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Abstract

Multi-objective optimization (MOO) is a preva-
lent challenge for Deep Learning, however, there
exists no scalable MOO solution for truly deep
neural networks. Prior work either demand op-
timizing a new network for every point on the
Pareto front, or induce a large overhead to the
number of trainable parameters by using hyper-
networks conditioned on modifiable preferences.
In this paper, we propose to condition the network
directly on these preferences by augmenting them
to the feature space. Furthermore, we ensure a
well-spread Pareto front by penalizing the solu-
tions to maintain a small angle to the preference
vector. In a series of experiments, we demonstrate
that our Pareto fronts achieve state-of-the-art qual-
ity despite being computed significantly faster.
Furthermore, we showcase the scalability as our
method approximates the full Pareto front on the
CelebA dataset with an EfficientNet network at
a tiny training time overhead of 7% compared to
a simple single-objective optimization. We will
make our code publicly available.2

1. Introduction
Multi-objective optimization (MOO) is a pillar task for Ma-
chine Learning and manifests itself in numerous real-life
problems, such as multi-task learning (MTL) or fair ma-
chine learning which jointly minimizes both the classifi-
cation error and at least one fairness criterion. MOO is a
classical problem in operations research and is typically
solved through evolutionary methods, however, it recently
gained interest in the Machine Learning community thanks
to the development of new gradient-based MOO algorithms
that facilitate faster training times (Fliege & Svaiter, 2000;
Désidéri, 2012). The goal of MOO is to generate a Pareto
front of non-dominating solutions, in a way that a practi-
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tioner selects a post hoc solution based on the achieved
trade-offs among objectives. The Pareto front denotes a set
of solutions which cannot be further optimized without sac-
rificing performance with respect to at least one objective,
its elements are called pareto-optimal (see Section 3).

The earlier attempt to tackle MOO for Deep Learning fo-
cused on addressing multi-task learning (Sener & Koltun,
2018) through gradient descent (Désidéri, 2012) to find a
single solution on the Pareto front. Additional follow-up
strategies propose to populate a set of Pareto optimal solu-
tions by learning multiple neural networks along preference
vectors (Lin et al., 2019; Mahapatra & Rajan, 2020). Pref-
erence vectors encode the predefined relative importance
for each objective. Two recent ideas proposed condition-
ing the network’s weights to the preference vector through
hyper-networks (Lin et al., 2021; Navon et al., 2021). A
key problem with the aforementioned prior work is that they
struggle to scale to deep neural networks. Learning one new
network for each Pareto front solution makes it infeasible
to populate a large set, while the overhead of the hyper-
networks is prohibitive in terms of increasing the number of
trainable parameters.

In this paper we propose a novel method that scales MOO
to Deep Learning by fulfilling two important desiderata: i)
our method does not significantly increase the trainable pa-
rameters of the network (contrary to hyper-networks), and
ii) generates the full Pareto front of solutions in a single
optimization run (contrary to methods that train one network
per point in the Pareto front). Concretely, we propose to
condition a prediction model to the choice of the preference
vectors by augmenting the feature space with the prefer-
ences. As a consequence, our method learns to adapt a sin-
gle network for all the trade-off combinations of the inputted
preference vectors, therefore it is able to approximate all
solutions of the Pareto front after a single optimization run.
We follow the linear scalarization variant of MOO, which
although is the fastest variant for gradient-based learning,
does not produce a well-spread Pareto front (Mahapatra
& Rajan, 2020; Navon et al., 2021; Lin et al., 2019). To
remedy this disadvantage, we propose a novel penalty term
that forces the achieved solutions in the objectives’ space to
maintain a small angle to the inputted preference vector.

In a series of experiments, we demonstrate that our method
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competes strongly with the state-of-the-art MOO methods
in terms of quality while being significantly faster. To fur-
ther showcase the efficiency of our technique, we demon-
strate that it is feasible to efficiently approximate the Pareto
front by fine-tuning a deep network on a large-scale multi-
objective problem within less than 4 GPU hours. To sum
up, this paper introduces the following contributions:

1. A novel method for MOO in Deep Learning that needs
a single optimization run to approximate the full set of
the Pareto front;

2. Conditioning the model to the preference vectors on
the feature space, removing the overhead of hyper-
networks on the number of trainable parameters;

3. A novel penalty term to enforce that the Pareto front
achieved through linear scalarization is well-spread
across the objectives’ space;

4. Experimental results showing our method is an effi-
cient MOO approach that approximates a Pareto front
for deep models on large multi-objective datasets at
negligible training time overhead of 7% compared to a
single-objective optimization.

2. Related Work
Multi-Task Learning refers to learning a prediction model
for solving multiple tasks jointly and is applicable in various
application domains (Zhang & Yang, 2018), for instance in
detecting facial landmarks on images (Zhang et al., 2014).
Tasks can have competing objectives, and finding the right
balance for prioritizing them is challenging. A prior work
explores mechanisms for deciding which tasks should be
prioritized (Standley et al., 2020). Furthermore, the adap-
tive load balancing of competing losses has also attracted
interest (Chen et al., 2018). On the other hand, a tailored
architecture for addressing multi-task involved task-specific
feature-level attention (Liu et al., 2019). Besides, a prior
work explores the direction of modeling uncertainty for
multi-task learning (Kendall et al., 2018).

Multi-Objective Optimization formalizes the problem of
learning from multiple objectives as discovering a set of
Pareto optimal solutions (Kaisa, 1999; Ehrgott, 2005) ex-
pressing trade-offs between the objectives (see Section 3).
Classical approaches follow genetic algorithms that search
for populations of Pareto optimal solutions (Deb et al.,
2000), however, evolutionary algorithms are not scalable for
deep learning in an off-the-shelf manner.

A notable method that explores gradient-based learning
for multi-objective optimization is the Multiple-Gradient-
Descent-Algorithm (MGDA) (Désidéri, 2012). Actually,
one of the first papers to treat multi-task learning as multi-
objective optimization used the MGDA method for training

a single Pareto stationary solution (Sener & Koltun, 2018).
Follow-up techniques extended the idea towards learning
a Pareto front of multiple solutions by aligning solutions
according to preference rays (Lin et al., 2019; Mahapatra &
Rajan, 2020). Unfortunately, these approaches train one neu-
ral network from scratch for each point on the Pareto front.
A strategy to speed-up the generation of Pareto stationary
points explores new solutions (networks) by taking different
directions in the multi-objective space and transfer-learning
the weights of past solutions (Ma et al., 2020).

Orthogonal to MTL is the application of MOO to fairness
objectives which gained interest only recently (Valdivia
et al., 2020; Padh et al., 2020). The key difference is that
in fairness all objectives are based on the same output thus
enforcing their trade-offs (Menon & Williamson, 2018).

The idea of training a single network that is conditioned on
a particular task has been first elaborated in the context of
multi-task learning (Dosovitskiy & Djolonga, 2020). Ex-
tensions to the case of multi-objective optimization with
Pareto fronts have utilized hyper-networks which output
a preference-dictated prediction model (Lin et al., 2021;
Navon et al., 2021). Hyper-networks are trained to predict
the weights of another network conditioned on some input
(Ha et al., 2016). While our method shares the same style
of conditioning the model on the objective preferences, we
delineate in two key points: firstly, our solution conditions
the feature space instead of the parameter space, and conse-
quently is not limited by the overhead of a hyper-network.
Secondly, we propose a novel penalty term that improves the
quality of Pareto fronts trained through linear scalarization.

Deep Multi-Objective Optimization relies on applying
the aforementioned ideas to the case of deep neural net-
works. MOO has been a topic of interest for related sub-
problems, such as reinforcement learning (Parisi et al., 2016;
Van Moffaert & Nowé, 2014; Yang et al., 2019), or neural ar-
chitecture search (Elsken et al., 2019). However, we assess
that prior work can not be easily deployed to state-of-the-art
deep networks, because they either need to train multiple
networks for populating the Pareto front or are limited by
their dependence on parameter-heavy hyper-networks. In
contrast, our method (Section 4) produces a Pareto front
within a time complexity comparable to a simple single-
objective optimization with one network.

3. Preliminary

Let us denote a supervised dataset as D := {(xn, yn)}Nn=1,
where xn ∈ X , yn ∈ Y,∀n ∈ {1, . . . , N}. We are asked to
train a neural network f(x, θ) : X ×Θ→ Y parameterized
by θ ∈ Θ by jointly minimizing a set of J loss functions
Lj : Y × Y → R>0,∀j ∈ {1, . . . , J} as formulated in
the multi-objective problem of Equation 1. Each objective
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focuses on minimizing the expectation of the respective
loss function over labeled instances x, y drawn from a data
sampling distribution pD.

θ∗ := arg min
θ

E(x,y)∼pD {L1 (y, f (x; θ)) ,

L2 (y, f (x; θ)) ,

. . . ,

LJ (y, f (x; θ)) } (1)

In general, no single solution θ∗ achieves the optimum of
all objectives, however, we can obtain a set of Pareto op-
timal solutions according to the following definitions. For
ease of notation, let us denote an objective as Oj(θ) :=
E(x,y)∼pDLj (y, f (x; θ)) , ∀j ∈ {1, . . . , J}.

Definition 3.1 (Pareto dominance). A solution θ ∈ Θ
dominates another solution θ′ ∈ Θ (denoted as θ ≺ θ′)
when both: i) θ is not worse than θ′ on any objective,
i.e.: Oj(θ) ≤ Oj(θ′), ∀j ∈ {1, . . . .J}, and: ii) θ
is better than θ′ on at least one objective, i.e.: ∃k ∈
{1, . . . , J} s.t. Ok(θ) < Ok(θ′).

Definition 3.2 (Pareto optimality). A solution θ ∈ Θ is
Pareto optimal if it is not dominated by any other solu-
tion. Therefore, the set of all Pareto optimal solutions
is defined as P := {θ ∈ Θ | @θ′ ∈ Θ : θ′ ≺ θ}. Mean-
while, the Pareto front F is the J-dimensional manifold
of the objective values of all Pareto optimal solutions
F :=

{
O(θ) ∈ RJ>0 | θ ∈ P

}
.

The problem of multi-objective optimization (MOO) can be
treated as single-objective optimization through the linear
scalarization problem of Equation 2, given a preference
vector r ∈ RJ>0.

θ∗r := arg min
θ

E(x,y)∼pD

J∑
j=1

rj Lj (y, f (x; θ)) (2)

Theorem 1. The optimal solution θ∗r of Equation 2 is
Pareto-optimal for any given r ∈ RJ>0.

Proof. We can show that no another solution θ′ domi-
nates θ∗r using a commonly known proof. If there exists
a different solution θ′ that dominates the optimal linear
scalarization solution θ∗, then by virtue of the Pareto op-
timality definition ∀j ∈ {1, . . . .J} : Oj(θ′) ≤ Oj(θ∗r)
and ∃k ∈ {1, . . . .J} : Ok(θ′) < Ok(θ∗r). If these
optimality conditions hold and knowing r ∈ RJ>0, then∑J
j=1 rjOj(θ′) <

∑J
j=1 rjOj(θ∗r) must be true, which is

not possible because θ∗r is the optimal solution of Equation 2.
Therefore, the above Pareto optimality conditions can not
hold and a dominating θ′ does not exist.

However, the loss functions Lj : Y × Y → R>0, j ∈
{1, . . . .J} are non-convex with respect to θ ∈ Θ in the case
when f(x, θ) : X ×Θ→ Y is a neural network. Therefore,
neural network weights θ∗r computed by first-order optimiza-
tion approaches are not the optimal solution of Equation 2.
As a result, optimizing neural networks through the linear
scalarization approach yields approximative Pareto-optimal
solutions. Consequently, we can create an approximation to
the Pareto optimal set of solutions by computing the optimal
parameters θ∗r of Equation 2 for varying preference vec-
tors r as P̂ :=

{
θ∗r ∈ Θ | r ∈ RJ>0

}
. Unfortunately, such a

strategy requires repeating Equation 2 multiple times with
randomly sampled preference vectors r, which is computa-
tionally intractable as |P̂| � 1.

4. Proposed Method
We propose to approximate the Pareto front via a one-shot
optimization procedure. Instead of solving multiple linear
scalarization problems (Equation 2) with different sampled
r, we condition the predictions of the neural network to
the preference vectors as f(x, r, θ) : X × RJ>0 × Θ → Y .
Practically, we concatenate the input x with the vector r and
train a neural network on this joint feature space. In that
manner, we can learn a single network f whose predictions
are optimized to achieve the Pareto front solution for the
respective inputted preference vectors. The objective for
optimizing the conditioned model is shown in Equation 3.
We restrict the choice of r ∈ [0, 1]

J
,
∑J
j=1 rj = 1 by

sampling from a Dirichlet distribution controlled with α ∈
RJ>0.

θ∗ := arg min
θ

E r∼Dir(α)
(x,y)∼pD

J∑
j=1

rj Lj (y, f (x, r; θ)) (3)

Let us denote any objective of the conditioned neu-
ral network with parameters θ given r as Oj(θ, r) :=
E(x,y)∼pDLj (y, f (x, r; θ)) ,∀j ∈ {1, . . . , J} and the cu-
mulative objective vector as O(θ, r) ∈ RJ>0. Once we
compute the optimal solution θ∗ of Equation 3, we can
afterwards effortlessly approximate the Pareto front as for-
mulated in Equation 4.

F̂ :=
{
O(θ∗, r) ∈ RJ>0 | r ∼ Dir (α)

}
(4)

The advantage of our approximation method is that creat-
ing the Pareto front demands a single conditioned neural
network with different randomly sampled r vectors, which
is more efficient than optimizing one new network from
scratch for every sampled r. To generate the Pareto front we
need just one gradient-based optimization run on the linear
scalarization of Equation 3.
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Unfortunately, although the linear scalarization approach
produces Pareto-optimal solutions, still the Pareto Front
is very narrow, a phenomenon witnessed by multiple au-
thors (Mahapatra & Rajan, 2020; Navon et al., 2021; Lin
et al., 2019). Prior work remedy this behavior by forcing the
solutions to collocate with a wide set of predefined rays on
the loss space (Lin et al., 2019; Mahapatra & Rajan, 2020).

We propose a novel penalty term for forcing the solution
to obey to the preference vector r by minimizing the an-
gle between r and the vector of losses ~L (x, y, r; θ) :=[
(Lj (y, f (x, r; θ)))

J
j=1

]
. Such a desired effect can be mod-

eled by maximizing the cosine similarity between the pref-
erence vector and the vector of losses as rT ~L(x,y,r;θ)

||r|| || ~L(x,y,r;θ)||
.

θ∗ := arg min
θ

E r∼Dir(α)
(x,y)∼pD

rT ~L (x, y, r; θ)

−λ rT ~L (x, y, r; θ)

||r|| || ~L (x, y, r; θ) ||
(5)

The resulting objective function is shown in Equation 5,
where we both minimize the losses through the term
rT ~L (x, y, r; θ), as well as maintaining a well-spread Pareto
front through maximizing the cosine similarity. We can
control the magnitude of the cosine similarity regularization
via a penalty hyperparameter λ ∈ R>0.

Algorithm 1: Efficient One-shot MOO

input: Labeled dataset: {(xn, yn)}Nn=1, Loss
functions: {Lj}Jj=1, Learning rate
scheduler: η : N→ R>0, Number of steps:
K, Penalty: λ ∈ R>0, Sampling: α ∈ RJ>0.

1 Initialize θ ∈ Θ

2 for i = 1, . . . ,K do

3 r ∼ Dir (α)

4 (x, y) ∼ pD

5 ~L (x, y, r; θ) :=
[
(Lj (y, f (x, r; θ)))

J
j=1

]
6 g := ∇θ

[
rT ~L (x, y, r; θ)− λ rT ~L(x,y,r;θ)

||r|| || ~L(x,y,r;θ)||

]
7 θ ← θ − η(i) g

return: θ

The actual gradient-based optimization procedure for the
conditioned prediction model is detailed in Algorithm 1,
where the procedure iterates through a sequence of mini-
batches (x, y) and at every step draws a random preference

vector r from a Dirichlet distribution. The conditioned
neural network parameters are updated using the gradient of
Equation 5 on the mini-batch objectives given the sampled
preference vector.

In this manner, optimizing our method has an algorithmic
complexity independent of J . In particular, it is worth
highlighting that we need only a single back-propagation
through the neural network f for the sum of the J losses, not
J back-propagations for every loss. Therefore, the proposed
method is asymptotically as fast as learning a simple single-
objective problem. Hence, we offer a free lunch multi-
objective optimization for deep learning from a runtime
perspective.

5. Experimental Protocol
5.1. Research Hypotheses and Designed Experiments

We analyse our method (named COSMOS3) along the fol-
lowing hypotheses:

• Hypothesis 1: Does our method generate qualitative
Pareto fronts compared to the state-of-the-art tech-
niques while being faster in terms of training time?
Experiment 1: We compare our method against state
of the art baselines: PHN-LS, PHN-EPO (Navon et al.,
2021), ParetoMTL (Lin et al., 2019), which represent
MOO baselines that are able to generate Pareto fronts
with gradient-based methods. We use two sets of pub-
licly available multi-objective datasets: in the realm of
fair classification (Adult, Compass, and Default) and
image classification (three variants of Multi-MNIST).

• Hypothesis 2: Does our proposed MOO approach
compete strongly against single-objective baselines?
Experiment 2: We compare our Pareto fronts against
single-objective baselines on the datasets mentioned in
Experiment 1.

• Hypothesis 3: Does the proposed cosine similarity
penalty term achieve a wider-spread Pareto front?
Experiment 3: We perform an ablation study on dif-
ferent values of λ and α to understand its effect on
the generated Pareto front for the image classification
datasets.

• Hypothesis 4: Can our approach scale to large datasets
and optimize state of the art deep neural networks?
Experiment 4: We train EfficientNet-B4 on the larger
CelebA dataset and demonstrate the quality of the
achieved Pareto front as well as the training time.

3COSMOS: Conditioned One-shot Multi-Objective Search
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Figure 1. Comparison of the Pareto fronts on fairness and image classification datasets against SOTA baselines

5.2. Experimental Setup

The experiments aim at demonstrating the scalability as well
as the quality of the results of our method. Unfortunately,
these two requirements are mutually infeasible. If the state-
of-the-art methods cannot scale to very deep models, then
we cannot assess the comparative quality of the Pareto fronts
generated by COSMOS against the prior work on the large-
scale MOO setup. As a solution, we follow the strategy
below:

1. We show the quality of the Pareto fronts generated by
COSMOS on the identical small-scale experimental
setup as in the published papers of the baselines. We
clarify that all the three baselines (PHN-LS, PHN-EPO,
ParetoMTL) used a toy-scaled LeNet architecture for the
published experiments with small-size datasets (Multi-
Mnist and Multi-Fashion).

2. After we show the quality of the Pareto fronts generated
by COSMOS versus the state-of-the-art on the small-
scale setup, then we demonstrate the scalability of COS-
MOS on the larger CelebA dataset with a deep Efficient-
Net model. It is important to highlight that none of
the baselines can scale to this experiment. ParetoMTL
needs to train one different EfficientNet network for each
point on the Pareto front, while PHN-LS and PHN-EPO
increase the number of trainable parameters to approxi-
mately 100× that of an EfficientNet architecture.

5.3. Reproducibility

In terms of reproducibility, we set the hyperparameters for
the baselines following the values defined in their papers
and official implementations (details in the appendices). To
make the baselines even more competitive, we perform early
stopping using hyper-volume (Zitzler et al., 2007) computed
on the validation set. Unless mentioned otherwise we set
the batch size to 256 and use Adam (Kingma & Ba, 2015)
with a learning rate of 10−3. We report the mean scores and
Pareto fronts over 5 independent runs for each method and
dataset, apart from CelebA. We use (2, 2) as the reference
point for hyper-volume and 25 equally distributed test rays.

Fairness on tabular data. We preprocess the data of the
Adult (Dua & Graff, 2017), Compass (Angwin et al., 2016),
and Default (Yeh & Lien, 2009) datasets and select “sex”
as the binary sensible attribute denoted with a resulting in
Dfair := {(xn, an, yn)}Nn=1 with an ∈ {0, 1}. As a differ-
entiable fairness objective we use the hyperbolic tangent
relaxation of Difference of Equality of Opportunity (D̂EO)
(Padh et al., 2020) defined as:

D̂EO =
1

N

∑
a=0
y=1

t (f(·); c)− 1

N

∑
a=1
y=1

t (f(·); c) (6)

where t(x; c) denotes tanh (c ·max (0, x)) and set c = 1
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Table 1. Results compared to the state-of-the-art methods (HV: hyper-volume, Training time in sec)

Method Adult Compass Default Multi-MNIST Multi-Fashion Fash.+MNIST

HV Time HV Time HV Time HV Time HV Time HV Time

Single Task - 48 - 16 - 34 2.85 391 2.23 421 2.77 398
PHN-EPO 3.34 59 3.71 17 3.11 27 2.83 1554 2.20 1852 2.78 1715
PHN-LS 3.34 23 3.71 7 3.12 18 2.83 636 2.20 700 2.76 723
ParetoMTL 2.90 539 2.15 83 3.10 334 2.90 4087 2.24 4210 2.72 4142

COSMOS 3.34 31 3.72 17 3.12 35 2.94 501 2.32 379 2.83 498
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Figure 2. Comparison of COSMOS against single-objective baselines

for all experiments.

In compliance with the setup of prior work (Navon et al.,
2021), we train a Multi-Layer Perceptron with two hidden
layers (60 and 25 dimensions) and ReLU activation for 50
epochs. The binary cross-entropy and D̂EO represent the
multi-objective losses. Furthermore, we use 70% training,
10% validation, 20% test splits, and set λ = 0.01 and α1 =
α2 = 0.5. Due to the high difference in scales in Default
dataset we set α1 = 0.1, i.e. sampling more in the vertex of
the cross-entropy loss.

Multi-MNIST. The Multi-MNIST datasets are constructed
by overlaying two digits with a slight offset to the bottom
right (BR) and top left (TL). The MTL problem is predicting
the correct class for both instances at the same time. For
a detailed description of the Multi-MNIST dataset and its
variants see Sabour et al., 2017 and Lin et al., 2019. We
use LeNet (LeCun et al., 1999) with task-specific heads
similar to prior work (Sener & Koltun, 2018) and decay the
learning rate at epochs 20, 40, 80, 90 by 0.1. As losses we
define cross-entropy for the BR and TL tasks. We use 10%
of the training data as validation split, and set λ = 8 and
α1 = α2 = 1.2, apart from Multi-Fashion where λ = 2. For
fusing the image x and the preference vector r we transform
r to the image space using transposed convolutions and then
concatenate the latent vector representation with the image.
Concretely, we feed r to a transposed CNN with 2 layers
with J hidden dimensions, kernel size 4 and 6, and ReLU

activation. This results in feature maps of size J × 10× 10
which we then upsample to J × 36 × 36 and append as
channels to the image. Because J = 2, the fusion of x and
r yields a 3× 36× 36 augmented input to LeNet.

CelebA. We rescale the images of CelebA (Liu et al., 2015)
to 64× 64 and follow the predefined splits. The deployed
prediction model is an ImageNet-pretrained EfficientNet-B4
network (Tan & Le, 2019) (18m parameters) with a single-
neuron output layer per objective. We set the learning rate
to 5× 10−4 and batch size to 32. Overall, the fusion of the
preference vector with the image creates a 5×64×64 input
tensor. As objectives we define binary cross-entropy for two
easy and two hard tasks, utilizing insights of Sener & Koltun,
2018. As hard tasks we pick “Oval Face” and “Pointy Nose”
(A25 and A27), as easy tasks “Goatee” and “Mustache”
(A16 and A22). The hyperparameters for COSMOS are
λ = 3 and α = 1; the missclassification rate is computed
by taking the values from the center ray (.5, .5) although
more elaborated methods are available (Wang & Rangaiah,
2017). For single task we average the individual scores, and
we perform early stopping based on the validation set.

6. Results
Fairness on tabular data and Multi-MNIST.

The results of Table 1 show that COSMOS compares favor-
ably to the baselines in terms of the quality of the Pareto
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Figure 3. Convergence of the Pareto fronts generated by COSMOS on the image classification datasets
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front measured through the hyper-volume metric. We draw
attention that COSMOS has only 5% more parameters than
the single-task network, whereas PHN has ca. 100 times
more parameters than the single-task network (see the appen-
dice for details). However, due to the tiny size of the neural
networks (2-layer MLP and LeNet) and the small datasets,
this huge scalability gap is not reflected proportionally to the
training time (a known inefficiency of GPU-based training
for tiny models). Nevertheless, the empirical results indi-
cate that COSMOS does not compromise the quality of the
Pareto fronts, despite its scalability advantage, addressing
Hypothesis 1.

Furthermore, COSMOS is not outperformed by the Pareto
front baselines (PHN-EPO, PHN-LS and ParetoMTL) on
any of the 6 datasets in terms of hyper-volume. We ommit
hyper-volume for the single task baseline on the fairness
datasets because unlike MTL problems, the single-task op-
tima are mutually exclusive. Additionally, there exist trivial
solutions for fairness which can achieve perfect scores, e.g.
a constant classifier.

For Multi-MNIST beeing a multi-task problem, we indeed
outperform the single task baseline in all three datasets,
which indicates that our method fulfills Hypothesis 2. A
further analysis of the Pareto fronts compared to the SOTA

methods is shown in Figure 1, while a comparison to the
single task method in Figure 9. Moreover, Figure 3 demon-
strates that our method converges fast and is able to generate
a well-spread Pareto front after 10 epochs.

Ablation study. To analyze the impact of the cosine simi-
larity penalty, we ablate the effect of λ and α on the Pareto
by varying α ∈ (0.1, 0.7, 1.2) and λ ∈ (1, 3, 5). Figure 10
clearly demonstrates the crucial importance of the cosine
penalty and answers Hypothesis 3. In cases where λ is
small, the Pareto front is at the optimum although it is very
narrow. Increasing the penalty yields a wider Pareto front.
In contrast, the choice of α influences the quality of the
Pareto front (not the width) via the sampling mechanism.
For small α < 1, we sample more at the vertices of the
simplex yielding high-interest points dedicated to each loss.
We provide ablations on the other datasets in the appendix.

CelebA. We show the Pareto fronts for the easy and hard
tasks in Figure 5. The EfficientNet model pretrained on Im-
agenet transfers very quickly on the Celeb-A dataset. COS-
MOS is capable of generating a well-spread Pareto front
within a few optimization epochs and converges entirely
after 25 epochs.

In addition, Table 2 presents the comparative analysis
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Table 2. Results on CelebA
HV Mean MCR Time (h)

Hard Tasks

Single Task 2.222 24.66% 3.08
COSMOS 2.221 25.29% 3.30

Easy Tasks

Single Task 3.719 3.15% 3.11
COSMOS 3.706 3.47% 3.30

against the single-task baseline. COSMOS is qualitatively
comparable to the baseline, but in contrast generates a full
Pareto front instead of a single point. Moreover, COSMOS
computes the front within a small overhead of 7% additional
training time when both methods run for 25 epochs. This
confirms Hypothesis 4 and demonstrates that COSMOS of-
fers a free lunch Pareto front approximation, basically at the
same time budget required to train a single network on a
single task.
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Figure 5. Pareto fronts and convergence on CelebA

7. Limitations of our method
We stress that the Pareto fronts by COSMOS are an approx-
imation, because neural networks are not able to find the
exact optimum of the linear scalarization problem. However,
the provided illustrations of the approximated Pareto fronts
indicate the Pareto-optimality of the achieved solutions for
different preference vectors. Secondly, we highlight that
conditioning the prediction network to the preference vec-
tors cannot model objectives that do not depend on the input,
e.g. an Lp norm regularization objective on weights.

8. Conclusions
Multi-objective Optimization is a crucial task for the Ma-
chine Learning community due to the wide array of real-life
tasks which are intrinsically multi-objective. Unfortunately,
there exist no scalable MOO method for deep neural net-
works which is able to generate a Pareto front of the solu-
tions, in a way that a practitioner can decide on the trade-
offs of the competing objectives. Existing papers either
relied on learning one network per solution, or deploying
hyper-networks which introduce a high number of trainable
parameters. In contrast, throughout this paper we introduced
COSMOS, a method that is able to produce qualitative ap-
proximations of the Pareto front at a very small training time
overhead compared to the single-objective optimization of
one neural network. We condition the prediction model to
the choice of the preference vector for the objectives and
solve a regularized version of the linear scalarization prob-
lem, in a manner that a single network learns to adjust the
predictions based on the inputted trade-off preference for all
the objectives. Furthermore, we penalize the Pareto fronts to
be widely spread by minimizing the angle between achieved
solutions in the space of objectives and the inputted prefer-
ence vectors. Overall, a single optimization run is required
to optimize our multi-objective approach, which is asymp-
totically equal to the optimization of a single-objective task.
In a series of experiments, we demonstrated that the ap-
proximated Pareto fronts are competitive against state-of-
the-art baselines. Furthermore, we showed that COSMOS
approximates a Pareto front for the CelebA dataset using the
EfficientNet model with only 7% of training time overhead
compared to single objective optimization tasks.
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A. More objectives on CelebA
Three to four objectives. We also tried more than two objectives on CelebA using EfficientNet-B4. Here, we report
the individual task errors in Table 3. As in the main paper we use the “middle ray” 1

J ∀j ∈ {1, 2, . . . J} to calculate the
Missclassification Rates (MRC) for each task due to its simplicity. Please note that the MCRs do not represent the whole
Pareto front but rather one particular point of it. As tasks we use “Goatee”, “Mustache”, “No Beard”, “Pale Skin” in this
order. We do not report the hypervolume as obtaining evenly distributed points on a (J − 1)-sphere is not trivial for J > 3.
We again achieve similar performance compared to the single task baseline using the same setting as in the main paper.

The Pareto front for the first three objectives is shown in Figure 6. It was obtained using 25 test rays evenly distributed on a
2-sphere using the Fibonacci sphere algorithm.

Ten random objectives. To demonstrate that we did not cherry-pick the tasks we also evaluate COSMOS on 10 randomly
picked tasks and report the MCR compared to single task. The tasks are: “Black Hair”, “Wearing Lipstick”, “Bald”,
“Goatee”, “Big Nose”, “Smiling”, “Receding Hairline”, “Sideburns”, “No Beard”, “Chubby”. We report the results in
Table 4. We use the same setting as in the main paper but increased the training epochs to 30.
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Figure 6. Pareto front found by COSMOS on CelebA with three tasks

Table 3. Results on CelebA with up to 4 objectives

MCR Task 1 MCR Task 2 MCR Task 3 MCR Task 4

2 Tasks 3.07% 3.88% - -
3 Tasks 3.16% 3.93% 5.28% -
4 Tasks 3.53% 3.59% 5.40% 3.14%
Single Task 2.87% 3.30% 4.82% 3.00%

B. Intuition behind the Cosine Similarity penalty
We would also like to add two illustrations that demonstrate the intuition behind deploying the cosine similarity as a penalty.
Figure 7 shows the difference between the Pareto front found using regular linear scalarization and what is actually desired.

Figure 8 shows how the penalty ensuring a small angle between the loss vector ` and the preference vector ~r pushes the
solution closer towards the desired position while still minimizing both losses. This way minimizing the losses as well as
reaching a position on the Pareto front are balanced during optimization.
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Table 4. Results on CelebA with 10 objectives

Single Task Cosmos

Task 1 MCR 10.90% 11.63%
Task 2 MCR 6.55% 8.87%
Task 3 MCR 1.19% 2.00%
Task 4 MCR 2.87% 3.24%
Task 5 MCR 18.18% 18.06%
Task 6 MCR 7.52% 8.84%
Task 7 MCR 6.72% 6.87%
Task 8 MCR 2.56% 3.43%
Task 9 MCR 4.82% 6.05%
Task 10 MCR 4.59% 5.26%

Actual Desired

Figure 7. Pareto front found by linear scalarization (left) vs. desired (right)

Figure 8. The effect of angle minimization on achieving a wide spread Pareto front.

C. Additional figures
See Figure 9 for a comparison of COSMOS to the single task baseline for the fairness datasets.
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See Figures 10 for an ablation of λ and α on the datasets ommitted in the main paper. For the fairness datasets we ablate
λ ∈ {0, 0.01, 0.1}. They demonstrate the same behaviour as for Multi-MNIST, shown in the paper, although the cosine
similarity seems not as important for fairness as for the MTL tasks. This is plausible due to the large difference in scales.
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Figure 9. Comparison of COSMOS against single-objective baselines

D. More detailed result tables
For more detailed results on the three fairness and image classification datasets see Table 5.

E. Experimental Setup (further details)
We ran all experiments on a Nvidia GeForce RTX 2080 GPU with 12GB RAM. As seeds we used 1, 2, 3, 4, 42.

Fairness on tabular data. After preprocessing the datasets have the following dimensions: Adult 48, 842× 88, Compass
6, 172× 20, Default 30, 000× 90. For HPN where we use learning rate 0.0001 set as default by the authors.

Multi-MNIST. For ParetoMTL we decay at 15,30,45,60,75,90 it to γ = 0.5 following the authors’ implementation. We
train HPN for 150 epochs with learning rate 0.0001, no scheduler and α = 0.2, again following their implementation.

CelebA. To transform the images we first resize so the smaller edge matches 64 pixels. Then we crop in the center and
normalize to 0.5 mean and 0.5 standard deviation. We remove all Batchnorm layers.
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Table 5. Detailed results on fairness and image classification datasets

Hyper Vol. Time (Sec) # Params.

Adult

Single Task 3.36 ± 0.01 48 6k
PHN-EPO 3.34 ± 0.00 59 716k
PHN-LS 3.34 ± 0.00 23 716k
ParetoMTL 2.90 ± 0.05 539 6k
COSMOS 3.34 ± 0.01 31 7k

Compass

Single Task 3.81 ± 0.00 16 2k
PHN-EPO 3.71 ± 0.01 17 304k
PHN-LS 3.71 ± 0.01 7 304k
ParetoMTL 2.15 ± 0.37 83 2k
COSMOS 3.72 ± 0.01 17 2k

Default

Single Task 3.12 ± 0.00 34 7k
PHN-EPO 3.11 ± 0.01 27 728k
PHN-LS 3.12 ± 0.00 18 728k
ParetoMTL 3.10 ± 0.00 334 7k
COSMOS 3.12 ± 0.00 35 7k

Multi-MNIST

Single Task 2.85 ± 0.01 391 42k
PHN-EPO 2.83 ± 0.03 1,554 3,243k
PHN-LS 2.83 ± 0.03 636 3,243k
ParetoMTL 2.90 ± 0.01 4,087 42k
COSMOS 2.94 ± 0.02 501 43k

Multi-Fashion

Single Task 2.23 ± 0.01 421 42k
PHN-EPO 2.20 ± 0.03 1,852 3,243k
PHN-LS 2.20 ± 0.03 700 3,243k
ParetoMTL 2.24 ± 0.02 4,210 42k
COSMOS 2.32 ± 0.01 379 43k

Multi-Fashion+MNIST

Single Task 2.77 ± 0.02 398 42k
PHN-EPO 2.78 ± 0.02 1,715 3,243k
PHN-LS 2.76 ± 0.05 723 3,243k
ParetoMTL 2.72 ± 0.02 4,142 42k
COSMOS 2.83 ± 0.03 498 43k



Scalable Pareto Front Approximation for Deep Multi-Objective Learning

0.5 0.6 0.7 0.8 0.9 1.0
Loss Task TL

0.5

0.6

0.7

0.8

0.9

1.0
Lo

ss
 T

as
k 

BR
= 1

0.5 0.6 0.7 0.8 0.9 1.0
Loss Task TL

= 3
= 0.1
= 0.7
= 1.2

0.5 0.6 0.7 0.8 0.9 1.0
Loss Task TL

= 5
= 0.1
= 0.7
= 1.2

Multi-Fashion

0.2 0.4 0.6 0.8 1.0
Loss Task TL

0.35

0.40

0.45

0.50

0.55

0.60

Lo
ss

 T
as

k 
BR

= 1
= 0.1
= 0.7
= 1.2

0.2 0.4 0.6 0.8 1.0
Loss Task TL

= 3
= 0.1
= 0.7
= 1.2

0.2 0.4 0.6 0.8 1.0
Loss Task TL

= 5
= 0.1
= 0.7
= 1.2

Multi-Fashion+MNIST

0.35 0.40 0.45 0.50 0.55
Loss

0.02

0.04

0.06

0.08

0.10

0.12

DE
O

= 0

0.35 0.40 0.45 0.50 0.55
Loss

= 0.01
= 0.1
= 0.7
= 1.2

0.35 0.40 0.45 0.50 0.55
Loss

= 0.1
= 0.1
= 0.7
= 1.2

Adult

0.25 0.50 0.75 1.00 1.25
Loss

0.0

0.1

0.2

0.3

DE
O

= 0

0.25 0.50 0.75 1.00 1.25
Loss

= 0.01
= 0.1
= 0.7
= 1.2

0.25 0.50 0.75 1.00 1.25
Loss

= 0.1
= 0.1
= 0.7
= 1.2

Compass

0.44 0.45 0.46 0.47 0.48
Loss

0.006

0.008

0.010

0.012

0.014

DE
O

= 0

0.44 0.45 0.46 0.47 0.48
Loss

= 0.01
= 0.1
= 0.7
= 1.2

0.44 0.45 0.46 0.47 0.48
Loss

= 0.1
= 0.1
= 0.7
= 1.2

Default

Figure 10. Ablation of the impact of the cosine similarity penalty and the Dirichlet sampling parameter.


