO) of the fairness-
performance trade-off that are agnostic to both the ex-
plored hyperparameter space and the objective metrics.

o A heuristic to automatically set the fairness-performance
trade-off parameter.

o Competitive results on a real-world fraud detection case-
study, as well as on three public datasets.

II. RELATED WORK

Algorithmic fairness research work can be broadly divided
into three families: pre-processing, in-processing, and post-
processing.

Pre-processing methods aim to improve fairness before the
model is trained, by modifying the input data such that it no
longer exhibits biases. The objective is often formulated as
learning new representations that are invariant to changes in
specified factors (e.g., membership in a protected group) [12]-
[15]. However, by acting on the data itself, and in the begin-
ning of the ML pipeline, fairness may not be guaranteed on
the end model that will be used in the real-world.

In-processing methods alter the model’s learning process
in order to penalize unfair decision-making. The objective is
often formulated as optimizing predictive performance under
fairness constraints (or optimizing fairness under predictive
performance constraints) [6]], [7]. Another approach is op-
timizing for complex predictive performance metrics which
include some fairness notion [[16], akin to regularization.
However, these approaches are highly model- and metric-
dependent, and even non-existent for numerous state-of-the-art
ML algorithms.

Post-processing methods aim to adjust an already trained
classifier such that fairness constraints are fulfilled. This is
usually done by calibrating the decision threshold [[17], [18].
However, one may argue that, by acting on the model after
it was learned, this process is inherently sub-optimal [19].
It is akin to knowingly learning a biased model and then
correcting these biases, instead of learning an unbiased model
from the start. Moreover, these approaches require production-
time access to sensitive features, forcing companies to ask all
clients their ethnicity, religion, gender, or any other feature for
fairness criteria.

Although a largely unexplored direction, algorithmic fair-
ness can also be tackled from an HO perspective.

Random Search (RS), one of the simplest and most flex-
ible HO methods, iteratively selects combinations of random
hyperparameter values and trains them on the full training set
until the allocated budget is exhausted. Although simple in na-
ture, RS has several advantages that keep it relevant nowadays,
including having no assumptions on the hyperparameter space,
on the objective function, or even on the allocated budget (e.g.,
it may run indefinitely). RS is known to generally perform
better than grid search [20]] and to converge to the optimum
as budget increases.

Bayesian Optimization (BO) is a state-of-the-art HO ap-
proach that consists in placing a prior (usually a Gaussian
process (GP)) over the objective function to capture beliefs
about its behavior [21]]. Previous work has extended BO to
constrained optimization [22], [23]], in which the goal is to op-
timize a given metric subject to any number of data-dependent
constraints. Recently, Perrone et al. [24] applied this approach
to the fairness setting by weighing the acquisition function by
the likelihood of fulfilling the fairness constraints. However,
constrained optimization approaches inherently target a single
fairness-performance trade-off (which itself may not be fea-
sible), leaving practitioners unaware of the possible fairness
choices and their performance costs. Additionally, vanilla BO
(based on GPs) cannot handle categorical hyperparameters,
scales cubically in the number of data points, and performs
poorly on high dimensional or conditional search spaces [25].

The Tree-structured Parzen Estimator (TPE) [9] is a state-
of-the-art BO algorithm that uses Parzen windows [26] to
model the density of hyperparameter choices below and
above some goal value, y*, chosen to be some quantile of
the observed goals. As the Parzen estimators follow a tree-
structure of conditional spaces, TPE shows good performance
on high-dimensions and hierarchically-defined hyperparame-
ters. Nonetheless, BO has been shown to lag behind bandit-
based methods when under tight budget constraints [10], [27].

Successive Halving (SH) [28]], [29] casts the task of HO
as identifying the best arm in a multi-armed bandit setting.
Given a budget for each iteration, B;, SH (1) uniformly
allocates it to a set of arms (hyperparameter configurations),
(2) evaluates their performance, (3) discards the worst half, and
repeats from step 1 until a single arm remains. Thereby, the
budget for each surviving configuration is effectively doubled
at each iteration. SH’s key insight stems from extrapolating the
rank of configurations’ performances from their rankings on
diminished budgets (low-fidelity approximations). However,
SH itself carries two parameters for which there is no clear
choice of values: the total budget B and the number of
sampled configurations n. We must consider the trade-off
between evaluating a higher number of configurations (higher
n) on an averaged lower budget per configuration (B/n), or
evaluating a lower number of configurations (lower n) on an
averaged higher budget. The higher the average budget, the
more accurate the extrapolated rankings will be, but a lower
number of configurations will be explored (and vice-versa).



TABLE I: Number of sampled configurations, n;, and budget
per configuration, r;, per HB iteration, ¢, on each bracket, s
(for n = 3, R = 100).
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SH’s performance has been shown to compare favorably to
several competing bandit strategies from the literature [30].

Hyperband (HB) [[10] addresses this “n versus B/n” trade-
off by splitting the total budget into different instances of
the trade-off, then calling SH as a subroutine for each one.
This is essentially a grid search over feasible values of n. HB
takes two parameters R, the maximum amount of resources
allocated to any single configuration; and 7, the ratio of
budget increase in each SH round (n = 2 for the original
SH). Each SH run, dubbed a bracket, is parameterized by
the number of sampled configurations n, and the minimum
resource units allocated to any configuration 7. The algorithm
features an outer loop that iterates over possible combinations
of (n,r), and an inner loop that executes SH with the aforemen-
tioned parameters fixed. The outer loop is executed Sy,q, + 1
times, Smar = [logy(R)], and the inner loop (SH) takes
approximately B resources. Thus, the execution of Hyperband
takes a budget of (S,,q. + 1)B. Table [l displays the number
of configurations and budget per configuration within each
bracket when considering 7 = 3 and R = 100.

HO is simultaneously model independent, metric indepen-
dent, and already an intrinsic component in existing real-
world ML pipelines. On the other hand, current bias reduction
methods either (1) act on the input data and may not be able
to guarantee fairness on the end model, (2) act on the model’s
training phase and can only be applied to specific model types
and fairness metrics, or (3) act on the model’s predictions
thus requiring test-time access to sensitive attributes and being
limited to act on a sub-optimal space [19]. Therefore, by intro-
ducing fairness objectives on the HO phase, we aim to help
real-world practitioners to find optimal fairness-performance
trade-offs in an easily pluggable manner, irrespective of the
underlying model type or bias reduction method.

III. APPROACH

Persuading a large audience of ML practitioners and for-
profit organizations to adopt fairness considerations into their
ML pipeline requires minimizing implementation attrition. We
address this issue through fairness-aware HO. By acting on
the algorithms’ hyperparameter space, we promote fairness
without fundamentally changing the pipeline (i.e., the set of
operators used to generate the model) and without changing
the methods themselves (i.e., standard off-the-shelf learning
algorithms and pre-processing methods are used), providing

a flexible and off-the-shelf approach that can promptly be
integrated into real-world ML standard practices.

As a case in point, our use-case is of a fintech company
that leverages ML solutions to prevent financial fraud. The
deployment of an ML model to a client is preceded by a heavy
model selection stage where hundreds of models are trained
and evaluated under some predetermined performance metric,
defined according to business requirements (e.g., maximize
recall at 3% FPR). It is often the case that clients also
demand for specific state-of-the-art models including deep
learning or boosting-based models [31]. Accommodating fairer
practices in such a complex setting poses many implemen-
tation challenges, including the integration of model-specific
bias mitigation methods (which may not always comply with
business demands) and guaranteeing low-latency requirements
are met after model deployment (bias mitigation techniques
often incur extra train and evaluation time). Fairness-aware
HO emerges as a seamless and flexible approach that allows
decision-makers to have a finer control over which models
fulfil the business requirements (both in terms of fairness,
predictive performance, and latency requirements).

A. Optimizing for Fairness

The joint maximization of predictive performance and fair-
ness is an MOO problem, defined as:

argmax G(A) = (p(A), ¢()), (D
PYIN

where A\ is a hyperparameter configuration drawn from the
hyperparameter space A, p: A +— [0,1] is the predictive
performance metric, and ¢: A — [0, 1] is the fairness metric.
In this context, there is no single optimal solution, but a set
of Pareto optimal solutions. A solution A\* is Pareto optimal if
no other solution improves on an objective without sacrificing
another objective. The set of all Pareto optimal solutions is
dubbed the Pareto frontier []].

MOQO approaches generally rely on either Pareto-dominance
methods or decomposition methods [32f]. The former uses
Pareto-dominance relations to impose a partial ordering in the
population of solutions. However, the number of incomparable
solutions can quickly dominate the size of the population (the
number of sampled hyperparameter configurations). This is
further exacerbated for high-dimensional problems [33], [34].
On the other hand, decomposition-based methods employ a
scalarizing function to reduce all objectives to a single scalar
output, inducing a total ordering over all possible solutions. A
popular choice is the weighed [,-norm:

k »
i=1

where the weights vector w induces an a priori preference over
the objectives, H(A) = (h1(A),...,hx(N)), and h; : A —
[0,1].

MOQO is notoriously arduous to apply at scale. However,
we can draw key insights from observing that the Pareto

arg max [ HOV)|, =
AeA



frontier geometry in this context is most often convex (visible
in Figure [I). This simplification of the original problem
enables us to employ a decomposition-based method, known to
converge faster, and to effectively target solutions on the Pareto
frontier. All Pareto optimal solutions of a convex problem
can be obtained by varying the weights vector w. Moreover,
Giagkiozis and Fleming [33|] demonstrate that the use of [,-
norms with a high p value leads to slower convergence, with a
steep decrease in the likelihood of finding improved solutions
as the search progresses. As such, we employ the [;-norm,
carrying the same guarantees as using p > 1 for convex
problems [32]. Our optimization metric g is defined as:

g =GN, - ©)

As we optimize only two goals, we can further define, without
loss of generality:

a=w; =1—ws, (€]
gA) =a-p(A) + (1 —a) ¢(A), (5)

where wy = « is the relative importance of predictive perfor-
mance, and ws = 1 — «v is the relative importance of fairness.
Our task is hence reduced to finding the hyperparameter
configuration A from a pre-defined hyperparameter search
space A that maximizes the scalar objective function g(\):

argmax g(A). (6)
AEA

From an implementation standpoint, all models are evalu-
ated in both fairness and predictive performance metrics on
a holdout validation set. Computing fairness does not incur
significant extra computational cost, as it is based on the
same predictions used to estimate predictive performance.
Additionally, fairness off-the-shelf assessment libraries are
readily available [35].

In order to find all Pareto optimal solutions we must vary
the weighting parameter o € [0, 1]. Nonetheless, o may
indicate some predefined objective preference. For instance, in
a punitive ML setting, an organization may decide it is willing
to spend x$ per each 1 less false positive in the underprivileged
clas materializing an explicit fairness-performance trade-
off. If no specific trade-off arises from domain knowledge
beforehand, then the set of all Pareto optimal models should
be displayed, and the decision on which trade-off to employ
should be left to the model’s stakeholders.

B. Hyperparameter Tuners

As seen in Section the best-suited choice of hyperpa-
rameter tuner depends on the task at hand. RS is the most
flexible, carries the least assumptions on the optimization
metric, and converges to the optimum as budget increases. TPE
improves convergence speed by attempting to sample only
useful regions of hyperparameter space. Bandit-based methods
(e.g., Successive Halving, Hyperband) are resource-aware, and

!In a punitive setting, the advised fairness metric is the ratio of group-wise
FPRs, also known as predictive equality [35], [36].

thus have strong anytime performance, often being the most
efficient when under budget constraints.

In this work, we propose to extend three popular hyper-
parameter tuners to optimize for fairness through a weighted
scalarization controlled by an o parameter (default v = 0.5).
We propose fairness-aware variants for RS, TPE, and Hyper-
band, respectively dubbed FairRS, FairTPE, and Fairband.
All of these variants can be easily incorporated in existing
ML pipelines at a negligible cost. As budget (be it time or
computational) is seldom unrestricted in real-world projects,
we give special focus to Fairband.

Fairband inherently benefits from resource-aware methods’
advantages: efficient resource usage, trivial parallelization, as
well as being both model- and metric-agnostic. Furthermore,
bandit-based methods are highly exploratory and therefore
prone to inspect broader regions of the hyperparameter space.
For instance, in our experiments, HB evaluates approximately
six times more configurations than RS with the same budge

By employing a weighted scalarization technique in a
bandit-based setting, we rely on the hypothesis that if model
m, represents a better fairness-performance trade-off than
model m; with a short training budget, then this distinction is
likely to be maintained with a higher training budget. Thus,
by selecting models based on both fairness and predictive
performance, we are guiding the search towards fairer and
better performing models. These low-fidelity estimates of
future metrics on lower budget sizes is what drives HB’s and
SH’s efficiency in hyperparameter search.

C. Fairband and Dynamic o

Aiming for a complete out-of-the-box experience without
the need for specific domain knowledge, we further propose
a heuristic for dynamically setting the value of «. With this
heuristic our objectives are two-fold: first, we eliminate a
hyperparameter that would need specific domain knowledge
to be set; second, we promote a wider exploration of the
Pareto frontier and a larger variability within the sampled
hyperparameter configurations. We dub the variant of Fairband
that employs this heuristic as FB-auto. We note this is not
suited for model-based search methods (e.g., BO, TPE), as
these rely on a stable optimization metric.

Assuming that o values can indeed guide the search towards
different regions of the fairness-performance trade-off (which
we will empirically see to be true), our aim is to efficiently
explore the Pareto frontier in order to find a comprehensive
selection of balanced trade-offs. As such, if our currently
explored trade-offs correspond to high performance but low
fairness, we want to guide the search towards regions of
higher fairness (by choosing a lower «). Conversely, if our
currently explored trade-offs correspond to high fairness but
low performance, we want to guide the search towards regions
of higher performance (by choosing a higher «).

To achieve the aforementioned balance we need a proxy-
metric of our target direction of change. This direction is

2With the parameters used on the HB seminal paper [[10], HB evaluates 128
configurations versus 21 configurations evaluated by RS on equal budget.



given by the difference, J, between the expected model fair-
ness, Exep[¢(A)] = ¢, and the expected model predictive
performance, Excp[p(N)] = 7

625_5766[_1a1]' (7N

Expected values are measured as the mean of respective metric
over the sampled hyperparameter configurations, D C A.
Hence, when this difference is negative (5 < p), the
models we sampled thus far tend towards better-performing but
unfairer regions of the hyperparameter space. Consequently,
we want to decrease « to direct our search towards fairer
configurations. Conversely, when this difference is positive
(o > D), we want to direct our search towards better-
performing configurations, increasing .. We want this change
in « to be proportional to 6 by some constant k£ > 0, such that
da

— =k, keR" 8
a5 o BeRT, ®)

and by integrating this equation we get

a=k-d+c¢, ceR, )
with ¢ being the constant of integration. Given that § € [—1, 1]
and « € [0, 1], the only feasible values for k and ¢ are k = 0.5
and ¢ = 0.5. Thus, the computation of dynamic-« is given by:

a=05-(¢—p)+0.5. (10)

Earlier iterations of bandit-based methods are expected to
have lower predictive performance (as these are trained on
a lower budget), while later iterations are expected to have
higher predictive performance. By computing new values of
« at each Fairband iteration, we promote a dynamic balance
between these metrics as the search progresses, predictably
giving more importance to performance on earlier iterations
but continuously moving importance to fairness as perfor-
mance increases (a natural side-effect of increasing training
budget). The pseudocode for FB-auto is given by Algorithm I}

The result of the MOO task is a collection of hyperpa-
rameter configurations that represent the fairness-performance
trade-off. One could plot all available choices on the fairness-
performance space and manually pick a trade-off, according to
whichever business constraints or legislation are in place (see
examples of Figure 2a). For Fairband with static «, a target
trade-off, o, has already been chosen for the method’s search
phase, and we once again employ this trade-off for model
selection (selection-«r). For the FB-auto variant of Fairband,
aiming for an automated balance between both metrics, we
employ the same strategy for setting « as that used during
search. By doing so, the weight of each metric is pondered by
an approximation of their true range instead of blindly apply-
ing a pre-determined weight. For instance, if the distribution
of fairness is in range ¢ € [0, 0.9] but that of performance is in
range p € [0,0.3], then a balance would arguably be achieved
by weighing performance higher, as each unit increase in
performance represents a more significant relative change (this
mechanism is achieved by Equation [I0). However, at this stage

Algorithm 1 Pseudocode for FB-auto
Input: maximum budget per configuration R,
ratio of budget increase 7 (default n = 3),
metrics trade-off o (default o = auto)

Smaz Llogn (R)J > number of SH brackets
for s € {smax; Smaz — 1,...,0} do > HB loop

n < [M -ns—‘, r«R-n* > SH parameters

s+1
T <+ sample n hyperparameter configs.

for i € {0, ...,s} do > run SH
M < train configs. T' with budget r; = |rn’|
P, ® + evaluate perf. and fair. metrics for all M
if a = auto then > using dynamic «
a; 0.5 (Y, /19 - ¥, P/|P|) +05
else > using static o
Q; <
G+ {a; - Plma]l + (1 — o) - ®[ma] : mx € M}
T + keep top k = ||n-n~"| /n| from T ordered
by G
return \*, configuration with maximal intermediate goal

we can use information from all brackets, as we no longer want
to promote exploration of the search space but instead aim for
a consistent and stable model selection. Thus, for FB-auto, the
selection-« is chosen from the average fairness and predictive
performance of all sampled configurations.

IV. EXPERIMENTAL SETUP

In order to validate our proposal, we evaluate fairness-
aware HO on a search space spanning multiple ML algorithms,
model hyperparameters, and sampling hyperparameters, on a
private large-scale case-study on bank account opening fraud
dataset. For reproducibility, we further evaluate our method
on three benchmark datasets from the fairness literature:
COMPAS [1], Adult [37], and Donors Choose (DC) [38].
Details and results for literature datasets are in Appendix

In our evaluation suite, we include a selection of state-
of-the-art HO algorithms (RS, TPE, and HB), together with
our proposed fairness-aware versions (FairRS, FairTPE, and
Fairband). For fairness-aware algorithms, we employ o = 0.5.
FB-auto uses our proposed dynamic-« heuristic.

A. Account Opening Fraud Dataset

In order to validate our proposal, we evaluate fairness-aware
HO on a large-scale case-study (dubbed AOF) from real-world
bank account opening applications, spanning a 6-month data
stream with over 500K instances. In account opening fraud, a
malicious actor will attempt to open a new bank account using
a stolen or synthetic identity (or both), in order to quickly max
out its line of credit [39]]. Banks have to comply with anti-fraud
regulations, and are liable for incurred losses when fraudsters
gain illicit access to a credit line. At the same time, holding a
bank account has been deemed a basic right by the European
Union, region where our case-study takes place [11].

3Data and ML artifacts from all datasets at github.com/feedzai/fair-automl
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Our objective is to maximize fraud recall while maintaining
an FPR below 5% (a business constraint to minimize customer
churn). Fairness-aware methods have the additional objective
of equalizing FPR across age groups (preventing ageism),
also known as predictive equality [36]. This is formalized as
maximizing the ratio between the smallest group-wise FPR
and the largest group-wise FPR [35]]:

minge 4 P [Y:1|A:a,Y:O}

" ; (11)
maxge 4 P {Y: 1|A:a,Y:O}

where A is the set of sensitive attributes (in our case, age
groups). Note that a false positive is a legitimate customer that
sees her/his request unjustly denied, disturbing the customer’s
life and costing the bank potential earnings.

B. Search Space

Firstly, we consider a broad hyperparameter space as a
requirement for the effective execution of fairness-aware HO.
We consider as hyperparameters any decision in the ML
pipeline, as bias can be introduced at any stage of this
pipeline [40]]. Both performance and fairness metrics are seen
as (possibly noisy) black-box functions of these hyperparam-
eters. Thus, an effective search space includes which model
type to use, the model hyperparameters which dictate how it
is trained, and the sampling hyperparameters which dictate the
distribution and prevalence rates of training data.

In order to validate our methods, we define a comprehen-
sive hyperparameter search space, allowing us to effectively
navigate the fairness-performance trade-off. We select five
ML model types: LightGBM (LGBM) [31], Random Forest
(RF) [41], Decision Tree (DT) [42]], Logistic Regression
(LR) [43], and feed-forward neural network (NN). Sampling
a new hyperparameter configuration is seen as a hierarchical
process, where we first select the model type, and afterwards
we sample its model-specific hyperparameters. In order to
tackle the severe class imbalance on the AOF datase we
further explore three undersampling strategies: targeting 20%,
10%, and 5% positive samples.

C. HO Parameters

For resource-aware HO algorithms, we define 1 budget unit
as 1% of the training dataset. The maximum budget is defined
as R =100 (100% of the training dataset), and HB’s budget
increase ratio is defined as n = 3. With these parameters,
HB will run $y0, +1 = |log, (R)| + 1 = 5 iterations of
SH. Each bracket will use at most S,,q; + 1 = 5 training
slices of increasing size, corresponding to the following dataset
percentages: 1.23%, 3.70%, 11.1%, 33.3%, 100%.

The training slices are sampled such that smaller slices are
contained in larger slices, and such that the class-ratio is main-
tained (by stratified sampling). The number of configurations
and budget per configuration within each bracket are displayed
in Table [l

“The AOF dataset features approximately 99 negatively-labeled samples per
each positively-labeled sample, as most bank account applicants are genuine.

TABLE II: Validation and test results on the AOF dataset.

Algo. Validation Test
Pred. Perf. Fairness Pred. Perf. Fairness

FB-auto 61.7¢ 68.1¢ 64.0¢ 74.2¢
FB 50.7¢ 76.0¢ 52.6¢ 81.3¢
FairRS 60.4¢ 64.1¢ 62.6 68.6¢
FairTPE 55.7¢ 76.9¢ 59.2¢ 80.0¢
HB 68.4 32.3 68.4 35.2
RS 67.8 42.2 68.1 45.0
TPE 68.7 30.5 68.5 33.7

V. RESULTS & DISCUSSION

In this section, we present and analyze the results from
our fairness-aware HO experiments on the AOF case-study.
Results for literature datasets are in Appendix To val-
idate the methodology, we guide hyperparameter search by
evaluating all sampled configurations on the same validation
dataset, while evaluating the best-performing configuration
(that maximizes Equation [5)) on a held-out test dataset at the
end. Likewise, the model thresholds are set on the validation
dataset and then used on both the validation and test datasets,
mimicking a production environment. All studied HO methods
are given the same training budget: 2400 budget units.

Table [II] shows the validation and test results of running
traditional HO methods on the AOF dataset, together with our
proposed fairness-aware variants. Results are averaged over 15
runs, and statistical significance for fairness-aware methods is
tested against their respective fairness-blind counterparts (e.g.,
FB vs HB) with a Kolmogorov-Smirnov test [44] ({ when
p < 0.05, 4 when p < 0.01). This table comprises the training
and evaluation of over 10K unique models. Together with the
results on literature datasets we total over 40K models, one of
the largest studies of the fairness-performance trade-off yet.

The differences in predictive performance and fairness be-
tween the proposed fairness-aware methods and their fairness-
blind counterparts have strong statistical significance for all
proposed HO algorithms on validation data. This is visible
on test data as well, except for FairRS, which achieves sig-
nificant fairness improvements with statistically insignificant
performance decreases. This clear overall trend is also visible
on the literature datasets. Additionally, FB-auto shows higher
predictive performance than both FB and FairTPE (p < 0.05),
while differences in fairness are not statistically significant for
these pairs. In fact, the average fairness-performance trade-offs
are Pareto optimal for all tuners except FairRS when measured
among themselves, each representing a distinct trade-off.

Overall, FB-auto and FairTPE arguably achieve the best
fairness-performance trade-offs to be used in a production en-
vironment. FB-auto achieves an averaged 111% improvement
on the fairness metric, accompanied by a comparatively small
6% decrease on the performance metric, when compared with
HB. FairTPE achieves a 137% fairness improvement, accom-
panied by a 14% decrease in performance, when compared
with TPE. With these results we emphasize that, due to the
empirical Pareto frontier geometry, fairness increases are not
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Fig. 3: Average density of Pareto optimal models per FB-auto
iteration on the AOF dataset (iteration details on Table E[)

proportional to performance decreases: steep fairness increases
can be achieved with small performance decreases. From a
practical standpoint, models selected by FB-auto on average
approve 411 more bank accounts per month from legitimate
older-aged individuals that would have been rejected by the
HB-selected model.

A. Search Strategy

We evaluate the Fairband search strategy by analyzing
the evolution of fairness and performance simultaneously,
and whether we can effectively extend the practical Pareto
Frontier as the search progresses. That is, whether optimal
trade-offs are more likely to be found as we discard the
worst performing models and further increase the allocated
budget for top-performing models within each bracket (see
Table . We focus on FB-auto, the fairness-aware variant of
HB that automatically tunes the fairness-performance trade-

off. Figure [3] shows a heat map of the average density of
Pareto optimal models in each model-discard iteration, for
15 runs of the FB-auto algorithm, on the AOF dataset. As
the iterations progress, under-performing configurations are
pruned, and the density of Pareto optimal models steadily
increases, confirming the effectiveness of the search strategy.

B. Model Selection

Figure [2a) shows the final selected models for 15 runs
of each method on the AOF dataset. The remaining models
considered during the search are also shown, with lower
opacity and smaller size, and with equal coloring pattern as
selected models. Fairband (blues) consistently identifies good
fairness-performance trade-offs from the universe of available
configurations. Indeed, the models selected by Fairband are
consistently close to or form the Pareto frontier. On the other
hand, FairTPE seems to be able to find the best fairness-
performance trade-offs, but with less reliable results. Cru-
cially, as evident by the spread of selected models, we can
successfully navigate the fairness-performance Pareto frontier
solely by means of HO. It is important to consider that the
studied fairness-blind methods are the current standard in HO.
By unfolding the fairness dimension, we show that strong
predictive performance carries an equally strong real-world
cost in unfairness, which is hidden by traditional HO methods.

C. Optimizing Bias Reduction Hyperparameters

As an HO method, one fruitful approach to bias-mitigation
is including traditional bias reduction methods into our hy-
perparameter search space. We introduce the Exponentiated
Gradient (EG) reduction for fair classification algorithm [[7]



into our search space on the AOF dataset. EG is a state-
of-the-art bias reduction algorithm that optimizes predictive
performance subject to fairness constraints, and is compatible
with any cost-sensitive binary classifier. In our setting, we
target predictive equality (the fairness metric on AOF), and
apply EG over a Decision Tree classifier.

Figure 2b] shows a plot of the models selected by FB-auto
over 15 runs on the AOF dataset, discriminated by model type.
As can be seen, LGBM models on this particular task generally
dominate all others. Only a single model on the Pareto frontier
is not LGBM, and is indeed EG (circled in pink). However, all
models selected by FB-auto are LGBMs, and these arguably
represent the best fairness-performance trade-offs. We note
that different model types occupy distinct regions of the
fairness-performance space (visible both in Figure [2b| and ap-
pendix Figure [d), hinting that fairness may not be independent
of model type. While including bias reduction methods in
the HO search space may be useful for extending the Pareto
frontier on some tasks, using only bias reduction methods
may lead to severely worse fairness-performance trade-offs.
These results support the fact that fairness-aware HO should
be employed in all ML pipelines that aim for fair decision-
making, together with a wide selection of ML algorithms to
properly explore the fairness-performance search-space.

VI. CONCLUSION

There have been widespread reports of real-world ML
systems shown to be biased, causing serious disparate impact
across different sub-groups, unfairly affecting people based
on race, gender or age. Although the ML research community
has embraced this issue, the current landscape of algorithmic
fairness still lacks (1) practical methodologies and (2) tools
for real-world practitioners.

This work aims to bridge that gap by providing a simple
and flexible intervention to foster the incorporation of fairness
objectives in real-world ML pipelines: fairness-aware HO. We
propose and evaluate fairness-aware variants of state-of-the-art
HO algorithms: Fair Random Search, Fair TPE, and Fairband.
We further propose a heuristic for setting the relative fairness-
performance weight on a bandit-based context (FB-auto).

By introducing fairness notions into HO, our method can
be seamlessly integrated into real-world ML pipelines, at
no extra training cost. Moreover, our method is easy to
implement, resource-efficient, and both model- and metric-
agnostic, providing no obstacles to its widespread adoption.

We evaluate our method on a large-scale online account
opening fraud case-study as well as on three benchmark
datasets from the fairness literature. Fairness-aware HO is
shown to provide significant fairness improvements at a small
cost in predictive performance, when compared to traditional
HO techniques. On the AOF dataset, FB-auto achieves 111%
averaged improvement on the fairness metric, accompanied by
a comparatively small 6% decrease on the performance metric,
when compared with HB.

We show that it is both possible and effective to navigate the
fairness-performance trade-off through HO. At the same time,

we observe that there is a wide spread of attainable fairness
values at any level of predictive performance, and once again
document the known inverse relation between fairness and
predictive performance. Crucially, we empirically show that
by only optimizing for a predictive performance metric (as is
standard practice in real-world ML systems) we unknowingly
target unfairer regions of hyperparameter space.
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TABLE III: Classification task details for each literature dataset.

Dataset Setting  Pred. Acc. Metric Fairness Metric Target Threshold Sensitive Attr. Prediction Task

DC assistive precision equal opportunity 1000 PP school poverty level  risk of underfunding project

Adult assistive precision equal opportunity 50% TPR gender income < $50K/year

COMPAS  punitive precision predictive equality 10% FPR race recidivism risk
APPENDIX TABLE IV: Validation and test results on the DC, Adult, and

A. Experiments on Public Datasets

We further validate our methodology on three benchmark
datasets from the fairness literature. We use equal opportu-
nity [18] (i.e., balanced true positive rates) for assistive tasks,
and we employ predictive equality [36] (i.e., balanced FPRs)
for punitive tasks [35]]. Table m summarizes the classification
task for each dataset.

The Donors Choose (DC) dataset [38|] consists of data
pertaining to thousands of projects proposed for/by K-12
schools. The objective is to identify projects at risk of getting
underfunded to provide tailored interventions. We set a limit
of 1000 positive predictions (PP) as a realistic budget for this
task. The Adult dataset [37] consists of data from the 1994 US
census, including age, gender, race, occupation, and income,
among others. We devise a hypothetical assistive program that
targets individuals making less than $50K/year (opposite of the
original label of “>$50K/year”). The COMPAS dataset [1]
is a real-world criminal justice dataset. The objective is pre-
dicting whether someone will re-offend based on the person’s
criminal history, demographics, and prior jail time.

Table [[V] displays results from all evaluated methods on
benchmark datasets from the literature. We note that the Adult
and Donors Choose datasets are approximately one order of
magnitude smaller than AOF, while COMPAS is two orders
of magnitude smaller. Overall results are in accordance with
those of the AOF case-study.

B. Optimizing Bias Reduction Hyperparams. on Adult Dataset

Figure @] shows a plot of the models selected by FB-
auto over 15 runs on the Adult dataset. The introduction of
EG [7] creates a new cluster of models in our search space
(shown in pink), consisting of possible fairness-performance
trade-offs in a previously unoccupied region. However, even
though these models were trained specifically targeting our
fairness metric while the remaining models were trained in
a fairness-blind manner, FB-auto chooses other model types
more often than not. Indeed, the selected NNs and DTs
arguably represent the best fairness-performance trade-offs.
Interestingly, the types of ML models on the Pareto frontier
are markedly different from those observed on the AOF dataset
(Figure 2b). However, once again, RF consistently displays
worse fairness-performance trade-offs than LGBM. Similarly
to the results on the AOF dataset, it is shown that blindly
applying bias reduction techniques may lead to sub-optimal
fairness-performance trade-offs.

COMPAS datasets () when p < 0.05, ¢ when p < 0.01).

Algo Validation Test
go- Pred. Perf. Fairness Pred. Perf. Fairness
Donors Choose
FB-auto 54.2¢ 98.2¢ 50.7¢ 86.5¢
FB 54.2¢ 97.7¢ 50.4¢ 85.5¢
FairRS 51.7¢ 97.0¢ 50.4¢ 79.5¢
FairTPE 52.3¢ 96.3¢ 50.6¢ 79.1¢
HB 60.9 28.7 53.6 35.0
RS 59.9 24.9 53.4 32.4
TPE 61.0 27.1 53.3 33.4
Adult
FB-auto 92.0¢ 94.7¢ 91.6¢ 90.9¢
FB 92.7¢ 94.0¢ 92.3¢ 89.5¢
FairRS 93.6¢ 79.4¢ 93.8¢ 78.6¢
FairTPE 93.3¢ 82.2¢ 93.5¢ 80.7¢
HB 99.4 53.5 99.0 54.1
RS 99.4 55.7 99.1 56.6
TPE 99.4 54.9 99.1 55.6
COMPAS
FB-auto 74.0¢ 95.8¢ 70.1¢ 90.0*
FB 71.2¢ 95.5¢ 67.6¢ 80.7¢
FairRS 67.4¢ 77.4¢ 64.2¢ 67.8¢
FairTPE 67.1¢ 81.8¢ 63.9¢ 69.5¢
HB 78.1 45.4 73.6 51.2
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TPE 78.0 42.8 73.5 46.6
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Fig. 4: Fairness and predictive performance of models sampled
(smaller circles) and selected (larger circles) by FB-auto,
discriminated by model type, on the Adult dataset.
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