
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Summarizing user‑item matrix by group utility
maximization

Wang, Yongjie; Wang, Ke; Long, Cheng; Miao, Chunyan

2023

Wang, Y., Wang, K., Long, C. & Miao, C. (2023). Summarizing user‑item matrix by group
utility maximization. ACM Transactions On Knowledge Discovery From Data, 17(6), 86‑.
https://dx.doi.org/10.1145/3578586

https://hdl.handle.net/10356/166437

https://doi.org/10.1145/3578586

© 2023 Association for Computing Machinery. All rights reserved. This paper was published
in ACM Transactions on Knowledge Discovery from Data and is made available with
permission of Association for Computing Machinery.

Downloaded on 28 Mar 2024 21:00:15 SGT

Summarizing User-Item Matrix By Group Utility
Maximization
YONGJIE WANG, Nanyang Technological University, Singapore

KE WANG, Simon Fraser University, Canada

CHENG LONG, Nanyang Technological University, Singapore
CHUNYAN MIAO, Nanyang Technological University, Singapore

A user-item utility matrix represents the utility (or preference) associated with each (user, item) pair, such

as citation counts, rating/vote on items or locations, and clicks on items. A high utility value indicates a

strong association of the pair. In this work, we consider the problem of summarizing strong association for

a large user-item matrix using a small summary size. Traditional techniques fail to distinguish user groups

associated with different items (such as top-𝑙 item selection) or fail to focus on high utility (such as similarity

based subspace clustering and biclustering). We formulate a new problem, called Group Utility Maximization,

to summarize the entire user population through 𝑘 user groups and 𝑙 items for each group; the goal is to

maximize the total utility of selected items over all groups collectively. We show this problem is NP-hard even

for 𝑙 = 1. We present two algorithms. One greedily finds the next group, called Greedy algorithm, and the

other iteratively refines existing 𝑘 groups, called 𝑘-max algorithm. Greedy algorithm provides the (1 − 1

𝑒)
approximation guarantee for a nonnegative utility matrix, whereas 𝑘-max algorithm is more efficient for large

datasets. We evaluate these algorithms on real-life datasets.

CCS Concepts: • Information systems→ Data mining; Summarization; • Theory of computation→
Design and analysis of algorithms.

Additional Key Words and Phrases: Data summarization, Greedy algorithm, 𝑘-max algorithm, Group utility

maximization

1 INTRODUCTION
In the zettabyte era, massive volumes of data are produced every day, and it is problematic to

analyze, retrieve, and comprehend data at such scales. To mitigate this problem, data summarization

techniques [1, 20] provide a concise, compact, yet informative representation of original data.

These techniques include top-𝑙 selection [21], histograms [20], clustering [31], sampling [13, 32],

matrix decomposition [2], frequent itemset mining [7], principal component analysis (PCA) [28]

and wavelets [34].

1.1 Motivation
In this paper, we consider summarizing a utility matrix with rows representing users and columns

representing items. Each entry in the user-item utility matrix represents the utility (or preference)

associated with a (user,item) pair. The terms of “user” and “item” are only for convenience and can

represent any two classes of objects that interact in some way, such as author-to-paper citation,

customer-to-item purchases, user’s rating/vote on items or locations, user’s website clicks, weighted

edges in a social network, gene expression scores under conditions and samples’ feature importance

for model’s prediction. In many real life applications, a high utility is more interesting because it

indicates a strong association, e.g., a high citation count, a high rating, a presence of purchase, a

high level of gene expression, importance of a feature, etc.

Authors’ addresses: Yongjie Wang, yongjie002@e.ntu.edu.sg, Nanyang Technological University, N4-B3-06, 50 Nanyang

Avenue, Singapore, 639798; Ke Wang, wangk@cs.sfu.ca, Simon Fraser University, 8888 University Drive, Burnaby, British

Columbia, Canada, V5A 1S6; Cheng Long, c.long@ntu.edu.sg, Nanyang Technological University, N4-2c-117a, 50 Nanyang

Avenue, Singapore, 639798; ChunyanMiao, ascymiao@ntu.edu.sg, Nanyang Technological University, N4-B3-06, 50 Nanyang

Avenue, Singapore, 639798.

2 Yongjie Wang, et al.

Table 1. The user-item matrix D contains the feature importance (i.e., IG) values for the survival probability
𝐹 (𝑥) of six Titanic correctly predicted survivors 𝑥 , where 𝐹 is a black-box ML model. The IG value of the
feature 𝑥𝑖 for a survivor 𝑥 represents the contribution of 𝑥𝑖 to the prediction 𝐹 (𝑥) and 𝑥𝑖 with a larger IG
value is more influential for 𝑥 ’s prediction. With 𝑘 = 2 and 𝑙 = 2, GUM partitions the six survivors into two
groups, i.e., {𝑈1,𝑈2,𝑈3} and {𝑈4,𝑈5,𝑈6}, and selects two most influential features for each group, marked by
the green and pink colors.

Pclass Sex Age SibSp Parch Fare C Q S

𝑈1 1.30 1.49 -0.20 -0.12 -0.05 0.28 -0.24 0.01 0.14

𝑈2 1.12 1.40 0.06 0.15 -0.04 0.31 0 -0.02 -0.10

𝑈3 1.22 1.49 0.15 0.25 -0.14 0.27 -0.01 -0.02 -0.12

𝑈4 -0.35 1.01 0.82 0.16 0.29 0 -0.02 0.01 -0.19

𝑈5 -0.34 0.88 0.92 0.09 0.41 -0.04 -0.16 0.01 0.35

𝑈6 0.49 1.34 0.72 -0.14 0.11 0.03 -0.03 -0.01 -0.16

The main question studied in this work is: given a user-item utility matrix, how to summarize

the high utility interactions of the whole user pool using a small summary. Take the MovieLens

data [4] as an example where millions of users give ratings to hundreds of thousands of movies.

Scanning through individual user’s ratings does not give a high level overview on what movies

users like due to the large number of users and movies. Traditional summarization techniques fail

to address our summary that focuses on high utility. For example, the top-𝑙 item selection [21]

summarizes all users using the same 𝑙 items though typically different user groups may prefer

different movies, therefore, the top-𝑙 items fail to maximize the utility for different user groups;

biclustering [24] groups users and items according to the similarity of cells in a matrix, which fails

to focus on high utility.

With the above in mind, we define a new summarization problem, called Group Utility Maxi-
mization (GUM): given a user-item matrix and integers 𝑘 and 𝑙 , we want to partition users into 𝑘

groups and select 𝑙 items for each group so that the sum of utility of selected items over all groups

is maximized. In other words, we want to summarize all users through 𝑘 groups with each group

having its own top 𝑙 items. The selected items for each group summarize the preferences of the

users in the group. Since the data analyst has to read 𝑙 items for each group, 𝑘 × 𝑙 represents the
summary size and 𝑘, 𝑙 are usually small integers. Note that users are strictly partitioned but items

selected for different groups can be overlapped. The objective is to group the users such that the

sum of the utilities of selected items over all groups is maximized. This objective is different from

clustering that is similarity based, and different from max-sum submatrix that extracts certain

submatrices that do not always contain all users. See more discussion on related works in Section 2.

Consider the MovieLens example again. Despite millions of users and hundreds of thousands of

movies and billions of ratings, GUM will find a summary of size 𝑘 × 𝑙 , which summarizes all users

in 𝑘 groups with each group being summarized by 𝑙 top rated items. The case of 𝑘 = 1 summarizes

all users in one group by the top-𝑙 items. In general, there may be 𝑘 > 1 groups of users and each

group has its distinct preferred items. One application of GUM is summarizing the explanation of a

black-box model’s prediction, as shown in the following example.

Example 1. Consider a neural network 𝐹 (𝑥) for predicting the surviving probability of Titanic

survivors
1
, where each survivor 𝑥 has the features 𝑥𝑖 : Pclass (cabin class), Sex, Age, Sibsp (number of

siblings/spouses aboard), Parch (number of parents/children aboard), Fare, and Port of embarkation

denoted by C, Q, S. [35] proposes the Integrated Gradient (IG) to measure the attribution (i.e.,

1
https://www.kaggle.com/c/titanic

Summarizing User-Item Matrix By Group Utility Maximization 3

importance) of each feature 𝑥𝑖 to the prediction 𝐹 (𝑥). Table 1 shows the IG values of six survivors

as a user-item matrix D. A high IG value means that the feature in the corresponding column is

more important for 𝐹 (𝑥) for the survivor 𝑥 in the corresponding row. Suppose that the data analyst

wants to get a quick grasp of important features for 𝐹 (𝑥) for all survivors 𝑥 , but this is not easy
because important features generally vary for different survivors, especially when there is a large

number of users and features.

Through the GUM problem, the data analyst can get a high level summary of important features,

as shown by the two colors in Table 1 where the survivors are partitioned into 𝑘 = 2 groups and

each group is summarized by 𝑙 = 2 most influential features. The choices of these groups and

selected items will maximize the sum of the IG values over the 12 colored entries. The group in

green has Pclass and Sex as the two most influential factors for the surviving probability, and

the group in pink has Sex and Age as two most influential factors for the surviving probability.

Importantly, the data analyst only needs to read 6 × 2 IG values to get a high level overview about

important features, regardless of the number of survivors and features in the matrix. Such a group

level summary provides a concise and easy-to-understand explanation of important features for all

survivors. □

1.2 Contributions
The major contribution of this paper is summarized as follows:

(1) (Section 3) We define the GUM problem for a user-item utility matrix D and show the

NP-hardness of the problem and the monotonicity and submodularity of the objective

function behind the problem.

(2) (Section 4) We present an algorithm called Greedy, which finds one group that maximizes

the marginal gain at a time. This algorithm provides a (1 − 1

𝑒
) approximation factor when

the matrix is non-negative.

(3) (Section 5) We present a heuristic 𝑘-max algorithm that iteratively refines the 𝑘 groups.

In each iteration, it performs Assignment and Update steps to maximize the utility from 𝑘

initial groups. Compared with the Greedy algorithm, the 𝑘-max algorithm is more scalable

for larger datasets since it does not evaluate an exponential number of 𝑙-itemsets as the

Greedy algorithm does.

(4) (Section 6)We evaluate the usefulness and efficiency of the proposed summarizationmethods

on real life datasets. The study shows that 1) the two proposed methods produce better utility

than existing summarization techniques, 2) our summary provides an easy-to-understand

overview of the whole dataset, and 3) the 𝑘-max algorithm achieves empirically comparable

utility but is more efficient than the Greedy algorithm for large datasets.

Among these contributions, Item 1 (partial), Item 3, and Item 4 (partial) have been covered in our

prior work [37], and Item 1 (partial), Item 2, and Item 4 (partial) are newly covered in this extended

paper. Specifically, for Item 1, the NP-hardness, monotonicity and submodularity results are newly

introdued in this paper, for Item 2, it is completely new in this paper, and for Item 4, we conducted

more experiments, including the comparison of the new Greedy algorithm, more utility evaluations

in Section 6.3, and scalability evaluations on the new dataset MovieLens in Section 6.4.

2 RELATEDWORK
In this section, we discuss the differences of our work from several related works, namely, clustering,

subgroup discovery, max-sum submatrix, preference learning and data summarization.

Clustering [3, 30, 36] is the task of grouping a set of objects such that objects in the same

group are more similar to each other than to those in different groups. Subspace clustering [29]

4 Yongjie Wang, et al.

groups objects in subspace. Motivated by gene expression analysis for finding submatrices of

genes exhibiting similar behaviors, biclustering [11], a.k.a. co-clustering [17], finds genes subsets

(rows) with similar expression values (columns). See the survey papers [24, 33] for more details of

clustering methods. All these problems rely on a similarity measure for a pair of objects. Our GUM

does not use any similarity measure because the goal is to maximize the utility sum of groups, not

similarity of objects. In Example 1, features C and Q (ports of embarkation) are more similar than

Pclass and Sex for the first group but the latter is more interesting for explaining the prediction

because higher IG values mean more importance to the survival prediction. Due to this difference

in the objective, existing clustering works cannot address our problem.

Subgroup discovery [19, 38] is concerned with finding descriptive associations (usually repre-

sented as rules) among attributes with respect to a target property of interest. For example, if the

success rate of an operation is 30% over all patients and if the success rate for female patients under

30 and with drug A intake is 90%, these algorithms will identify the rule “Gender = Female AND

Age < 30 AND Drug = A -> Operation = SUCCESS”, which describes an unusually high operation

success rate for a subgroup. Exceptional model mining [22] allows more than one target and looks

for unusual target interaction. Exceptional preferences mining [15] searches for subgroups with

deviating preferences. For example, if a subgroup ranks tekka-maki consistently in the top 3 while

the majority in the dataset ranks it in the last 3, this measure will find the subgroup to be very

interesting. All these works find interesting subsets of data with respect to some pre-selected target

properties (e.g., operation success rate and tekka-maki). In contrast, GUM summarizes the whole
dataset by partitioning the dataset into groups and maximizing the utility sum for groups.

Max-sum submatrix [9, 10] targets highly expressed subsets of genes and of samples by identi-

fying a submatrix with the maximum sum. [17] finds 𝑘 submatrices by constraint programming and

[8] adds the submatrix disjointness constraint. While similar in maximizing the sum of entries, there

are key differences between these works and ours. Motivated by the objective of summarization,

our groups cover all users and are nonoverlapping in rows but not in columns. In contrast, the

max-sum submatrix solution allows overlapping of both rows and columns, and does not require

to cover all rows. The max-sum submatrix problem assumes that the matrix contains both positive

and negative entries. For a nonnegative matrix, which is common for ratings, votes, and implicit

feedback, their problem will return the entire matrix as the solution due to the maximum sum,

which is useless for our summarization. The authors of [9, 10] suggested to subtract all entries by a

constant to make the matrix contain both positive and negative values, but did not give a clue on

what constant should be used.

Preference learning [16] aims to build a global predictive model to predict the order of prefer-

ences for new cases, and recommender system [14] seeks to predict the rating that a user would

give to an unseen item. Our GUM is designed for a better understanding of preferences of existing

users, instead of prediction for future users.

Data summarization [6, 27, 39] targets to produce a compact summary of original data by

choosing the most informative and representative content, e.g., keyframes [27], keywords [39]

and image prototypes [6]. Due to different problem contexts and objectives, these summarization

algorithms cannot address our GUM problem that maximizes the utility of selected entries. To the

best of our knowledge, our work is the first to summarize a dataset by 𝑘 groups with each group

being summarized by top-𝑙 interesting items.

3 PROBLEM STATEMENT
We now formally define the GUM problem and show the NP-hardness, the monotonicity, and the

submodularity of this problem. Some frequently used notations are given in Table 2.

Summarizing User-Item Matrix By Group Utility Maximization 5

Table 2. Frequently used notations.

Symbol Description
D ∈ R𝑁×𝑀 dataset of 𝑁 rows over𝑀 columns 1, ..., 𝑀

𝑟𝑖𝑐 the value of item 𝑐 of user 𝑟𝑖 in D
(𝑘, 𝑙) problem parameters: group number and itemset size

𝐷 𝑗 a subset of rows

{𝐷1, ..., 𝐷𝑘 } a partitioning of D
𝑋 𝑗 𝑙-itemset, i.e., a set of 𝑙 items

{𝑋1, ..., 𝑋𝑘 } a collection of 𝑙-itemsets

ℎ(·) the utility function over a collection of 𝑙-itemsets on a row

𝑓 (·) the utility function over a collection of 𝑙-itemsets on D

3.1 Definitions
In this section, we consider a user-itemmatrixD ∈ R𝑁×𝑀 , consisting of𝑁 rows for users {𝑟1, ..., 𝑟𝑁 }
and𝑀 columns for items {1, ..., 𝑀}. 𝑟𝑖𝑐 denotes user 𝑟𝑖 ’s score on item 𝑐 (e.g., vote, rating, etc.) and

a larger score represents a higher utility or preference. The only assumption is that the addition

operation is meaningful for entry values over rows and columns. For example, 𝑟𝑖𝑐 representing

ratings in 5-star scales is additive (because the sum returns the total number of stars), and 𝑟𝑖𝑐
in the log scale is not additive. For a set 𝑋 of 𝑙 items, a.k.a. 𝑙-itemset, and a user 𝑟𝑖 , we define

𝑔(𝑟𝑖 , 𝑋) ≡
∑

𝑐∈𝑋 𝑟𝑖𝑐 as the total score of 𝑟𝑖 over the items in 𝑋 . For a collection of 𝑙-itemsets

X = {𝑋1, ..., 𝑋𝑘 }, named summary, where 𝑋𝑖 ≠ 𝑋 𝑗 for 𝑖 ≠ 𝑗 , we define ℎ(𝑟𝑖 ,X) ≡ max𝑋 𝑗 ∈X 𝑔(𝑟𝑖 , 𝑋 𝑗)
and define the utility of X as

𝑓 (X) ≡
𝑁∑︁
𝑖=1

ℎ(𝑟𝑖 ,X) (1)

In other words, 𝑓 (X) is the total utility over all users by assigning each user 𝑟𝑖 to the 𝑋 𝑗 that

maximizes 𝑔(𝑟𝑖 , 𝑋 𝑗). Therefore, X induces a partitioning on the users. Let 𝑓 (∅) ≡ 0. Note that

ℎ(𝑟𝑖 ,X) can also be defined usingmin instead ofmax operator. In the rest of this work, we consider

only maximization because minimization can be performed by negating all utility values first.

Definition 1 (GUM Problem). Given a user-item matrix D, and numbers 𝑘 and 𝑙 , find a collection

of distinct 𝑙-itemsets X∗ = {𝑋1, ..., 𝑋𝑘 } such that

X∗ = argmax

X
𝑓 (X) (2)

We write 𝑓 (X∗) as 𝑓 ∗ (𝑘, 𝑙) or simply 𝑓 ∗ if 𝑘 and 𝑙 are understood. □

We say that a partitioning𝐷1, ..., 𝐷𝑘 ofD is induced byXwhere𝐷 𝑗 contains a user 𝑟𝑖 if ℎ(𝑟𝑖 ,X) =
𝑔(𝑟𝑖 , 𝑋 𝑗), that is,𝐷 𝑗 contains all users 𝑟𝑖 such that𝑋 𝑗 gives the maximum𝑔(𝑟𝑖 , 𝑋 𝑗), i.e., the maximum

sum of 𝑟𝑖 ’s scores on the items in 𝑋 𝑗 . This gives rise to the following equivalent definition of GUM.

Definition 2 (GUM Problem (Alternative)). Given a user-item matrix D and numbers 𝑘 and 𝑙 , find

distinct 𝑙-itemsets X = {𝑋1, ..., 𝑋𝑘 } such that for the partitioning 𝐷1, ..., 𝐷𝑘 induced by X,

𝑘∑︁
𝑗=1

∑︁
𝑟𝑖 ∈𝐷 𝑗

𝑔(𝑟𝑖 , 𝑋 𝑗)

is maximized. □

6 Yongjie Wang, et al.

Intuitively, (𝐷1, 𝑋1), ..., (𝐷𝑘 , 𝑋𝑘) is a group level summary where each 𝑋 𝑗 represents the 𝑙 most

preferred items (in terms of largest sum) over the users in the group 𝐷 𝑗 . The group number 𝑘

and description size 𝑙 represent the summary size, serving as the budget on the cost for reading

the summaries. For example, if D stores ratings/votes, the GUM solution summarizes what items

the users would like through a summary of size |𝑋1 | + · · · + |𝑋𝑘 | = 𝑘 × 𝑙 . Note that this size is
independent of the data size |D|. Similar to the cluster center that summarizes the location of points

in each cluster, the 𝑙-itemset 𝑋 𝑗 summarizes the preferred items for each group 𝐷 𝑗 . The difference

is that, instead of being the mean of points, 𝑋 𝑗 is the top-𝑙 items (in terms of score sum) in the

group. It is possible that some 𝐷 𝑗 is empty, which means that fewer than 𝑘 groups are sufficient to

achieve the same utility as 𝑘 groups.

Typically, 𝑙 is a small number, say 1 to 5, as too many items would overwhelm the human

analyst. 𝑘 is in the range [1, 𝑁]. 𝑘 = 𝑁 summarizes each user by personalized 𝑙 items, whereas

𝑘 = 1 summarizes all users by the same set of 𝑙 items and corresponds to the standard top-𝑙 items

selection over the whole data set. A smaller 𝑘 produces larger groups , thus, a larger variance of

scores in such groups. A larger 𝑘 leads to more customized preferences for smaller groups but the

summary size increases. 𝑘 can be specified by the analyst or determined similar to determining the

cluster number 𝑘 for 𝑘-means clustering methods (i.e., gradually increasing 𝑘 until the increase of

𝑓 ∗ slows down significantly). Finally, note that for the same 𝑙 , 𝑓 ∗ never decreases as 𝑘 increases,

and for the same 𝑘 , the average utility of selected items, i.e.,
𝑓 ∗

𝑁×𝑙 , never increases as 𝑙 increases
(because lower utility items are selected as 𝑙 increases).

The maximization objective in Definition 1 is sufficient for modeling other requirements in

practice. For example, for the 5-star rating scale, if both a low rating close 1 and a high rating close

to 5 are interesting, we need to summarize users in terms of both high ratings and low ratings.

In this case, we can shift the 5-star scale to the symmetric scale [−2, 1, 0, 1, 2] by subtracting the

medium rating 3 from every known rating and considerD defined by the absolute values of shifted

ratings in Definition 1. Then 𝑓 represents the sum over the distances from the medium rating 0

and the GUM problem will summarize the users into groups by the items that have most extreme

ratings.

3.2 Properties

With

(
𝑀
𝑙

)
possible 𝑙-itemsets, there are

((𝑀𝑙)
𝑘

)
possible summaries {𝑋1, ..., 𝑋𝑘 }. This number grows

quickly as𝑀, 𝑙, 𝑘 grow. The exception cases are 𝑘 = 1, which coincides with the top-𝑙 items selection

on the whole dataset, and 𝑘 = 𝑁 , which coincides with the top-𝑙 items selection for each user. In

general, even for the strict case 𝑙 = 1, GUM problem is NP-hard, as shown below.

Theorem 1. The GUM problem is NP-hard for 𝑙 = 1.

Proof. Consider the following NP-hard maximum coverage problem [12]: Given a number 𝑘 and

a collection of sets 𝑆 = {𝑆1, · · · , 𝑆𝑚}, find a subset 𝑆 ′ ⊆ 𝑆 of sets, such that |𝑆 ′ | ≤ 𝑘 and | ∪𝑆 𝑗 ∈𝑆 ′ 𝑆 𝑗 |
is maximized.

We can construct an instance of GUM problem from the maximum coverage problem in poly-

nomial time such that X is a solution to the GUM problem if and only if 𝑆 ′ is a solution to the

maximum coverage problem, where 𝑆 ′ is a subset of 𝑆 constructed from X. Therefore, if there is a
polynomial time algorithm for the GUM problem, we also have a polynomial time algorithm for

the maximum coverage problem.

We define the instance < 𝑁,𝑀,D, 𝑘, 𝑙 > for the GUM problem as follows. Let 𝑁 = | ∪𝑆 𝑗 ∈𝑆 𝑆 𝑗 |,
𝑀 = |𝑆 |, 𝑘 be same as in the maximum coverage problem, and 𝑙 = 1. D contains one row for

each element in ∪𝑆 𝑗 ∈𝑆𝑆 𝑗 and one item (column) for each 𝑆 𝑗 in 𝑆 , such that the entry for row 𝑟

Summarizing User-Item Matrix By Group Utility Maximization 7

and item 𝑐 contains 1 if the corresponding element for the row is in the 𝑆 𝑗 corresponding to the

item 𝑐 , otherwise 0. Note that with 𝑙 = 1, every 𝑙-itemset is a single item and there is an 1-to-1

correspondence between a 𝑆 𝑗 in 𝑆 and a 𝑙-itemset 𝑋 𝑗 .

Consider any collection of 𝑙-itemsets X = {𝑋1, ..., 𝑋𝑘 } for the above GUM problem. For each row

𝑟𝑖 in D, ℎ(𝑟𝑖 ,X) = max𝑋 𝑗 ∈X 𝑔(𝑟𝑖 , 𝑋 𝑗). With 𝑙 = 1, each 𝑋 𝑗 is a single item and ℎ(𝑟𝑖 ,X) = 1 if 𝑟𝑖 has

1 for some 𝑋 𝑗 in X, otherwise ℎ(𝑟𝑖 ,X) = 0. Therefore, 𝑓 (X) (Equation (1)) is equal to the number

of rows that have 1 for some 𝑋 𝑗 in X. Define 𝑆
′
to be the set of 𝑆 𝑗 ’s corresponding to the 𝑋 𝑗 ’s in X,

𝑓 (X) = | ∪𝑆 𝑗 ∈𝑆 ′ 𝑆 𝑗 |. Therefore, 𝑓 (X) is maximized if and only if | ∪𝑆 𝑗 ∈𝑆 ′ 𝑆 𝑗 | is maximized, in other

words, X is a solution to the GUM problem if and only if 𝑆 ′ is a solution to the maximum coverage

problem. The only difference is that 𝑆 ′ may contain redundant 𝑆 𝑗 ’s whose removal from 𝑆 ′ does
not affect ∪𝑆 𝑗 ∈𝑆 ′𝑆 𝑗 ; such 𝑆 𝑗 ’s correspond to the 𝑋 𝑗 ’s in X that have empty groups. □

Next, we show two properties of 𝑓 that are useful for proving an approximation bound of our

solution.

Theorem 2 (Monotonicity of 𝑓). For a nonnegative D (i.e., D ∈ R𝑁×𝑀≥0),
• (i) if X = {𝑋1, ..., 𝑋𝑘 } and X′ = X ∪ {𝑋𝑘+1}, then 𝑓 (X′) ≥ 𝑓 (X), and
• (ii) 𝑓 ∗ (𝑘 + 1, 𝑙) ≥ 𝑓 ∗ (𝑘, 𝑙).

Proof. (i). Recall 𝑓 (∅) = 0. The nonnegativity ofD implies 𝑔(𝑟𝑖 , 𝑋1) ≥ 0 for any 𝑙-itemset 𝑋1, so

𝑓 ({𝑋1}) ≥ 𝑓 (∅). Then (i) follows because having an additional𝑋𝑘+1 gives one more choice of𝑋 𝑗 for

the max function of computing ℎ(𝑟𝑖 ,X), thus, never decreases the value of 𝑓 . (ii) If X = {𝑋1, ..., 𝑋𝑘 }
is the solution of 𝑓 ∗ (𝑘, 𝑙) and if X′ = X ∪ {𝑋𝑘+1}, then 𝑓 ∗ (𝑘 + 1, 𝑙) ≥ 𝑓 (X′) ≥ 𝑓 ∗ (𝑘, 𝑙). The second
inequality follows from (i). □

(ii) implies that 𝑓 ∗ (𝑘, 𝑙) is not worse than 𝑓 ∗ (1, 𝑙), which is the utility of the standard top-𝑙

selection over the whole dataset.

We say that a function 𝑓 : 2
N → R is submodular if 𝑓 (𝐴 ∪ {𝑢}) − 𝑓 (𝐴) ≥ 𝑓 (𝐵 ∪ {𝑢}) − 𝑓 (𝐵),

∀𝐴 ⊆ 𝐵 ⊆ N , 𝑢 ∈ N\𝐵, N is a ground set of elements. In other words, 𝑓 is submodular if the

marginal gain of adding an element to a subset 𝐴 is no less than the marginal gain of adding this

element to any superset of 𝐴. In our context, the universe N is the set of all 𝑙-itemsets. Next, we

show that 𝑓 is submodular for a general D.

Theorem 3 (Submodularity of 𝑓). For a general D, the function 𝑓 (defined by Equation (1)) is
submodular.

Proof. Let X be a set of 𝑙-itemsets and X′ be a subset of X, i.e., X′ ⊂ X. In addition, let 𝑋 be an

𝑙-itemset that is not in X. Here, we consider each user separately. For a arbitrary user 𝑟𝑖 , we show

that the gain of adding 𝑋 to X′ is at least that of adding 𝑋 to X (both wrt 𝑟𝑖), i.e.,

ℎ(𝑟𝑖 ,X′ ∪ {𝑋 }) − ℎ(𝑟𝑖 ,X′) ≥ ℎ(𝑟𝑖 ,X ∪ {𝑋 }) − ℎ(𝑟𝑖 ,X) (3)

Then summing up on both sides over all users 𝑟𝑖 , we obtain

𝑓 (X′ ∪ {𝑋 }) − 𝑓 (X′) ≥ 𝑓 (X ∪ {𝑋 }) − 𝑓 (X) (4)

which implies that function 𝑓 is submodular. Therefore, what remains is to verify Equation (3).

Let𝑋𝑖 be the 𝑙-itemset inX, for which the utility of 𝑟𝑖 is the largest, i.e.,𝑋𝑖 = argmax𝑋 ′∈X 𝑔(𝑟𝑖 , 𝑋 ′).
We consider two cases depending on whether 𝑋𝑖 is in X

′
or not.

Case 1 (𝑋𝑖 ∈ X′): In this case, only X′ need to be considered when computing the gain of adding 𝑋

to X, which is exactly the case when computing the gain of adding 𝑋 to X′. Therefore, we have

ℎ(𝑟𝑖 ,X ∪ {𝑋 }) − ℎ(𝑟𝑖 ,X) = ℎ(𝑟𝑖 ,X′ ∪ {𝑋 }) − ℎ(𝑟𝑖 ,X′) (5)

8 Yongjie Wang, et al.

which implies that Equation (3) holds in Case 1.

Case 2 (𝑋𝑖 ∈ X\X′): This case implies

ℎ(𝑟𝑖 ,X′) ≤ 𝑔(𝑟𝑖 , 𝑋𝑖) (6)

We consider two sub-cases based on 𝑟𝑖 ’s utility on 𝑋 .

Case 2.1 (𝑔(𝑟𝑖 , 𝑋) > 𝑔(𝑟𝑖 , 𝑋𝑖)): In this sub-case, we have

ℎ(𝑟𝑖 ,X ∪ {𝑋 }) = ℎ(𝑟𝑖 ,X′ ∪ {𝑋 }) = 𝑔(𝑟𝑖 , 𝑋) (7)

ℎ(𝑟𝑖 ,X) = 𝑔(𝑟𝑖 , 𝑋𝑖) ≥ ℎ(𝑟𝑖 ,X′) (8)

Equation (7) and (8) imply that Equation (3) holds in Case 2.1.

Case 2.2 (𝑔(𝑟𝑖 , 𝑋) ≤ 𝑔(𝑟𝑖 , 𝑋𝑖)): In this sub-case, we have

ℎ(𝑟𝑖 ,X ∪ {𝑋 }) − ℎ(𝑟𝑖 ,X) = 𝑔(𝑟𝑖 , 𝑋𝑖) − 𝑔(𝑟𝑖 , 𝑋𝑖) = 0 (9)

ℎ(𝑟𝑖 ,X′ ∪ {𝑋 }) − ℎ(𝑟𝑖 ,X′) ≥ 0 (ℎ is monotone) (10)

Equation (9) and (10) imply that Equation (3) holds in Case 2.2.

In conclusion, Equation (3) holds for any user 𝑟𝑖 on both cases. Summing up over all users, we

can deduce that the function 𝑓 is also submodular. □

We can also explain the intuition of the submodularity using 𝑓 ({𝑋1}∪{𝑋 })−𝑓 (𝑋1) ≥ 𝑓 ({𝑋1, 𝑋2}∪
{𝑋 }) − 𝑓 ({𝑋1, 𝑋2}), where 𝑋 is a 𝑙-itemset different from 𝑋1 and 𝑋2. Recall that 𝑓 (X) assigns each
row 𝑟𝑖 to the 𝑋 𝑗 in X that maximizes 𝑔(𝑟𝑖 , 𝑋 𝑗). The left-hand-side of the inequality is the marginal

gain of reassigning some rows 𝑟𝑖 from 𝑋1 to 𝑋 , and the right-hand-side is the marginal gain of reas-

signing some rows 𝑟𝑖 from {𝑋1, 𝑋2} to 𝑋 . Let 𝑔1 and 𝑔2 be the gains in these two cases, respectively.

There must be a nonnegative gain, denoted 𝑔′, for moving 𝑟𝑖 from 𝑋1 to {𝑋1, 𝑋2}, and 𝑔1 = 𝑔′ + 𝑔2.
Therefore, 𝑔1 ≥ 𝑔2.

In the next two sections, we present two algorithms for solving the GUM problem for a matrix

D.

4 GREEDY ALGORITHM
In this section, we first propose the Greedy algorithm that greedily finds a set of 𝑙-itemsets suc-

cessively. This algorithm achieves the (1 − 1

𝑒
) approximation factor of optimal solutions for a

non-negative matrix as shown in Section 4.1. Next, we introduce two strategies to speed up the

Greedy algorithm in Section 4.2.

With the input parameters𝑘, 𝑙, 𝑁 ,𝑀,D, Greedy algorithm in Algorithm 1 starts with an empty set

X, adds one 𝑙-itemset𝑋 𝑗 at a time that maximizes the marginal gain of 𝑓 , Δ𝑓 (𝑋 𝑗 |X) ≡ 𝑓 (X⋃{𝑋 𝑗 })−
𝑓 (X), until 𝑘 𝑙-itemsets are added. After finding X, the corresponding 𝐷1, ..., 𝐷𝑘 can be induced by

X in one additional pass over the data as discussed in Section 3. In each iteration, the argmax𝑋 𝑗 ∈X\X
operation requires evaluating the marginal gains for

(
𝑀
𝑙

)
𝑙-itemsets, and each 𝑙-itemset takes𝑂 (𝑁 ·𝑙)

time to check the utility for 𝑁 users. For 𝑘 iterations, the overall time complexity is𝑂 (𝑘 ·
(
𝑀
𝑙

)
·𝑁 · 𝑙).

Note that computing argmax𝑋 𝑗 ∈X\X does not require materializing X. Instead, we can enumerate

the 𝑙-itemsets using 𝑙 nested loops where each loop iterates over all items {1, · · · , 𝑀}. This method

enumerates only one 𝑙-itemset at a time, requiring the constant space 𝑂 (1), plus the space for the
𝑘 𝑙-itemsets of X and the space for the input matrix. Therefore, the overall space complexity is

𝑂 (𝑁 ·𝑀).

Summarizing User-Item Matrix By Group Utility Maximization 9

Algorithm 1: Greedy algorithm

Input: A matrix D, group number 𝑘 , itemset size 𝑙

Output: X
Notation: Let X as the collection of all 𝑙-itemsets;

initialize X as an empty set;

for 𝑖 = 1; 𝑖 ≤ 𝑘 ; 𝑖 = 𝑖 + 1 do
𝑋 ← argmax𝑋 𝑗 ∈X\X Δ𝑓 (𝑋 𝑗 |X);
X← X⋃{𝑋 };

return X

4.1 Approximation Factor
For a nonnegative D, the approximate solution by Greedy algorithm has its quality guaranteed to

be not far away from that of the optimal one. We present this result in the following theorem.

Theorem 4. For a nonnegative D, Greedy algorithm (Algorithm 1) provides a (1 − 1

𝑒
)-factor

approximation for the GUM problem, where 𝑒 is the natural logarithmic base.

Proof. The result holds since the 𝑓 function is monotone and submodular (Theorem 2 and

Theorem 3) and according to [26], a simple Greedy algorithm would provide a (1 − 1

𝑒
)-factor

approximation for maximizing a monotone and submodular function 𝑓 with 𝑓 (∅) = 0 subject to a

cardinality constraint, i.e., maxX 𝑓 (X) s.t. |X| ≤ 𝑘 in our context. □

Theorem 4 shows (1 − 1

𝑒
)-factor approximation for a nonnegative matrix D. In practice, a

nonnegative D is common, such as rating/vote, citation count, presence of purchase, etc. In the

case of a general D containing both positive and negative values, Greedy algorithm still works

but we cannot claim the (1 − 1

𝑒
) approximation factor. While adding a positive constant to every

entry can make the matrix nonnegative, the (1 − 1

𝑒
) approximation will be for the the transformed

nonnegative matrix, not the original matrix. Replacing all negative scores with zeros also makes

the matrix nonnegative, but this has the effect of ignoring the penalty of negative scores, which

changes the problem statement.

Normalization indeed can be done to reduce the storage and avoid data overflow due to sum

of large values. In theory, however, no normalization is required, especially in the case that no

approximation factor is required. The Greedy algorithm can be run on the normalized matrix (to

obtain a nonnegative matrix), say by shifting then scaling, in which case the (1− 1

𝑒
) approximation

factor will be for the normalized matrix instead of the original matrix. In general, the Greedy

algorithm is not affected by normalization in terms of scaling only (e.g., divide all values by the

maximum value).

4.2 Implementation
The costly step of Greedy algorithm is finding the 𝑙-itemset that has the greatest marginal gain

from all those 𝑙-itemsets that have not been selected at each iteration. For better efficiency, we

adopt two existing strategies, namely Lazy-forward [23] and Random-sampling [25], and discuss

how to integrate them together efficiently.

Lazy-forward. The idea is to leverage the submodularity of 𝑓 that the marginal gain Δ𝑓 of 𝑋 𝑗

never increases by growing X. Based on this property, we can prune the evaluations of Δ𝑓 for

a 𝑋 𝑗 if its upper bound on Δ𝑓 is smaller than the greatest Δ𝑓 evaluated so far. In particular, we

maintain an upper bound of the marginal gain for each 𝑙-itemset 𝑋 𝑗 and check the 𝑙-itemsets in the

decreasing order of their upper bounds using a priority-queue, if its upper bound is larger than

10 Yongjie Wang, et al.

Algorithm 2: Stochastic-Greedy algorithm

Input: A matrix D, group number 𝑘 , itemset size 𝑙 , sampling factor 𝜖 .

Output: X
Notation: Let X as a collection of all 𝑙-itemsets;

initialize X as an empty set;

for 𝑖 = 1; 𝑖 ≤ 𝑘 ; 𝑖 = 𝑖 + 1 do
/* Randomly sampling from X\X */

𝑥 ←𝑚𝑖𝑛(|X |
𝑘
𝑙𝑜𝑔(1

𝜖
), |X|);

𝑅 ← randomly sample 𝑥 distinct numbers from {1, · · · , |X|} − { 𝑗 | 𝑋 𝑗 ∈ X};
𝑋 ← argmax𝑋 𝑗 | 𝑗∈𝑅 Δ𝑓 (𝑋 𝑗 |X);
X = X

⋃{𝑋 };
return X;

the greatest marginal gain Δ𝑓 found so far, we evaluate the actual Δ𝑓 for the 𝑋 𝑗 , otherwise, we

terminate the current iteration and selects the 𝑙-itemset that gives the greatest Δ𝑓 so far. Initially,

the upper bound for a 𝑙-itemset is computed at the first iteration against the empty itemset and

is updated in subsequent iterations whenever the 𝑙-itemset’s marginal gain is evaluated. For all

𝑙-itemsets that are not evaluated, the submodularity of 𝑓 implies that their upper bounds remain

unchanged because growing X never increases Δ𝑓 of a 𝑙-itemset.

Lazy-forward only evaluates the 𝑙-itemsets whose upper bounds are larger than the best-known

marginal gain. Even though the theoretical time complexity is the same as that of the straightforward

implementation, the empirical running time is reduced due to fewer evaluations of marginal gains.

However, the Lazy-forward implementation requires an extra priority-queue to store the upper

bound of marginal gain for all 𝑙-itemsets, with 𝑂 (
(
𝑀
𝑙

)
) space complexity.

Random-sampling. With Lazy-forward, Greedy algorithm needs to evaluate the marginal

gains of all

(
𝑀
𝑙

)
𝑙-itemsets at the first iteration (before which all upper bounds are initialized as

infinity), which is still time-consuming. To achieve better time efficiency, we adapt the sampling

procedure from [25] to reduce the number of 𝑙-itemsets considered at each iteration. Specifically, at

each iteration, we randomly sample
|X |
𝑘
𝑙𝑜𝑔(1

𝜖
) 𝑙-itemsets from the set of all 𝑙-itemsets that have

not been selected, and proceed with the sampled 𝑙-itemsets only, where |X| is the number of all

𝑙-itemsets and 𝜖 is in (0, 1). According to [25], the approximation factor in Theorem 4 becomes

(1 − 1

𝑒
− 𝜖). The Greedy algorithm with Random-sampling, called Stochastic-Greedy algorithm or

simply SGreedy, is given in Algorithm 2. The sampling step is implemented by randomly sampling

|X |
𝑘
𝑙𝑜𝑔(1

𝜖
) indexes for 𝑙-itemsets, i.e., 𝑅, and restricting the space for computing argmax to the 𝑙-

itemsets with the indexes in 𝑅. This can be implemented as 𝑙 nested loops, as for the straightforward

implementation, except that it considers only the 𝑗th generated 𝑙-itemsets such that 𝑗 is in 𝑅. In

each iteration, this algorithm evaluates the marginal gain for no more than
|X |
𝑘
𝑙𝑜𝑔(1

𝜖
) 𝑙-itemsets

and the evaluation of marginal gain on each 𝑙-itemset takes𝑂 (𝑁 · 𝑙) time. Therefore, for 𝑘 iterations,

the time complexity is 𝑂 (log(1
𝜖
) ·

(
𝑀
𝑙

)
· 𝑁 · 𝑙). With the total sample size being no more than |X|,

SGreedy algorithm’s time complexity is no more than that of the straightforward implementation.

Similar to the straightforward implementation, this algorithm only takes the space 𝑂 (𝑁 ·𝑀) for
storing the input matrix.

To integrate Random-sampling with Lazy-forward, we note that the sets of 𝑙-itemsets at two

adjacent iterations are sampled independently, and a straightforward integration requires building

a different priority-queue structure at each iteration, which introduces considerable overhead (as

Summarizing User-Item Matrix By Group Utility Maximization 11

Table 3. The time and space complexities of different implementations of Greedy algorithm. In the case of
𝑙𝑜𝑔(1𝜖) > 𝑘 , the time complexity of Greedy and SGreedy algorithms is the same since the sample size cannot
be greater than the full size |X| . ↓means the empirical running time is reduced compared to without the
Lazy-forward strategy, even if the theoretical time complexity remains the same.

Algorithms Acceleration strategies Space Complexity Time Complexity

Expirical

Running Time

Greedy algorithm

Straightforward 𝑂 (𝑁 ·𝑀) 𝑂 (𝑘 ·
(
𝑀
𝑙

)
· 𝑁 · 𝑙) -

Lazy-forward 𝑂 (
(
𝑀
𝑙

)
) 𝑂 (𝑘 ·

(
𝑀
𝑙

)
· 𝑁 · 𝑙) ↓

SGreedy algorithm

Random-sampling 𝑂 (𝑁 ·𝑀) 𝑂 (log(1
𝜖
) ·

(
𝑀
𝑙

)
· 𝑁 · 𝑙) -

Random-sampling +

Lazy-forward

𝑂 (
(
𝑀
𝑙

)
) 𝑂 (log(1

𝜖
) ·

(
𝑀
𝑙

)
· 𝑁 · 𝑙) ↓

Algorithm 3: 𝑘-max algorithm

Input: A matrix D, group number 𝑘 , itemset size 𝑙 , stop threshold \ .

Output: (𝐷1, 𝑋1), ..., (𝐷𝑘 , 𝑋𝑘)
initialize distinct 𝑙-itemsets 𝑋1, ..., 𝑋𝑘 ;

𝑖𝑡𝑒𝑟_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = +∞;
𝑐𝑢𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 0;

while iter_increase > \ do
/* Assignment Step: induce 𝐷1, ..., 𝐷𝑘 */

for 𝑖 = 1; 𝑖 ≤ 𝑁 ; 𝑖 = 𝑖 + 1 do
assign row 𝑟𝑖 in D to 𝐷 𝑗 such that 𝑔(𝑟𝑖 , 𝑋 𝑗) is maximum;

/* Update Step: update 𝑋1, ..., 𝑋𝑘 */

if some rows were assigned to a new group then
for 𝑗 = 1; 𝑗 ≤ 𝑘 ; 𝑗 = 𝑗 + 1 do

𝑋 𝑗 ← 𝑙-itemset 𝑋 with largest

∑
𝑟𝑖 ∈𝐷 𝑗

𝑔(𝑟𝑖 , 𝑋);

𝑖𝑡𝑒𝑟_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑓 (X) − 𝑐𝑢𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦;
𝑐𝑢𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑓 (X);

return (𝐷1, 𝑋1), ..., (𝐷𝑘 , 𝑋𝑘)

verified empirically). To avoid this cost, we first check the upper bound of each sampled 𝑙-itemset

and only evaluate its Δ𝑓 if its upper bound is larger than the best-known marginal gain found. The

worst case time complexity is the same as Random sample without Lazy-forward, but the empirical

running time is reduced due to fewer evaluations of marginal gains. This algorithm needs 𝑂 (
(
𝑀
𝑙

)
)

space to store the upper bounds of all 𝑙-itemsets sampled in 𝑘 iterations.

The time and space complexities of different implementations of Greedy algorithm are summa-

rized in Table 3.

5 𝑘-MAX ALGORITHM
The bottleneck of Greedy algorithms is identifying the best𝑋 𝑗 at each step, which is time-consuming

when there are many items, even with the Lazy-forward and Random-sampling techniques. In this

section we present the second algorithm, named 𝑘-max, to address this issue. This name comes

from the iterative refinement of the 𝑘 groups, (𝐷1, 𝑋1), ..., (𝐷𝑘 , 𝑋𝑘). Given in Algorithm 3, 𝑘-max

12 Yongjie Wang, et al.

starts with initializing 𝑘 distinct 𝑙-itemsets, 𝑋1, ..., 𝑋𝑘 . In each iteration, the algorithm alternatively

performs two steps:

• Assignment Step Given 𝑋1, ..., 𝑋𝑘 , this step assigns each row 𝑟𝑖 to the group 𝐷 𝑗 such that

𝑔(𝑟𝑖 , 𝑋 𝑗) is maximized over 1 ≤ 𝑗 ≤ 𝑘 . 𝑟𝑖 stays in its current group 𝐷 𝑗 if 𝑔(𝑟𝑖 , 𝑋 𝑗) is already
maximized.

• Update Step Given 𝐷1, ..., 𝐷𝑘 , this step updates each 𝑋 𝑗 to the 𝑙-itemset 𝑋 such that∑
𝑟𝑖 ∈𝐷 𝑗

𝑔(𝑟𝑖 , 𝑋) is maximized, in other words, 𝑋 𝑗 is the top-𝑙 items ranked by the sum

of scores of the users in 𝐷 𝑗 on the item.

In each iteration, each step improves 𝑋1, ..., 𝑋𝑘 or 𝐷1, ..., 𝐷𝑘 assuming that the other is fixed. This

iterative process continues until the increase of utility is smaller than the specified threshold \ , in

which case each row 𝑟𝑖 belongs to 𝐷 𝑗 that maximizes 𝑔(𝑟𝑖 , 𝑋 𝑗), that is, 𝐷1, ..., 𝐷𝑘 is induced by X
(i.e., ℎ(𝑟𝑖 ,X) = 𝑔(𝑟𝑖 , 𝑋 𝑗)).

The following theorem shows that, after the first iteration, 𝑓 (X) is no less than the utility of the

standard top-𝑙 items 𝑓 ∗ (1, 𝑙).

Theorem 5. For X = {𝑋1, ..., 𝑋𝑘 } produced at the end of the first iteration, 𝑓 (X) ≥ 𝑓 ∗ (1, 𝑙).

Proof. 𝑓 ∗ (1, 𝑙) is 𝑓 ({𝑋 }) for the top-𝑙 items 𝑋 in the whole dataset. Let 𝐷 𝑗 be produced by

Assignment Step in the first iteration and let 𝑋 𝑗 be produced by Update Step in the first iteration.

Note that 𝑋 𝑗 is the set of top-𝑙 items in 𝐷 𝑗 , thus,
∑

𝑟𝑖 ∈𝐷 𝑗
𝑔(𝑟𝑖 , 𝑋 𝑗) ≥

∑
𝑟𝑖 ∈𝐷 𝑗

𝑔(𝑟𝑖 , 𝑋), and∑︁
𝑗

∑︁
𝑟𝑖 ∈𝐷 𝑗

𝑔(𝑟𝑖 , 𝑋 𝑗) ≥
∑︁
𝑗

∑︁
𝑟𝑖 ∈𝐷 𝑗

𝑔(𝑟𝑖 , 𝑋)

The left-hand-side is 𝑓 (X) and the right-hand-side is 𝑓 ∗ (1, 𝑙). □

Initialization of 𝑋1, ..., 𝑋𝑘 . The simplest way of initializing 𝑋1, ..., 𝑋𝑘 is randomly selecting

these 𝑋 𝑗 ’s. Let Random_Init denote this random initialization. Another way is greedily selecting

the 𝑋 𝑗 for 1 ≤ 𝑗 ≤ 𝑘 as the top-𝑙 items in the remaining data, initially D. After selecting 𝑋 𝑗 , we

remove the rows having 𝑋 𝑗 as its top-𝑙 items before selecting 𝑋 𝑗+1. Let Smart_Init denote this

greedy initialization. Unlike Random_Init, Smart_Init is deterministic. We will study the effect of

these initializations experimentally.

Time complexity. Assignment Step takes 𝑘 · 𝑙 · 𝑁 time because it takes 𝑘 · 𝑙 time to find 𝑋 𝑗 that

maximizes 𝑔(𝑟𝑖 , 𝑋 𝑗) for a row 𝑟𝑖 . In Update Step, for each 1 ≤ 𝑗 ≤ 𝑘 , the computation of 𝑋 𝑗 involves

computing the top-𝑙 items in 𝐷 𝑗 , which takes time 𝑂 (|𝐷 𝑗 | · 𝑀) (with |𝐷 𝑗 | being the number of

rows in 𝐷 𝑗), therefore, Update Step takes time 𝑂 (𝑁 ·𝑀). Ignoring the small constants 𝑙 and 𝑘 , the

algorithm with 𝜏 iterations takes𝑂 (𝜏 ·𝑀 · 𝑁) time, which is a linear in the input matrix size𝑀 · 𝑁 .

We will empirically evaluate the efficiency of this algorithm.

Convergence analysis. The algorithm always converges because the change of group mem-

bership is triggered by a positive increase of 𝑓 and there is only a finite number of such increases.

For a general matrix D, the optimal utility is capped by the sum of top-𝑙 columns selected for

each row. Let Θ denote this sum. Remember that \ is the threshold of increase for early stop.

According to Theorem 5, after the first iteration, the increase of 𝑓 is no more than (Θ − 𝑓 ∗ (1, 𝑙)).
With each iteration increasing 𝑓 by at least \ after the first iteration, the maximum number of

iterations of 𝑘-max algorithm is no more than ⌈(Θ − 𝑓 ∗ (1, 𝑙))/\⌉ + 1. Typically, the increases of 𝑓
in early iterations are much greater than \ , so the number of iterations needed is much fewer than

⌈(Θ − 𝑓 ∗ (1, 𝑙))/\⌉ + 1. We will evaluate empirically the number of iterations in the experiment

section.

Summarizing User-Item Matrix By Group Utility Maximization 13

Table 4. A toy movie rating dataset

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5

𝑟1 2 0 3 3 2

𝑟2 4 1 4 3 1

𝑟3 2 4 4 0 1

𝑟4 3 2 1 0 1

𝑟5 2 4 4 3 1

𝑟6 3 2 3 3 3

Example 2. We illustrate the working of 𝑘-max algorithm using the toy movie rating data in Table

4, and 𝑘 = 3 and 𝑙 = 2. The optimal solution has the utility 𝑓 = 40 given by the groups

(𝑟4, 𝑚1𝑚2), (𝑟1𝑟2𝑟6, 𝑚1𝑚3), (𝑟3𝑟5, 𝑚2𝑚3)

Here𝑚1𝑚2 and 𝑟1𝑟2𝑟6 are the short-hand for {𝑚1,𝑚2} and {𝑟1, 𝑟2, 𝑟6}, and same for others. The

standard top-𝑙 selection will find𝑚1𝑚3 with the utility 𝑓 = 35 because these items have the largest

score sums 16 and 19 on the whole dataset, respectively. Let us run 𝑘-max algorithm with an

random initialization 𝑋1 =𝑚2𝑚4, 𝑋2 =𝑚1𝑚3, 𝑋3 =𝑚4𝑚5.

First iteration: For 𝑟2, the 𝑔 function on 𝑋1, 𝑋2, 𝑋3 returns 4, 8, 4, respectively, so 𝑟2 is assigned to

𝐷2. After assigning all rows, the utility 𝑓 becomes 36 with the groups

(𝑟5, 𝑚2𝑚4), (𝑟1𝑟2𝑟3𝑟4𝑟6, 𝑚1𝑚3), (∅, 𝑚4𝑚5)

In Update Step, 𝑋1, 𝑋2, 𝑋3 are updated to maximize the total rating for their partitions of rows,

i.e.𝑋1 =𝑚2𝑚3, 𝑋2 =𝑚1𝑚3, 𝑋3 =𝑚4𝑚5,

Second iteration: Reassign each row to the group that maximizes its total score. For example, 𝑟3
is reassigned to𝑚2𝑚3 because it has total score 6 in𝑚1𝑚3 but has the total score 8 for𝑚2𝑚3. After

Assignment Step, 𝑓 = 39 given by

(𝑟3𝑟5, 𝑚2𝑚3), (𝑟1𝑟2𝑟4𝑟6, 𝑚1𝑚3), (∅, 𝑚4𝑚5)

After Update Step, all 𝑋 𝑗 ’s remain unchanged.

Third iteration: no row changes its group and the increase is 0, so the algorithm stops. The final

utility 𝑓 = 39, which is close to the optimal utility 𝑓 = 40.

It is easy to verify that with the initialization 𝑋1 = 𝑚1𝑚2, 𝑋2 = 𝑚2𝑚3, 𝑋3 = 𝑚4𝑚5, we will get

the following partitions with the utility 𝑓 = 40 after two iterations,

(𝑟2𝑟4,𝑚1𝑚3), (𝑟3𝑟5,𝑚2𝑚3), (𝑟1𝑟6,𝑚3𝑚4) □

6 EVALUATION
In this section, we conducted experiments to study the effectiveness of the proposed methods

on three real life public datasets. Section 6.1 first introduces the experimental setup. Section 6.2

compares the solution of each algorithm with the optimal solution, and these experiments are

conducted on small datasets because obtaining the optimal solution is time-consuming. Section

6.3 reports the experiments on summarizing users’ preferences by comparing our summaries with

those of the top-𝑙 selection. Section 6.4 studies the scalability of algorithms on a larger dataset. The

codes are released on GitHub
2
.

2
https://github.com/wangyongjie-ntu/GUM

14 Yongjie Wang, et al.

6.1 Experimental Setup
We consider the following setup to evaluate our proposed algorithms.

Evaluation metrics:We evaluate the average utility of the selected items, called average item
utility (AIU), mathematically defined as

𝑓 (X)
𝑘×𝑙 where 𝑓 (X) is defined in Equation (1). A larger AIU

indicates a better summary of high utility items. For algorithms with random factors (i.e., random

initialization in 𝑘-max algorithm and Random-sampling in SGreedy algorithm), we also report

the coefficient of variation of AIU of multiple runs, i.e.,
𝜎
`
where 𝜎 and ` are standard deviation

and mean, respectively. We also evaluate the running time of proposed methods. All experiments

were implemented in Python on a Ubuntu server with Intel Xeon Silver 4114 Processor at 2.2 GHz,

187GB of memory, with matrix operations from the Numpy and Pandas libraries.

The proposed algorithms: The GUM problem has two parameters, 𝑘 and 𝑙 , that define the

summary size 𝑘 × 𝑙 . In practice, this size is bounded by the human effort required to read the 𝑙 items

for each of the 𝑘 groups. For this reason, 𝑘 and 𝑙 cannot be too large, for example, 𝑘 ∈ [1, 10] and
𝑙 ∈ [1, 5]. We study two proposed solutions to the GUM problem. The first is the Greedy algorithm

presented in Section 4. Greedy denotes Greedy algorithm integrated with Lazy-forward strategy

and SGreedy-𝜖 denotes Greedy algorithm integrated with Lazy-forward and Random-sampling

strategies (averaged over 10 runs). We set 𝜖 to 0.5 and 0.9 to explore different trade-offs between

efficiency and approximation quality. The second algorithm is 𝑘-max algorithm introduced in

Section 5. We consider three options of running this algorithm. KMM reports the best AIU of

running 𝑘-max algorithm with 50 initializations by Random_Init and reports the total time of the 50

runs. KMA reports the average AIU and time of the 50 runs, which gives an estimated performance

of a single initialization. KMS denotes running 𝑘-max algorithm with the greedy initialization

Smart_Init. In our experiment, we set \ to 0 for 𝑘-max algorithm because it can run efficiently.

We compare our algorithms with several baseline algorithms. These baselines do not find a

solution for the GUM problem, i.e., 𝑘 groups of users and 𝑙 items for each group, but they are the

closest to our work.

Baselines: K-CPGC [10] denotes the max-sum submatrix algorithm, which finds 𝑘 max-sum

submatrices iteratively. CoClust [17] denotes the spectral co-clustering, which finds 𝑘 (≥ 2)
nonoverlapping clusters. Both K-CPGC and CoClust do not constrain each submatrix to 𝑙 columns.

To convert their solutions for our GUM problem, if the column number of a submatrix is greater

than 𝑙 , we only keep top-𝑙 columns; otherwise, we make up 𝑙 columns by adding columns that are

outside of the submatrix and have the largest sum over the rows of this submatrix. Note that the

submatrices found by K-CPGC may not cover all rows. We also consider Random_Init (averaged
over 50 runs) and Smart_Init, i.e., the initialization methods of 𝑘-max algorithms as described in

Section 5. Comparison with these initializations can tell the improvement by 𝑘-max algorithms.

Finally, we include the top-𝑙 selection over the whole data set (i.e., 𝑘 = 1), which has the utility

of 𝑓 ∗ (1, 𝑙). The comparison with this solution tells the improved utility due to user partitioning.

As discussed in Section 2, subgroup discovery and preference mining are not applicable to our

problem.

Datasets: We experimented on three real-life datasets. Titanic dataset is a feature importance

dataset of size 240 × 9 where each row denotes a correctly predicted survivor and each entry

represents the importance of the corresponding feature value to the survival prediction. The

detailed generation of Titanic dataset is shown in Section 6.2. Netflix-Prize-Dataset [5] contains
about 100 million ratings in the scale from 1 to 5, given by 480, 189 users on 17, 770 movies. The

absence of rating is filled by the value 0. Since many movies have very few ratings (i.e., the density

of the full dataset is only 1.18%), we considered two datasets. Netflix-Prize-17770 denotes the

full dataset containing all movies, and Netflix-Prize-200 denotes the denser dataset with the

Summarizing User-Item Matrix By Group Utility Maximization 15

Table 5. Statistics of processed datasets.

Dataset #Rows #Cols Density Scales

Titanic dataset 240 9 100% -

Netflix-Prize-17770 480,189 17,770 1.18% 1,2,3,4,5

Netflix-Prize-200 480,189 200 25.66% 1,2,3,4,5

MovieLens-1B-200 2,210,078 200 2.10% 0, 1

density 25.66%, containing the 200 movies that have the most number of ratings.MovieLens-1B
[4] is a synthetic dataset consisting of 2,197,225 users and 855,776 items with binarized ratings,

that was expanded from the real-world rating dataset MovieLens-20M [18]. Due to the extremely

small density of original dataset (e.g., half of items have less than 0.02% votes, the density of

original dataset is 0.065%), we restricted to the 200 most voted items, and the resulting data has

N=2, 210, 078 rows and M=200 columns with binarized ratings and density of 2.10%, denoting by

MovieLens-1B-200. The statistics of processed datasets are summarized in Table 5.

6.2 Comparison with Optimal Solutions on Titanic Dataset
This experiment demonstrates an application of the GUM problem in explaining the prediction

of a black-box model. We consider the Titanic data, previously used for Kaggle’s Titanic machine

learning competition, which describes the survival status (the class attribute) and other information

of 891 passengers on Titanic, 342 survived and 549 died. We removed the superficial features

passenger ID, ticket number, cabin number, and name, and the remaining features are given in

Example 1. Our task is to explain the survival prediction made by a black-box model. To this end,

we trained a four-layer multilayer perceptron (MLP) model 𝐹 (𝑥) using the dataset to predict the

surviving probability of a passenger 𝑥 . The MLP model consists of 4 fully-connected layers of sizes

(9, 20), (20, 20), (20, 10), and (10, 2) with 2 output units and ReLU activation function, with the

binary cross entropy loss minimized by the SGD optimizer with learning rate 0.1. The accuracy

and F1-score (for the surviving class) on the data set are 84.06% and 77.17%, respectively.

Next, we created a user-item matrix D containing 240 predicted correctly survivors of the

full dataset, where there is a row 𝑟 for each survivor 𝑥 and there is a column for each feature.

The entry for a feature 𝑥𝑖 stores the Integrated Gradient (IG) [35] of 𝐹 (𝑥) w.r.t. the feature 𝑥𝑖 , as
explained in Example 1. The computation of IG is based on a baseline point. We specify the baseline

as the mean of all dead passengers that are predicted as dead. A solution to the GUM problem,

(𝐷1, 𝑋1), · · · , (𝐷𝑘 , 𝑋𝑘), would provide a high level explanation for the prediction of the survivors

in D, where each 𝑋 𝑗 contains the 𝑙 features that have largest sum of IG for a group 𝐷 𝑗 .

Figure 1 compares AIU and running iterations. “Optimal” represents the optimal solution. The

dashed line represents AIU of top-𝑙 items. First of all, Greedy and KMM have almost the same utility

as Optimal; KMS and KMA are slightly lower than Optimal. While KMA is the result of a single

initialization, it is about 2.60% lower than KMM that is the best result of 50 initializations. Also, the

coefficient of variation (CV) of KMA is within 2.75%, suggesting a small variance due to random

initialization. On the other hand, the single initialization offers most efficiency for dealing with

large datasets, as shown in later experiments. Smart_Init achieves competitive results for small 𝑘 but

performs poorly for larger 𝑘 . KMS always improves on Smart_Init. 𝑘-max algorithms consistently

surpass the top-𝑙 selection, which is the result for 𝑘 = 1. This is consistent with Theorem 5. The

right figure shows the maximum number of iterations of the 50 runs for KMA, and the actual

number of iteration required of KMM and KMS over various 𝑘 . We observe that the largest iteration

is 9, 6, 3 on Titanic dataset for KMA, KMM and KMS.

16 Yongjie Wang, et al.

1 2 3 4 5 6 7
#Groups: k

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

ite
m

 u
til

ity
Utility

1 2 3 4 5 6 7
#Groups: k

2

4

6

8

Ite
ra

tio
ns

Running iterations

CoClust
KMM

K-CPGC
KMA

Random_Init
KMS

Smart_Init
Optimal

Greedy

Fig. 1. Titanic dataset: AIU and running iterations for various 𝑘 and 𝑙 = 3. The red dashed line represents the
utility for top-𝑙 selection. The coefficients of variation of Random_Init, KMA utility are within 74.92%, 2.75%.

However, in Figure 1, CoClust and Random_Init have the lowest utility, even lower than that of

top-𝑙 selection. Due to nonoverlapping in columns, groups produced by CoClust cannot select the

top important features simultaneously, resulting in the poor utility. K-CPGC selects 239 users from

all 240 survivors in the first iteration. As we only keep the top-𝑙 columns if the column number of

a submatrix is greater than 𝑙 , K-CPGC achieves the similar utility as top-𝑙 selection.

Table 6 shows the three groups produced by Greedy and KMM algorithms with 𝑘 = 3 and 𝑙 = 2.

As we can see, these features’ importance in their groups is usually higher than on the whole

dataset. Group 1 identifies Pclass and Sex (i.e., female in first-class cabin) are top-2 important

features for 159 survivors’ prediction; Group 2 selects Sex and Q (i.e., female and not embarked

from Queenstown) are top-2 important features for 26 survivors’ prediction. 93.5% passengers

embarked from Queenstown are in third-class cabin; Sex and Age (i.e., young female) are top-2

important features for 55 survivors’ prediction in Group 3. This group level summary provides

an easier explanation on the prediction for the hundreds of survivors, compared to reading the 𝑙

most important features for each survivor individually. On the other hand, top-𝑙 selection explains

all survivors using the same top-𝑙 features (i.e., Pclass and Sex), which fails to distinguish the

differences for different groups.

6.3 Summarizing Preferences of Netflix Movies
The second experiment was conducted on Netflix-Prize-Dataset to summarize users’ preferences of

movies. Our task is to answer “what kinds of movies people like (i.e., give a high rating)” using a

compact summary with small 𝑘 and 𝑙 . We apply KMM with 𝑘 = 5 and 𝑙 = 3 to Netflix-Prize-17770.

Table 7 shows the 𝑘 = 5 groups generated and the 𝑙 = 3 preferred movies for each group. “Pop”

(Popularity) and “Avg rating” are the number of ratings and the average rating of selected movies

in each group. For example, Group 3 summarizes the users who love the “Lord of the Rings” series,

which share the common theme of “adventure” and “fantasy”. Groups 2 and 4 share similar interests

in “comedy” and “drama” movies, with Group 2 also loving “romance” movies. Groups 1 and 5 share

the common theme of “adventure” and “action” while group 5 also likes “comedy” and “drama”

movies. Such group-level preferences provide a concise summary of the entire user population,

with most movies selected having both a large number of ratings and a large average rating in a

group. In contrast, traditional ranking either by the number of ratings or by the average rating will

have either a large number of ratings or a large average rating, but not both, and produces a single

list of movies for all users, shown in the Table 8.

Summarizing User-Item Matrix By Group Utility Maximization 17

Table 6. Titanic dataset: the groups produced with 𝑙 = 2 and 𝑘 = 3 by Greedy and KMM. In this setting, both
Greedy and KMM produce the same results. For example, group 1 has 159 survivals and selects Pclass and
Sex as top-2 important features whose average item utility are 1.28 and 1.75 respectively. The second row
denotes the average utility of an item on the whole population. The numbers in the parentheses represent
the sizes of survivals.

Pclass Sex Age SibSp Parch Fare C Q S

Whole Population (240) 0.82 1.53 0.25 -0.01 0.06 -0.02 0.18 0.06 -0.06

Group 1 (159) 1.28 1.75

Group 2 (26) 1.80 0.98

Group 3 (55) 0.79 0.89

Table 7. The Netflix-Prize-17770: 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 found by KMM with 𝑙 = 3 and 𝑘 = 5. E.g., the first group
has size 172,843 and “Miss Congeniality” is one of the top-3 movies in 𝑋1 and has 85,555 ratings with the
average rating of 3.66 in this group.

Group

ID

Movies Genre Pop

Avg

Rating

Group

Size

1

Miss Congeniality Adventure|Comedy|Crime 85555 3.66

172843The Patriot Action|Thriller 77183 4.07

Independence Day Action|Adventure|Sci-Fi|Thriller 78110 4.07

2

Pretty Woman Comedy|Romance 67535 4.31

89646Forrest Gump Comedy|Drama|Romance|War 65743 4.58

The Green Mile Crime|Drama 67825 4.53

3

Lord of the Rings: The Return of the King Adventure|Fantasy 90008 4.79

101142Lord of the Rings: The Fellowship of the Ring Adventure|Fantasy 91358 4.77

Lord of the Rings: The Two Towers Adventure|Fantasy 93855 4.76

4

The Royal Tenenbaums Comedy|Drama 45443 3.93

60157American Beauty Comedy|Drama 42848 4.38

Pulp Fiction Comedy|Crime|Drama|Thriller 44142 4.45

5

Pirates of the Caribbean: The Curse of ... Action|Adventure|Comedy|Fantasy 33193 4.25

56401The Day After Tomorrow Action|Adventure|Drama|Sci-Fi|Thriller 38438 3.71

Man on Fire Action|Crime|Drama|Mystery|Thriller 35539 4.21

Table 8. The Netflix-Prize-17770: the top-15 movies found by traditional ranking methods by popularity (the
total number of ratings) or average rating.

Top-15 Movies by Popularity Top-15 Movies by Average Rating

Movies Pop Avg

Rating

Movies Avg

Rating

Pop

Miss Congeniality 232944 3.36 Lord of the Rings: The Return of the King (Extended) 4.72 73335

Independence Day 216596 3.72 Lord of the Rings: The Fellowship of the Ring(Extended) 4.71 73422

The Patriot 200832 3.78 Lord of the Rings: The Two Towers(Extended) 4.70 74912

The Day After Tomorrow 196397 3.44 Lost: Season 1 4.67 7249

Pirates of the Caribbean:

The Curse of Black Pearl

193941 4.15 Battlestar Galactica: Season 1 4.64 1747

Pretty Woman 193295 3.91 Fullmetal Alchemist 4.61 1633

Forrest Gump 181508 4.30 Tenchi Muyo! Ryo Ohki 4.60 89

The Green Mile 181426 4.31 Trailer Park Boys: Season 3 4.60 75

Con Air 178068 3.45 Trailer Park Boys: Season 4 4.60 25

Twister 177556 3.41 The Shawshank Redemption: Special Edition 4.59 139660

Sweet Home Alabama 176539 3.54 Veronica Mars: Season 1 4.59 1238

Armageddon 171991 3.58 Ghost in the Shell: Stand Alone Complex: 2nd Gig 4.59 220

The Rock 164792 3.77 The Simpsons: Season 6 4.58 8426

What Women Want 162597 3.43 Arrested Development: Season 2 4.58 6621

Bruce Almighty 160454 3.43 Inu-Yasha 4.55 1883

18 Yongjie Wang, et al.

5 10 20 30 40 50 100
#Groups: k

0.5

1.0

1.5

2.0

Av
er

ag
e

ite
m

 u
til

ity

Utility

5 10 20 30 40 50 100
#Groups: k

0
2
4
6
8

10

Se
co

nd
(ln

)

Running time

5 10 20 30 40 50 100
#Groups: k

10

12

14

16

18

Ite
ra

tio
ns

Running iterations
Random_Init Smart_Init KMM KMA KMS

Fig. 2. Netflix-Prize-17770: The average item utility (AIU), running time (in ln scale), and running iterations
for various 𝑘 and 𝑙 = 30. The red dash line represents the utility of top-𝑙 selection. CoClust, K-CPGC, Greedy
and SGreedy-𝜖 were omitted due to long running time. The coefficients of variation of Random_Init, KMA
utility are within 6.96%, 1.21%.

5 10 15 20 25 30
#Groups: k

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

ite
m

 u
til

ity

Utility

5 10 15 20 25 30
#Groups: k

0
2
4
6
8

10

Se
co

nd
(ln

)

Running time

5 10 15 20 25 30
#Groups: k

2

4

6

8
Ite

ra
tio

ns

Running iterations

Random_Init
SGreedy-0.9

Smart_Init
KMM

Greedy
KMA

SGreedy-0.5
KMS

Fig. 3. Netflix-Prize-200: The average item utility (AIU), running time (in ln scale), and running iterations
for various 𝑘 and 𝑙 = 2. The red dash line represents the utility of top-𝑙 selection. CoClust and K-CPGC
cannot run within our limited time and are not reported. The coefficients of variation of AIU of Random_Init,
SGreedy-0.5, SGreedy-0.9 and KMA and are within 6.90%, 1.14%, 1.40%, 5.71% respectively.

5 10 15 20 25 30
#Groups: k

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

ite
m

 u
til

ity

Utility

5 10 15 20 25 30
#Groups: k

0
2
4
6
8

10

Se
co

nd
(ln

)

Running time

5 10 15 20 25 30
#Groups: k

2

4

6

8

Ite
ra

tio
ns

Running iterations

Random_Init
KMM

Smart_Init
KMA

SGreedy-0.9
KMS

Fig. 4. Netflix-Prize-200: The average item utility (AIU), running time (in ln scale), and running iterations
for various 𝑘 and 𝑙 = 3. The red dash line represents the utility of top-𝑙 selection. CoClust, K-CPGC, Greedy
and SGreedy-0.5 were omitted due to long running time. The coefficients of variation of AIU of Random_Init,
SGreedy-0.9 and KMA are within 4.95%, 1.22% and 3.86% respectively.

Summarizing User-Item Matrix By Group Utility Maximization 19

5 10 20 30 40 50 100
#Groups: k

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

ite
m

 u
til

ity

Utility

5 10 20 30 40 50 100
#Groups: k

2

4

6

8

10

Se
co

nd
(ln

)

Running time

5 10 20 30 40 50 100
#Groups: k

5

10

15

20

25

30

Ite
ra

tio
ns

Running iterations
Random_Init Smart_Init KMM KMA KMS

Fig. 5. MovieLens-1B-200: The average item utility (AIU), running time (in ln scale) and running iterations for
various 𝑘 and 𝑙 = 30. The red dash line represents the utility of top-𝑙 selection. CoClust, K-CPGC, Greedy and
SGreedy-𝜖 are omitted due to long running time. The coefficients of variation of AIU of Random_Init, KMA
are within 2.60%, 4.15%.

Figure 2 compares AIU, running time and running iterations for various 𝑘 (𝑥-axis) with 𝑙 = 30 on

Netflix-Prize-17770. Note that 𝑙 is typically small because a large 𝑙 would overwhelm the analyst.

On this large dataset, only 𝑘-max algorithms, Random_Init, and Smart_Init can finish within our

time limit (10 hours). In general, KMM achieves slightly better utility and KMA and KMS have

similar utilities and surpass Smart_Init and Random_Init. Random_Init has the worst utility on this

sparse dataset because most items have very few ratings. For running time, KMA is a big winner.

Smart_Init takes significantly long time because of the intensive invokes of top-rank algorithm

to find the next initialization greedily, which is computational bottleneck for the dataset with

the larger number of movies. KMS runs Smart_Init in the initialization step, so is not faster than

Smart_Init. Overall, KMA is a good trade-off between utility and efficiency on this large dataset.

The right figure shows that the maximum iterations of 10 runs of KMA, actual iterations of KMM

and KMS over various 𝑘 . We can see that KMA, KMM and KMS stop within 19, 15 and 14 iterations.

Figures 3 and 4 report a similar study on the denser Netflix-Prize-200. K-CPGC and CoClust

were not included because they cannot be run efficiently. Moreover, K-CPGC will return the entire

matrix for a nonnegative matrix, which is not helpful for our purpose. Compared to the sparse

Netflix-Prize-17770, all algorithms have much higher utility than top-𝑙 selection on this denser

dataset, even for Random_Init, because the utility maximization due to group partitioning benefits

more from a denser matrix. In general, Greedy and SGreedy-𝜖 have a better utility than KMM, which

has a better utility than KMS, which has a better utility than KMA. Smart_Init and Random_Init

have a lower utility with Random_Init being the worst. Greedy and SGreedy-0.5 run slow for a

larger 𝑘 and 𝑙 , and are not included for 𝑙 = 3. For the running iterations, we can see KMA, KMM

and KMS can converge quickly within 9, 5 and 4 iterations respectively on Netflix-Prize-200 dataset.

Considering both utility and efficiency, KMA, KMM and KMS are preferred as they are less sensitive

to larger 𝑘 and 𝑙 .

6.4 Scalability on MovieLens Data
The final experiment was conducted on the larger dataset MovieLens-1B-200 which has a larger

number of rows than the above Netflix prize datasets. We use this dataset to evaluate the scalability

of proposed algorithms.

Figure 5 shows the average item utility, running time and running iterations on the MovieLens-

1B-200. Again, only 𝑘-max algorithms and Smart_Init and Random_Init can run efficiently. CoClust,

K-CPGC, Greedy and SGreedy-𝜖 cannot finish within a time limit (10 hours), therefore, are not

20 Yongjie Wang, et al.

reported here. Consistent with previous experiments, KMA is most scalable and yet has a utility

close to KMM. Smart_Init and Random_Init have very poor utility. The right figure demonstrates

the maximum running iterations of KMA, the actual iterations of KMM and KMS over various 𝑘

are within 20, 18, 29.

Due to the lower density of this dataset, there are several different findings. First, KMA, KMM,

and KMS have a similar utility. This is because the small number of 1’s in a row implies that there

are few choices for the 𝑙-itemsets 𝑋 𝑗 , so different algorithms tend to have similar utility. Second,

Smart_Init has a significantly lower utility. In each round of Smart_Init, 𝑋 𝑗 is selected as the top-𝑙

items in the remaining data and those rows having 𝑋 𝑗 as their top-𝑙 items are removed. However,

few such rows were removed because few rows have 𝑋 𝑗 as their top-𝑙 items due to the low rating

density. Consequently, the remaining data still contains most of rows in the next round, so the next

𝑋 𝑗+1 will be similar to 𝑋 𝑗 and the overall utility is similar to that of the top-𝑙 selection over the

whole data.

6.5 Summary
While Greedy algorithm provides the approximation factor (1 − 1

𝑒
) for a nonnegative matrix, the

𝑘-max algorithms (i.e., KMM, KMA, and KMS) are more efficient for large datasets. The small gap

between KMM and KMA, as well as the small coefficient of variation of KMA suggests that KMA

is a good trade-off between utility and efficiency. We recommend Greedy algorithms for small

datasets and parameters 𝑘 and 𝑙 , and KMM for larger dataset and parameters 𝑘 and 𝑙 , and KMA for

very large dataset and parameters 𝑘 and 𝑙 .

7 CONCLUSION
Summarizing a user-item matrix in terms of high utility items is of interest in many real-world

applications. Existing techniques (e.g., clustering, subgroup discovery) fail to address this high utility

requirement. We proposed a new summarization technique, named group utility maximization,

and prove that the optimal solution is NP-hard. We proposed two algorithms, Greedy algorithm

that adds one group at a time and provides a theoretical approximation bound for a nonnegative

matrix, and the 𝑘-max algorithm that refines existing groups iteratively. Empirical studies show

that Greedy algorithm provides a good utility whereas 𝑘-max algorithm is a good trade-off between

utility and efficiency for dealing large datasets.

One future work is to explore more strategies to enhance the algorithm efficiency of both the

Greedy and 𝑘-max algorithms. Possible ideas include representing a sparse user-item matrix with a

compact representation and considering data compression techniques. Another future work is to

study the approximation guarantee of the Greedy algorithm for a general matrix where an entry

value can be both positive and negative. Last, we plan to apply our algorithms to a broader range of

tasks such as one on the gene expression matrix, where each row/column denotes a gene/condition

and a higher entry value denotes a higher expression level under a condition. We intend to discover

highly expressed subsets of genes that are insightful to understand cellular processes.

REFERENCES
[1] Mohiuddin Ahmed. 2019. Data summarization: a survey. Knowledge and Information Systems 58, 2 (2019), 249–273.
[2] Sikder Tahsin Al-Amin and Carlos Ordonez. 2021. Efficient machine learning on data science languages with parallel

data summarization. Data & Knowledge Engineering 136 (2021), 101930.

[3] David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful seeding. Technical Report. Stanford.
[4] Francois Belletti, Karthik Lakshmanan, Walid Krichene, Yi-Fan Chen, and John Anderson. 2019. Scalable realistic

recommendation datasets through fractal expansions. arXiv preprint arXiv:1901.08910 (2019).
[5] James Bennett, Stan Lanning, et al. 2007. The netflix prize. In Proceedings of KDD cup and workshop, Vol. 2007. Citeseer,

35.

Summarizing User-Item Matrix By Group Utility Maximization 21

[6] Jacob Bien and Robert Tibshirani. 2011. Prototype selection for interpretable classification. The Annals of Applied
Statistics 5, 4 (2011), 2403–2424.

[7] Christian Borgelt. 2012. Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2, 6 (2012), 437–456.

[8] Vincent Branders, Guillaume Derval, Pierre Schaus, and Pierre Dupont. 2019. Mining a maximum weighted set of

disjoint submatrices. In International Conference on Discovery Science. Springer, 18–28.
[9] Vincent Branders, Pierre Schaus, and Pierre Dupont. 2017. Combinatorial optimization algorithms to mine a sub-matrix

of maximal sum. In International Workshop on New Frontiers in Mining Complex Patterns. Springer, 65–79.
[10] Branders, Vincent and Schaus, Pierre and Dupont, Pierre. 2019. Identifying gene-specific subgroups: an alternative to

biclustering. BMC Bioinformatics 20, 1 (2019), 1–13.
[11] Church GM Cheng Y. 2000. Biclustering of expression data. In Proc Int Conf Intell Syst Mol Biol.
[12] Reuven Cohen and Liran Katzir. 2008. The generalized maximum coverage problem. Inform. Process. Lett. 108, 1 (2008),

15–22.

[13] Graham Cormode and Donatella Firmani. 2014. A Unifying Framework for l0-Sampling Algorithms. Distrib. Parallel
Databases 32, 3 (sep 2014), 315–335. https://doi.org/10.1007/s10619-013-7131-9

[14] Marco De Gemmis, Leo Iaquinta, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and Giovanni Semeraro. 2009.

Preference learning in recommender systems. Preference Learning 41 (2009), 41–55.

[15] Cláudio Rebelo de Sá, Wouter Duivesteijn, Carlos Soares, and Arno Knobbe. 2016. Exceptional preferences mining. In

International Conference on Discovery Science. Springer, 3–18.
[16] Cláudio Rebelo de Sá, Wouter Duivesteijn, Carlos Soares, and Arno J. Knobbe. 2016. Exceptional Preferences Mining.

In DS.
[17] Inderjit S. Dhillon. 2001. Co-Clustering Documents and Words Using Bipartite Spectral Graph Partitioning. In

Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San

Francisco, California) (KDD ’01). Association for Computing Machinery, New York, NY, USA, 269–274. https:

//doi.org/10.1145/502512.502550

[18] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans. Interact.
Intell. Syst. 5, 4, Article 19 (dec 2015), 19 pages. https://doi.org/10.1145/2827872

[19] Franciso Herrera, Cristóbal José Carmona, Pedro González, and María José Del Jesus. 2011. An overview on subgroup

discovery: foundations and applications. Knowledge and Information Systems 29, 3 (2011), 495–525.
[20] ZR Hesabi, Zahir Tari, A Goscinski, Adil Fahad, Ibrahim Khalil, and Carlos Queiroz. 2015. Data summarization

techniques for big data—a survey. In Handbook on Data Centers. Springer, 1109–1152.
[21] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A survey of top-k query processing techniques in

relational database systems. ACM Computing Surveys (CSUR) 40, 4 (2008), 1–58.
[22] Dennis Leman, Ad Feelders, and Arno Knobbe. 2008. Exceptional model mining. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer, 1–16.
[23] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance. 2007.

Cost-Effective Outbreak Detection in Networks. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Jose, California, USA) (KDD ’07). Association for Computing Machinery,

New York, NY, USA, 420–429. https://doi.org/10.1145/1281192.1281239

[24] S. C. Madeira and A. L. Oliveira. 2004. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 1, 1 (2004), 24–45.

[25] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas Krause. 2015. Lazier

than lazy greedy. In Twenty-Ninth AAAI Conference on Artificial Intelligence.
[26] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis of approximations for maximizing

submodular set functions—I. Mathematical Programming 14, 1 (1978), 265–294.

[27] Chong-Wah Ngo and Feng Wang. 2009. Video Summarization.

[28] Carlos Ordonez, Naveen Mohanam, and Carlos Garcia-Alvarado. 2014. PCA for Large Data Sets with Parallel Data

Summarization. Distrib. Parallel Databases 32, 3 (sep 2014), 377–403. https://doi.org/10.1007/s10619-013-7134-6

[29] Lance Parsons, Ehtesham Haque, and Huan Liu. 2004. Subspace Clustering for High Dimensional Data: A Review.

SIGKDD Explor. Newsl. 6, 1 (jun 2004), 90–105. https://doi.org/10.1145/1007730.1007731

[30] Bidyut Kr. Patra and Sukumar Nandi. 2015. Effective Data Summarization for Hierarchical Clustering in Large Datasets.

Knowl. Inf. Syst. 42, 1 (jan 2015), 1–20. https://doi.org/10.1007/s10115-013-0709-8

[31] Dan Pelleg andAndrewMoore. 1999. Accelerating Exact K-Means Algorithmswith Geometric Reasoning. In Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Diego, California, USA)
(KDD ’99). Association for Computing Machinery, New York, NY, USA, 277–281. https://doi.org/10.1145/312129.312248

[32] William G Ruesink. 1980. Introduction to sampling theory. In Sampling Methods in Soybean Entomology. Springer,
61–78.

https://doi.org/10.1007/s10619-013-7131-9
https://doi.org/10.1145/502512.502550
https://doi.org/10.1145/502512.502550
https://doi.org/10.1145/2827872
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1007/s10619-013-7134-6
https://doi.org/10.1145/1007730.1007731
https://doi.org/10.1007/s10115-013-0709-8
https://doi.org/10.1145/312129.312248

22 Yongjie Wang, et al.

[33] Kelvin Sim, Vivekanand Gopalkrishnan, Arthur Zimek, and Gao Cong. 2013. A survey on enhanced subspace clustering.

Data Mining and Knowledge Discovery 26, 2 (2013), 332–397.

[34] Eric J. Stollnitz, Tony D. Derose, and David H. Salesin. 1996. Wavelets for Computer Graphics: Theory and Applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[35] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org, 3319–3328.

[36] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. Introduction to Data Mining (2nd Edition)
(2nd ed.). Pearson.

[37] Yongjie Wang, Ke Wang, Cheng Long, and Chunyan Miao. 2021. Summarizing User-Item Matrix By Group Utility

Maximization. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 1409–1414.
[38] Stefan Wrobel. 1997. An algorithm for multi-relational discovery of subgroups. In European Symposium on Principles

of Data Mining and Knowledge Discovery. Springer, 78–87.
[39] Han Xu, Eric Martin, and Ashesh Mahidadia. 2015. Extractive Summarisation Based on Keyword Profile and Language

Model. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Linguistics, Denver, Colorado, 123–132.

https://doi.org/10.3115/v1/N15-1013

https://doi.org/10.3115/v1/N15-1013

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Problem Statement
	3.1 Definitions
	3.2 Properties

	4 Greedy Algorithm
	4.1 Approximation Factor
	4.2 Implementation

	5 k-max Algorithm
	6 Evaluation
	6.1 Experimental Setup
	6.2 Comparison with Optimal Solutions on Titanic Dataset
	6.3 Summarizing Preferences of Netflix Movies
	6.4 Scalability on MovieLens Data
	6.5 Summary

	7 Conclusion
	References

