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Abstract—Time series data are ubiquitous in real-world ap-
plications. However, one of the most common problems is that
the time series data could have missing values by the inherent
nature of the data collection process. So imputing missing values
from multivariate (correlated) time series data is imperative to
improve a prediction performance while making an accurate
data-driven decision. Conventional works for imputation simply
delete missing values or fill them based on mean/zero. Although
recent works based on deep neural networks have shown re-
markable results, they still have a limitation to capture the
complex generation process of the multivariate time series. In this
paper, we propose a novel imputation method for multivariate
time series data, called STING (Self-attention based Time-series
Imputation Networks using GAN). We take advantage of gen-
erative adversarial networks and bidirectional recurrent neural
networks to learn latent representations of the time series. In
addition, we introduce a novel attention mechanism to capture the
weighted correlations of the whole sequence and avoid potential
bias brought by unrelated ones. Experimental results on three
real-world datasets demonstrate that STING outperforms the
existing state-of-the-art methods in terms of imputation accuracy
as well as downstream tasks with the imputed values therein.

Index Terms—time-series imputation, self-attention, generative
adversarial networks, bidirectional RNN

I. INTRODUCTION

Multivariate time series data are everywhere and contin-
uously generated every day. Many real-time application do-
mains have analyzed these signals for predictive analytics. For
instance, there are financial marketing on forecasting the stock
price [1f], predicting medical diagnosis of patients [2], [3],
weather forecasting [4], [5]], and real-time traffic prediction
[6], [[7]. However, it is inevitable that the time series data
contain missing values for some reasons, such as certain data
features being collected later or records being lost due to
equipment damage or communication errors. In the medical
field, certain information collected e.g., from a biopsy may
be difficult or even dangerous to obtain [8]. These kinds of
missing data significantly degrade the model quality and even
make wrong judgments by introducing a substantial amount
of bias [9]. So, imputing missing values in time series has
become a paramount issue for making accurate data-driven
decisions.
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Conventional methods of imputing missing values can be
classified into two categories: a discriminative method and a
generative method. The former includes Multivariate Imputa-
tion by Chained Equations (MICE) [10] and MissForest [[11]]
while the latter includes deep neural network based algorithms
(e.g., Denoising Auto Encoders (DAE) and Generative Adver-
sarial Networks (GAN)) [12f, [[13]. However, these methods
have been developed for non-time series data so that the
temporal dependencies between observations in the time series
could be rarely considered. In particular, DAE needs fully
complete data for a training phase but this requirement is
almost impossible as missing values are part of the inherent
structure of the problem. Recent state-of-the-art works for the
time series imputation are based on Recurrent Neural Net-
works (RNN) and GAN [2]], [14]-[16]. They capture temporal
dependencies with various aspects of the observed (or missing)
data characteristics, such as time decay, feature correlation,
and temporal belief gates.

Inspired by existing deep generative models showing re-
markable advancement, we propose a novel imputation method
for multivariate time series data, called STING (Self-attention
based Time-series Imputation Network using GAN). We take
the generative adversarial networks as the base architecture
which could estimate a true data distribution while imputing
the original incomplete time series data. To be specific, the
generator learns the underlying distribution of multivariate
time series data to accurately impute the missing values, and
the discriminator learns to distinguish between observed and
imputed elements. The generator in GAN internally adopts
the novel RNN cell, GRUI (GRU for Imputation) [[14] to
learn the latent relationships between observations with non-
fixed time lags. It weighs the impact on the past observations
according to the time lags. To leverage information from both
future and past observations to impute the current missing
values, Bidirectional RNN (B-RNN) is adopted to estimate
the variables from both forward and backward directions. In
addition, we propose a novel attention mechanism to pay selec-
tive attention to highly related information in each time series.
This allows efficient training when the time series sequence
is long and the time interval between two observations is
large. Experiment results on three real-world datasets show
that STING outperforms state-of-the-art methods in terms of
imputation performance. Our model is also superior to the
baselines in a post-imputation task as an indirect measure of



imputation performance.

II. RELATED WORK

Che et al. [2] proposed Gated Recurrent Unit with Decay
(GRU-D) that learns missing patterns of incomplete time series
and predicts the target labels while imputing missing values in
a healthcare dataset. The model takes into account a weighted
combination of its last observation and the empirical mean
using RNN. They introduced an input decay rate and a hidden
state decay rate to control the decay factor. However, this
model has a fundamental premise that missing patterns of data
are often correlated with the target labels (i.e., informative
missingness). By taking this fact into account, they take a
unified approach by integrating the imputation and prediction
task (i.e., of target labels) into one process. This makes the
model less generalized due to the dependency on whether the
target labels are completely observed. Therefore, it is hard to
be used in unsupervised settings without labels [2] or when the
labels are not clear. They also impose the statistical assumption
that the imputed values are the ratio of the last observation and
the empirical mean.

As a similar kind of research, Cao et al. [15] proposed an
RNN-based method, called Bidirectional Recurrent Imputation
for Time Series (BRITS) to directly learn the missing values
considered as latent variables of the bidirectional RNN graph.
This combines historical-based estimation and feature-based
estimation for feature correlations and applies a learning
strategy that makes missing values get delayed gradients.
However, it aims to predict target labels based on the given
time series while learning imputation simultaneously. So it
needs to know target labels in a training phase. However, as
the target labels could be unknown or contain missing values,
this is a quite strong constraint. In consequence, the imputation
performance is highly sensitive to the integrity of the target
labels. Unlike [2] and [15]], our model is independent of the
target labels during any process.

Luo et al. [14] proposed GAN-based imputation model,
called GAN-2-stages. In order to model the distribution with
temporal irregularity, Gated Recurrent Unit for Imputation
(GRUI) is proposed to learn to decay the influence of the past
observations according to how long the time has passed in
an irregular time interval. They further train an input “noise”
of the generator to find the best noise from the latent input
space so that the generated sample becomes the most similar
to the original one. However, while the original samples have
different time decays by the missingness, the generated ones
have the same time decays due to their completeness. This
distinct difference in the time decays makes the discriminator
easy to distinguish between fake data and real data and
prevents the stable training of the generator because of the
faster convergence of the discriminator. Moreover, they take
a self-feed training method where incorrect outputs during
training will continue to be reflected in subsequent learning
until the end.

As the follow-up work, Luo et al. [16] proposed End-to-
End Generative Adversarial Network (E2GAN). They exploit a

compression and a reconstruction strategy to avoid the “’noise”
optimization stage by using a denoising auto-encoder [12].
In the generator, a random noise is added to an original
time series as an input and the encoder tries to map the
input into a low-dimensional vector. Then, the decoder re-
constructs it from the low-dimensional vector to generate a
sample. Through this process, E2GAN could force to learn
a compressed representation of the input while learning the
distribution of the original time series. However, E2GAN
still holds the limitations of GAN-2-stages such as the faster
convergence of the discriminator compared to the generator
and the self-feed training of RNN. Unlike [[14] and [16],
we take bidirectional delayed gradients [[15] for quickly and
efficiently training RNN models in the generator that use the
observed values. Also, stable adversarial learning is possible
because the proposed discriminator tries to solve a more
specific problem by distinguishing if each element of the input
matrix is either true value (observed) or fake value (generated),
instead of the whole input matrix itself.

III. PROBLEM DEFINITION AND NOTATIONS

We denote multivariate time series data X =
{z1,z9,...,x7} as a sequence of T observations and the t-th
observation z; € R” consists of D features, {x%, z2, ..., x?}
That is, xf is denoted as the value of d-th variable of z;. X is
an incomplete matrix with missing values. We also introduce
a mask vector m; to denote positions where variables are
missing in x;. So, mf is defined as below.

d { 1 if z¢ is observed
my =

0 otherwise

We define X that is almost the same as X except that if x¢
is a missing value, i‘f is zero. z; is a random vector with the
same dimension as z;. We denote s; as a timestamp when
the t-th values are observed, which is an element of S. Time
intervals of timestamps may not be the same, so we define ¢
as the time interval from the last observation to the current

timestamp ;.

ift>1md, =0
St — S¢_1 if ¢t > 1,m§l_1 =1
0 ift=1

d
St — St—1 + 5t—1
5% =

An example with input matrices is shown in Fig. [I] In this
example, S is defined as S = {0,2,3,7,...,s7}.

The goal is to impute the missing values in the incomplete
matrix X through the adversarial learning mechanism of GAN
with accuracy. The generator tries to make a complete time
series matrix X by learning the underlying distribution of X,
and the discriminator tries to match an estimated mask matrix
M with a mask matrix M by distinguishing whether each
element of the complete matrix is a real value from X or a fake
value from X. Each element of M represents the probability
that each element of X is a real value. The probability is
denoted as p{ € [0, 1].
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Fig. 1: The architecture of STING.

It consists of two generators for dealing with a forward/backward direction and one

discriminator. All modules basically adopt RNN structure to iteratively process each time step in the time sequence with N
length. The gray-colored elements in each matrix correspond to the missing values of the original data. The data flow of the
backward generator is omitted as it has the same internal structure as the forward one except for processing the data in the

opposite direction.

IV. APPROACH

This section describes how we build an imputation model
for multivariate time series data with a focus on the architec-
ture and the overall workflow as shown in Fig. [I]

Inspired by existing deep generative neural networks [[17],
[18]], STING is composed of two generators (Gs) and one
discriminator (D). Two Gs take input time series in the forward
and backward directions, each of which generates a time series
matrix X according to their own designated direction. The
generation of both directions complements the lack of infor-
mation problem in the unidirectional GRU structure suffering
from many missing values of time series data. The inside of
G is composed of two attention modules and two modified
GRU cells [2], [[14]. The novel attention modules are able to
provide more clues to following GRU modules by calculating
the correlation weights of the whole sequence. Then, two
GRU cells are designed to deal with the time sequence input
with irregular time intervals. On the other hand, D has a
relatively simple structure compared to G. It consists of a GRU
module for time series processing, a linear layer to reduce the
dimension, and finally a sigmoid activation which produces
the probability for each element as an output.

In a workflow point of view, our approach starts by making
X filled with zero to each missing value, then those elements
are replaced by z{. M serves to inform G of information about
which elements of X are observed values or missing values.
This allows G to determine which values of the previous
timestamp are reliable or not, when repeatedly generating ;.
A has important information about how much G should refer

to the previous hidden states in the case where there are
missing values arbitrarily. Based on these four input matrices,
G generates an imputed matrix X and refines it by filling in
the observed values of X, as we do not need to generate x¢ we
already know. That is, #¢ is replaced by ¢ if the element is an
observed value. It is the result of imputation and is forwarded

to the discriminator.

Meanwhile, D takes X as an input and learns to distinguish
whether each element is an observed value or not. In this
process, the hint matrix H is also provided as an additional
input, which informs D of certain parts of M to enforce its
attention on the particular components. H reveals some parts
of M with hY = 0 (as a missing value) or h{ 1 (as
an observed value). In addition, h{ 0.5 implies nothing
about m¢ where D’s learning could be concentrated. This is
because D has to choose between O and 1 for the sample
points with 0.5, which comparatively become more difficult
learning points and D will focus on getting a better fit. If
we do not provide enough information about M to D, several
distributions that G could reproduce would all be optimal with
respect to D. In other words, we cannot guarantee that G
learns the desired distribution uniquely defined by the original
data without a hint mechanism. [18] have detailed proofs and
theoretical analysis for the hint mechanism. In practice, we
could control the amount of hint information about M by
varying H in the hint generator. The more hints we provide,
the easier D is to learn. We could use this principle to control
the learning pace between G and D. Finally, the output of D
is M where each element represents the probability p¢ that



each element of X is an observed value.

By jointly training G and D via a min-max game, G is
able to learn the underlying distribution of the original data
X, and impute the missing values appropriately so that D
cannot distinguish them. The ideal result for G is, each pf
of M corresponding to the generated fake value 2¢ is set
to 1. In contrast, D aims to accurately distinguish between
the real value x¢ and the fake value #¢. So, the ideal result
for D is that each p¢ corresponding to the fake value #¢ is
set to 0, otherwise 1. This implies that D accurately predicts
the resulting M equal to the mask matrix M. As one of
the characteristics of STING, D attempts to distinguish which
elements of the matrix are real (observed) or fake (imputed),
not the entire input matrix itself. This strategy allows D to
focus more on the specific classification problem, thereby
improving performance.

A. Generator

STING exploits two types of generators (i.e., forward G and
backward G) to account for dependencies in both directions in
time as shown in Fig. [T} The roles of the Gs are the same ex-
cept for some parts described in ”Consistency loss” (7)) below.
Therefore, only the details of the forward G are described in
most of this section, and the description of the backward G is
omitted due to the size limitation of the paper. Each G consists
of an advanced GRU structure with two types of attention
layers (i.e., self-attention and temporal attention), temporal
decay layer, and double GRU-cell. Detailed composition and
learning objectives are described below.

Attention aims to learn structural dependencies between
different coordinates of the input data by finding the most
relevant parts of the inputs given a query value and generating
a query-specific representation of the inputs. The attention
mechanism has been shown to be effective in various fields
[19]-[22]] by allowing structural properties of the underlying
data distribution to be learned. In a machine translation task,
for example, this mechanism is used to measure how much
attention should be paid to each word of the sequence of the
encoder during decoding. Among various attention algorithms,
the scaled dot-product attention [23|] is defined as:

) QKT
Attention(Q, K, V) = softmam(W)V (1)
k

where Q represents the queries, K is the keys, and V is the
values. The scale factor \/dy, is to avoid overly large values
of the inner product, especially when the dimensionality is
high. So, the attention function is realized by calculating the
weights of correlation called attention scores, between the
whole sequence of the encoder as keys and values, and the
specific time step of the decoder as a query. In particular, a
self-attention module calculates the attention scores between
different positions of its own sequence (i.e., Q=K=V) in order
to compute representations of the same sequence.

Double Double

GRU GRU

( t ‘ .
\ CUq
AN } Self—attention cVy
,; cvs
) Context Vector

Fig. 2: The self-attention mechanism in the imputation process.
A context vector is expected to have a good summary of the
meaning of the whole input time series (e.g., x1, x2, and z3)

To allow the model to jointly attend to information from
different representation sub-spaces at different positions, we
further adopt the multi-head attention [23|] defined as:

MultiHead(Q, K, V) = (head; @ - - - ® head,, )W ©

where head; = Attention(QW 2, KW/, vVv)) @
where WiQ € Rimeacrxds WK ¢ Ridmoacrxdr pV ¢
RémoderXdv 7O ¢ RhdvXdmoder gre the trainable parameter
matrices. @ denotes the concatenation operation. In our model,
dmoder corresponds to the input dimension of the data, and
four parallel attention heads are calculated in the reduced
dimension and then concatenated to the original dimension.
In our work, we adopt the attention mechanism to provide
more targeted clues to the imputation problem for two reasons.
First, it allows the model to pay attention to time steps
with a relatively similar pattern, not just a temporal order.
It is suitable especially for time series with a periodicity. A
lot of the time series could have a periodic characteristic
in a sequence (e.g., weather forecasting, traffic prediction,
etc.). Second, it can obtain sufficient information from the
entire sequence, not only a few time steps back and forth.
If the sequence has many missing values, the quality of the
information provided from the whole sequence is improved
than only from some time steps. These characteristics are
hard to catch in previous works dependent on the temporal
order (i.e., RNN methods). So as to take these advantages
in our model architecture, the self-attention module is used to
convert an input sequence to context vectors (i.e., Q and K are
derived from the same input sequence), which is considering
the quantitative correlation of the whole sequence as shown in
Fig. 2] Thereafter, the temporal attention module is designed
to reflect the correlation between hidden states of a GRU
and the context vectors (i.e., Q is hidden states, K is context
vectors). These two modules are shown to be effective in our
experiments, which will be covered in Section [V-E]
Temporal decay layer is to control the influence of the past
observations for irregular time intervals in a GRU, which is
motivated by [2]], [[14]. The decay rates should be learned from
the data because they differ from variable to variable based on
the underlying properties associated with the variables as the



missing patterns are unknown and could be complex. That is,
the vector of decay rates 7, at ¢ is defined as below.

i = exp {—max (0, W50, + by)} 3)

where W, and b,, are trainable parameters, and an exponential
negative rectifier is used to keep each decay rate monotonically
decreasing in a range between O and 1. The function can
be replaced with others if only these conditions are met.
Intuitively, this has the effect of decaying the extracted features
from hidden states rather than raw input variables directly. By
learning how much of the previous information that hidden
states have will be decayed and utilized, the decay rates adjust
the previous hidden states (h;—1) to h}_; by element-wise
multiplication before entering a GRU-cell.

h;71 == ’yt @ ht71 (4)

where ® denotes element-wise multiplication.

Double GRU refers to two GRU-cells that are not com-
pletely independent but have different purposes. One as a
main-cell is responsible for organizing and transferring infor-
mation to the next, and the other as a generation-cell generates
time series vectors &;. The generation-cell has its own hidden
states (hg,), which do not pass through a temporal decay layer
as described in (). Both of them have a simple GRU structure
[24]. The main-cell with a temporal decay layer is defined as
follows.

re = o (Weay + Urhy_; + by)
o (W + Uhy_y +.)
tanh (Wy,zy + Uy, (re © hi_y) + by)
he=(1-2)0n +20h_,

2t

®)

T

where x; is the input at ¢, and 74, z;, n; are the reset, update,
and new gates, respectively. Matrices W.,., U,., W, U,, W,,
U,, and vectors b, b,, b, are the learnable parameters. o is the
sigmoid activation, and © is the element-wise multiplication.
In the case of the generation-cell, h}_;, h: are replaced by
hg,_1. hg,, respectively as described in @)

Reconstruction loss is a measure of how well the observed
values are reconstructed through G by considering the differ-
ences of the observed values in z¢ and #¢ before those are
refined. This loss helps guide the generated data closer to the
real distribution of the ground-truth data by inducing G to
keep the observed values used as conditions. When obtaining
a result of a completely imputed matrix X, we measure the
reconstruction loss (Lg) between xf and ;f;td for the observed
values. To be specific, if ¢ is an observed value (i.e., m¢=1),
we directly use it to get the loss and also replace it with the
original x¢ when the output ¢ passes to the next step as an
input for the GRU iteratively. In contrast, if ¢ is a missing
value (i.e., mf=0), Lpr could not be obtained immediately
because the comparison with missing values is impossible.
However, STING considers missing values as variables, not
constants. So, we replace the missing values with the imputed
values to validate those by the future observations. If there is
an observed value anywhere in the next of the same sequence,

we can get a delayed gradient [15]. We measure Lp in L2-
distance as follows.

Lr=E [mf(zf - 7)’] (6)

where for all ¢ and d, mé € M, 2% € X, ¢ € X. It is to
note that Lz should be computed before elements of X are
refined to z¢ for the observed values.

Consistency loss can be derived to enforce the prediction
in each step to be consistent even in different directions, by
means of the structure in which STING consists of two Gs in
the forward and backward directions. In addition, consistency
loss (L) helps the two Gs in the opposite directions interact
with each other, so it enhances the learning effect and improves
stability by leading to a single result from two matrices. This
way also allows obtaining the less delayed gradient of the two
directions as described in (6) due to less delayed comparison
with the closer observation from the forward or backward
[15]. To measure consistency loss, unlike the forward G, the
input matrices are flipped for the backward G during the
generating process, and then the output of the backward G
(.e., Xbackward) is flipped back to its original sequence for
comparison with the output of the forward G (i.e., X forward)-
From this, we define L¢ in L1-distance as follows.

[’C =E H'ig,forward - jjtd,backwardu (7)

where for all t and d. & ., ,0ra € X forward: 4 packward €
Xback‘wa’rd’ and Xforwcw'da Xbackwa’rd are imputed data gen-
erated from the forward G and backward G, respectively. L¢
should also be computed before elements of X are refined for
the observed values.

Wasserstein loss proposed in Wasserstein GAN (WGAN)
is adopted, which makes a model easier to train than the
other GANs by improving the stability of the learning and
getting out of the problem of mode collapse [25]. However, our
problem settings are quite different from the original WGAN
because the final results of D are elements of a matrix, not
scalar values. Therefore, we derive Ly for the imputation as
follows. N _

X=G(Z|X,MA)
M = D(X | H) )
Ly =—E [mf | m{ = 0]

where G and D are the generator and discriminator, respec-
tively. ® is element-wise multiplication. For all ¢ and d,
md € M, m¢ € M. Ly is defined only in the case that
the input elements are originally missing values.

By integrating three losses defined from () to (8) and
shown in Fig. [3] we can define the total loss of the generators
(Lg). In practice, Lyy and Ly are two for each the forward
and backward G, and L is one, but only one is described for
convenience so that Lg is defined as.

Loa=MNLr+ Lo+ Lw 9

where A, and ). are hyper-parameters to coordinate learning
according to reconstruction loss, consistency loss, respectively.
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Fig. 3: Three types of loss functions. As in Fig. (1} the losses
calculated by the backward generator are omitted.

B. Discriminator

We introduce a discriminator (D) as an adversary to train G
as in the GAN framework. D consists of a GRU module for
time series processing, a fully connected layer to reduce the
dimension, and finally, a sigmoid activation which produces
the probability for each element as an output. We make the
structure of D simple compared to G for stable adversarial
learning as we experimentally found that D is relatively easy
to converge.

The loss function for training D is also relatively simple.
For the same reason as G, the loss of conventional Wasserstein
GAN could not be applied directly. D’s input is a matrix X
imputed by G which is a combination of imputed values and
observed values as elements. In other words, each of these
corresponds to a fake value or a real value. This means the
loss function should consider two kinds of inputs in a matrix
at the same time. For this, we define D’s loss function (Lp)
as follows.

Lp=E[m|m{=0]-E[mi| mi=1 (10

where the first term indicates the loss when D takes fake
values and the second term is the case of real values as inputs,
respectively. When D takes a fake value, it should output 0,
or takes a real value, it should output 1. Since for the forward
G and backward G, each produces a matrix as an output, D
also has two losses corresponding to both directions. But only
one is presented for convenience.

C. Searching an Optimal Noise

Most of the research using GAN [17] aims to generate
multiple realistic samples by varying a random vector z called
“noise”. But this may not be applicable to the imputation prob-
lem. The imputation method should do two tasks well, that is,
not only fill in missing values but also match observed values
with accuracy. Because of this specificity, z searching plays
an important role. To be specific, the random noise vector z
is randomly sampled from latent space such as the Gaussian
distribution. This implies that as the input random noise z
changes, the generated sample G(z) can change a lot. Even
though the generated sample follows the true distribution of
the original data, the degree of similarity between x and G(z)

could not be large enough. In other words, both distributions
could be similar in a broader sense, but individual samples may
be different a lot in a specific view. To address this problem
and increase the similarity further, it is introduced to find the
best matched optimal noise 2. Since we already know some
conditions (i.e., observed values in a sample), more appropriate
z can be found iteratively using those. This method is widely
applied in the fields of texture transform and in-painting of
image data [26]—[28]], and tabular data imputation [[14].

Inspired by these works, in our model, we search the
optimal noise 2z’ by training z in the inference phase, which
generates missing values more suitable for the samples on the
distribution of the original data. The learning in the inference
phase does not train parameters of a model but performs back-
propagation to input z; updated every iteration. Learning for z;
uses the same loss as training G (L) in (O). That is, gradient
—857? repeatedly updates z; to search a more suitable one.
After searching the optimal noise z; as one of the inputs, two
imputed matrices are generated by the forward and backward
G, respectively. Finally, we use the mean of two matrices to
determine the final result of imputation.

V. EXPERIMENTS

In this section, we conduct experiments with the purpose to
prove the efficacy of our proposed STING model by answering
the following research questions:

e RQ1 Does the STING outperform other state-of-the-art
imputation methods?

e RQ2 How does the STING work for the downstream task
as a post-imputation?

e RQ3 Which module is most influential in improving
performance in STING?

In the following, we first describe the datasets and baseline
methods used in the experiments. Then, we compare the
proposed STING with other comparative methods and make a
detailed analysis of STING under two different experimental
settings. Finally, we conduct an ablation study to analyze the
impact of the main modules in STING.

Regarding the details of the basic setting of the experiments,
min-max normalization was applied during the experiments
for all datasets. All experiments were repeated 10 times and
the mean of accuracy was reported to account for any kind
of randomness during the experiments. The generators were
pre-trained for 10 epochs with L and L in (6) and (7).
We experimentally found that if the generators are trained a
little in advance, they could converge faster and get better
performance. Then, the generators and the discriminator were
updated one by one alternately at every iteration. We trained
our model with an Adam optimizer. The learning rates of
the generators and the discriminator were 0.001 and 0.0001,
respectively. The hint ratio given to the discriminator was fixed
at 0.1. The batch size was set to 128. As the hyper-parameters
for loss in @I), A and A, were set to 10 and 1. We implemented
our model in PyTorch and performed all training on a single
2080Ti GPU with 11GB of RAM.



A. Datasets

PhysioNet Challenge 2012 Dataset (PhysioNet) - comes
from PhysioNet Challenge 201 [29], [30] which aims to
develop methods for patient-specific prediction of in-hospital
mortality. It consists of records from 12,000 multivariate
clinical time series from intensive care unit (ICU) stays. We
use training set A (4,000 ICU stays) of the whole dataset. The
preprocessed dataset for the experiments has a total of 192,000
samples. Each sample contains 37 variables such as DiasABP,
HR, Na, Lactate, etc. over 48 hours. There are 554 (13.85%)
patients with a positive mortality label. As this dataset has a
high missing rate (80.53%) and is very sparse, it is difficult
to simply perform downstream tasks such as the mortality
prediction. So, many previous works have experimented on
this dataset to evaluate the performance of imputation or post-
imputation tasks.

KDD CUP Challenge 2018 Dataset (Air Quality)] -
accessible from UCI Machine Learning Repository [31], is
a public air quality dataset and used in KDD CUP Challenge
2018 [32] to accurately forecast air quality indices (AQIs) of
the future 48 hours. The records have a total of 12 variables
such as PM2.5, PM10, SO2, etc. from 12 monitoring stations
in Beijing. The time period is from March 1, 2013 to February
28, 2017 and the variables were measured every hour. The total
number of samples is 420,768, and there are some missing
values (1.43%).

Gas Sensor Array Temperature Modulation Dataset
(Gas Sensor - accessible from UCI Machine Learning
Repository, contains 14 temperature-modulated metal oxide
(MOX) gas sensors exposed to dynamic mixtures of carbon
monoxide (CO) and humid synthetic air in a gas chamber
for 3 weeks [33]], [[34]. We use one day of the whole dataset
for the experiments. The number of samples is 295,704. Each
sample consists of 20 variables including CO concentration
inside the gas chamber. Unlike the other datasets, all samples
are completely observed.

B. Baselines

In order to evaluate the performance of our model, we
compare it with the following representative baselines. There
are three types of models: statistics-based (Stats-based), ma-
chine learning-based (ML-based), and neural network-based
(NN-based) models. We implemented ML-based models based
on the python package sklearn and fancyimpute. The
experimental settings such as hyperparameters of the NN-
based models were set according to the corresponding papers,
respectively.

e Mean simply fills the missing values with the global
means of the corresponding variables.

o Previous Value Filling (Prev) fills the missing values
with the previously observed values. This method can be

Uhttps://www.physionet.org/content/challenge-2012

Zhttps://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-
Quality+Data

3https://archive.ics.uci.edu/ml/datasets/Gas+sensor-
array-+temperature+modulation

TABLE I: Overall model performances in terms of RMSE (the
smaller, the better). The results of the best performing baseline
and the best performer in each column are underlined and
boldfaced, respectively. The ground-truth ratio is set to 20%
of the observed values. The RMSE is measured after min-max
normalization.

PhysioNet  Air Quality  Gas Sensor
Stats-based Mean 0.1037 0.1203 0.2000
Prev 0.0825 0.0336 0.0619
KNN 0.1137 0.1157 0.0379
ML-based MF 0.1033 0.1008 0.1355
MICE 0.0986 0.0659 0.0726
GAIN 0.1300 0.1148 0.0722
GRU-D 0.0830 0.0377 0.0630
NN-based ~ E2GAN 0.0638 0.0379 0.0374
BRITS 0.0553 0.0301 0.0374
STING 0.0531 0.0238 0.0153

very simple and computationally efficient for imputation
because of the characteristic of time series.

o« KNN [35] uses K-Nearest Neighbors which finds the
similar 10 samples, then imputes the missing values with
means of these samples.

o Matrix Factorization (MF) [36] directly factorizes the
incomplete matrix into two low-rank matrices solved by
gradient descent, then imputes the missing values by
matrix completion.

o Multiple Imputation by Chained Equations (MICE)
[10], [37] models each feature with missing values as
a function of other features iteratively, and uses that
estimate for imputation.

o Generative Adversarial Imputation Nets (GAIN) [18]
imputes the missing values conditioned on what is actu-
ally observed using GAN.

+ Gated Recurrent Unit with Decay (GRU-D) [2] based
on GRU, imputes the missing values by using a decay
mechanism for irregular time intervals.

e End-to-End  Generative  Adversarial Network
(E2GAN) [16] is based on GAN and the generator
has an auto-encoder structure. That is, it can optimize
the low-dimensional vector while learning the distribution
of the original time series.

o Bidirectional Recurrent Imputation for Time Series
(BRITS) [15] adapts bidirectional RNN for imputing
missing values without any specific assumption over the
dataset.

C. Direct Evaluation of Imputation Performance (RQI)

In this experiment, we aim to directly evaluate the impu-
tation performance with baselines and STING. We randomly
eliminated a certain ratio of the observed values to be used
as the ground-truth. In consequence, the remaining observed
values were used as the training data for the imputation
models. Once the imputation learning of each model was done,
we inferred complete data by imputing missing values via
each model. After that, by comparing imputed values with the
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Fig. 4: Direct imputation performances on two datasets while varying the ground-truth ratio (since these datasets are almost
complete, the ground-truth ratio and the missing ratio are almost the same). As comparative methods, three representative
models with the best performance except STING were selected from each type of baselines.

ground-truth, the performance of each model was measured by
Root Mean Squared Error (RMSE) indicating that the lower
the value, the better the performance. In the first experiment,
we set a ratio of the ground-truth to 20% and compared
the performances of all the models on three datasets. In the
second experiment, we evaluated the performances of the best
performing baselines by varying the ground-truth ratio from
10% to 90%.

Table || summarizes the results of the first experiment. We
can see that STING achieves the best performance on all
datasets. In comparison to the best performing baseline (i.e.,
BRITS), error improvement rates of the results are 4.0%,
21.0%, and 59.1%, respectively. Prev as one of the statistical
methods has a fairly high performance. This indicates that
simply imputing with the previous values could have better
performance than the other models which take a long time and
are complicated. It is reasonable because the dependence on
the previous samples is high due to the nature of the time series
data collection. In particular, for a dataset with little change
over time, filling with previous values can have a great effect
with little cost. In addition, Prev shows a similar tendency
of the performance to GRU-D. This is a quite logical result
because GRU-D learns the ratio between the mean and the
previous value, then imputes the missing values. Among the
ML-based models, KNN shows the best performance similar
to BRITS on the Gas Sensor dataset, but the performance is not
stable on other datasets. On the other hand, MICE stably shows
relatively good performance on all datasets. GAIN motivated
by GAN does not perform well on the time series datasets as
there is no suitable learning strategy for time series.

Fig. [ shows the performance results of the second experi-
ment when the missing rate of the two datasets is varied. It is
to note that we exclude PhysioNet for this experiment because
it has a very high missing rate (80.53%). As the missing
ratio increases, the training data used for imputation learning

decreases on the contrary, so the performances of all models
decrease. Nevertheless, STING achieves the best performance
in all conditions, showing a slow decline in performance.
That is, the more the dataset contains missing values, the
less sensitive STING imputes them compared to others. From
the results, we could confirm STING takes advantage of the
attention mechanism because it can utilize a relatively large
amount of information by referring to the whole sequence.

D. Indirect Evaluation of Imputation Performance (RQ2)

In this experiment, we aim to indirectly evaluate imputation
performance by the results of solving downstream tasks. If
the distributions of original data and imputed data are similar,
their results of downstream tasks would be similar. Therefore,
we can see how well incomplete data were imputed indirectly
through the prediction results. We only exploit the Gas Sensor
dataset which is originally complete data for the stable learning
of the prediction model. Moreover, this data can assume an
ideal imputation model by which all missing values have been
imputed with the ground-truth, so that we can get an upper
bound prediction performance. The ideal imputation model is
also included as a baseline in this experiment. It is to note
that we do not train simultaneously imputation and prediction
tasks at the same time because our purpose is to measure
the imputation performance, not to improve the prediction
performance. After imputing the test data except for labels,
those are inferred with the prediction model already learned
on the complete train data. This is intended to be a fair
comparison of models with typical setups where there may
be no clear labels or missing values on the labels.

The procedure of this experiment is as follows. For inde-
pendent settings between the imputation model and regression
model, the dataset is initially divided into 80% training data
and 20% test data. Using this complete training data, we first
train a regression model that predicts the CO concentration
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Fig. 5: Indirect imputation performance results on Gas Sensor
while varying the ground-truth ratio.

as a target. As the regression model, we built a simple GRU
with two layers and a dropout with 0.3, and finally having a
fully connected layer. Then, the training data is made to have
missing values completely at random in a certain ratio. After
training our method and baselines on the training data, the
resulting models impute the missing values of the test data
except for the target so that we can get different imputed test
datasets corresponding to each model. Then, the regression
model is used to predict the target based on imputed test
data. Finally, we measure the RMSE results between the
predicted target values and the actual ones. This evaluation
method allows us to determine if the imputed data follow
the distribution of the original data under the assumption
that similar distributions get similar performances. In other
words, we can know which imputed data are closer to the true
distribution by comparing how close they are to the regression
result of the original test data (i.e., imputed by the ideal
model). It is to note that we do not aim to achieve state-
of-the-art prediction performance.

Fig. [5] shows the RMSE results of the regression model
while varying the ground-truth ratio on each imputed data.
The ideal model is able to impute the original test data
regardless of any missing ratio, so it has the lowest and
constant RMSE. Among the comparative imputation models,
STING achieves the best performance at any ratio. On the
other hand, Mean shows the worst performance, showing how
inefficient it is to impute the time series with the mean values.
Interestingly, there is a clear difference between the missing
ratio of around 0.5. Previously, most models maintain similar
and good performances below 3.5, but the RMSE increases
dramatically afterward. When the ground-truth is 0.9, STING
shows a relatively small increase in error despite the poor
conditions. There seems to be an advantage to using GANSs to
generate new time series and to utilize information from the
entire sequence due to the attention mechanism.

TABLE II: The ablation study on the attention mechanism,
searching an optimal noise z’, and the backward generator,
respectively. The rate of increase in the error is indicated in
parentheses (%).

PhysioNet
0.0531
0.0559 (5%)

0.0553 (4%)
0.0583 (10%)

Air Quality
0.0238

0.0294 (23%)
0.0250 (5%)
0.0269 (13%)

Gas Sensor
0.0153
0.0355 (132%)

0.0193 (26%)
0.0189 (23%)

STING

w/o attention
w/o optimal 2z’
w/o backward

E. Ablation Study (RQ3)

The potential sources of efficacy for the STING are: two
attention modules, a method for searching an optimal noise
Z', and a backward generator, respectively. To understand
how each key feature affects the performance improvement
of STING, we conducted an ablation study and compared
the performances of the resulting architecture to the overall
STING architecture. So, we experimented with three models
by excluding just one function from the STING on three
datasets. The ground-truth ratio was set to 20% of observed
values, and the RMSE with imputed values was measured.

Table || lists the results of the ablation study, where the
RMSE increases in all cases. The result of removing the
backward generator shows the highest increase in error rate
on PhysioNet. On the other hand, the result removing the
attention modules shows the highest increase in error rates on
Gas Sensor and Air Quality. This implies that the proposed
attention modules perform a relatively important function in
STING. That is, the process of learning the correlations of the
whole sequence produces significantly important information
for imputation in any dataset. On the other hand, the module
for searching an optimal noise 2’ has a relatively minor effect.
This indicates that even though z is randomly generated, it is
possible to make a sample that matches well from the actual
distribution of the original data because the observed values
in X are used as a condition to G in STING. In other words,
STING without an optimal noise might efficiently learn the
distribution of original time series, so this process plays a
complementary role.

In summary, we demonstrated the efficacy of STING
through comparative experiments with other models. There are
two main factors attributable to the remarkable performance
even in poor conditions. First of all, we could confirm that the
GAN mechanism works well to generate samples that follow
the true distribution of the original time series. We described
how STING should be configured to converge to the desired
distribution. In particular, we set the problem of discriminator
more delicately with Wasserstein distance to maximize the
adversarial learning effect, compared to previous works based
on GAN. As the second key factor, we could find that the
proposed attention mechanism is effective in the imputation
task. STING could acquire a large amount of information by
paying attention to certain periodic patterns or some time steps
to get more information. This effect becomes more evident



as the missing rate increases, clearly showing the benefits of
retaining large amounts of information during imputation.

VI. CONCLUSION

In this paper, we proposed STING, a novel imputation
method for multivariate time series data based on genera-
tive adversarial networks and bidirectional recurrent neural
networks to learn latent representations of time series. We
also proposed the novel self-attention and temporal attention
mechanism to capture the weighted correlations of the whole
sequence and prevent potential bias from unrelated time steps.
Various experiments on real-world datasets show that STING
outperforms traditional state-of-the-art methods in terms of
both imputation accuracy and downstream performance with
the imputed values. Future work will investigate the imputation
of the more general data including a categorical type. Gener-
ating categorical data is a particularly difficult problem for
GAN:Ss. Inspecting its possibility of generating and imputing
categorical data is a topic for future research.
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