
TD3 with Reverse KL Regularizer for Offline
Reinforcement Learning from Mixed Datasets

Yuanying Cai1, Chuheng Zhang1,2, Li Zhao2,∗, Wei Shen3, Xuyun Zhang4,
Lei Song2, Jiang Bian2, Tao Qin2, Tieyan Liu2

1Tsinghua University, Beijing, China
2Microsoft Research Asia, Beijing, China

3Independent Researcher
4Macquarie University, Sydney, Australia

cai-yy16@mails.tsinghua.edu.cn, zhangchuheng123@live.com, shenwei0917@126.com,
xuyun.zhang@mq.edu.au, {lizo, lei.song, jiang.bian, taoqin, tyliu}@microsoft.com

Abstract—We consider an offline reinforcement learning (RL)
setting where the agent need to learn from a dataset collected by
rolling out multiple behavior policies. There are two challenges
for this setting: 1) The optimal trade-off between optimizing
the RL signal and the behavior cloning (BC) signal changes on
different states due to the variation of the action coverage induced
by different behavior policies. Previous methods fail to handle
this by only controlling the global trade-off. 2) For a given state,
the action distribution generated by different behavior policies
may have multiple modes. The BC regularizers in many previous
methods are mean-seeking, resulting in policies that select out-
of-distribution (OOD) actions in the middle of the modes. In this
paper, we address both challenges by using adaptively weighted
reverse Kullback-Leibler (KL) divergence as the BC regularizer
based on the TD3 algorithm. Our method not only trades off
the RL and BC signals with per-state weights (i.e., strong BC
regularization on the states with narrow action coverage, and
vice versa) but also avoids selecting OOD actions thanks to the
mode-seeking property of reverse KL. Empirically, our algorithm
can outperform existing offline RL algorithms in the MuJoCo
locomotion tasks with the standard D4RL datasets as well as the
mixed datasets that combine the standard datasets.

Index Terms—Offline Reinforcement Learning, Mixed Dataset,
Reverse KL Divergence

I. INTRODUCTION

In recent years, offline reinforcement learning (RL) achieves
great success on many real-world applications where online
data collection is risky and expensive such as robotics [1, 2],
healthcare [3], advertising [4], and dialogue systems [5]. In
offline RL, the agent aims to learn a good policy from
previously collected dataset without further interaction with
the environment. Although (online) off-policy RL methods
are applicable to the offline setting, directly using these
methods can result in suboptimal performance due to the
distribution shift problem [6]: The distribution induced by
the learned policy is different from the distribution over the
offline dataset. Consequently, we cannot estimate the values
of out-of-distribution state-action pairs accurately, and thus
the policy may take overestimated out-of-distribution actions
leading to suboptimal performance. This common pathway

This work is conducted at Microsoft Research Asia.
* Corresponding Author

Fig. 1. Illustration on the state-action pairs in an offline dataset collected
by two behavior policies. The variance of the action samples changes across
different states, which calls for trading off the RL and BC signals adaptively on
different states. The action samples can present multiple modes on a same state
where the learned policy should avoid taking the out-of-distribution actions
in the middle of the modes.

through which online RL algorithms can fail in the offline
RL setting [7] motivates later studies on offline RL.

To alleviate the distribution shift problem, the key for
the offline RL setting is to learn a reasonably conservative
policy that can avoid visiting out-of-distribution state-action
pairs while optimizing the performance of the policy. Policy-
based offline RL methods usually adopt various techniques to
constrain the learned policy to be close to the behavior policy
(i.e., the policy used to collect the offline dataset) [7–12]. In
other words, there are two signals in the training process: The
RL signal that trains the agent to maximize the cumulative
reward and the behavioral cloning (BC) signal that constrains
the learned policy to be close to the behavior policy.

The success of offline RL also depends on the quality and
the size of the dataset. A common scenario in the industry is
that we are provided with a large dataset with mixed samples
collected using different behavior policies. However, different

ar
X

iv
:2

21
2.

02
12

5v
1

 [
st

at
.M

L
]

 5
 D

ec
 2

02
2

from the case where data samples are collected with a single
behavior policy, such mixed datasets bring new challenges that
prevent us from learning a reasonably conservative policy. We
find that existing offline RL methods are not designed for
mixed datasets and perform poorly in our later experiments
with mixed datasets.

As an example, we show an offline dataset collected by two
different policies in Figure 1. For ease of presentation, we
consider one-dimensional states and actions. In this example,
the two policies visit different parts of the state space and
produce different action distributions with different variances.
Specifically, action samples generated by the first policy (e.g.,
a random policy) have a larger variance than those generated
by the second policy (e.g., an expert policy). The challenges
arise from the following two distributional properties of the
state-action samples in the mixed dataset:

First, we observe that the variance of the action samples
varies on different states, which motivates us to adaptively
trade off between the RL and BC signals. For the states
with small action coverage (cf. the states covered only by the
second policy), it is better to use a strong BC signal since we
have little knowledge on the effect of other actions. In contrast,
for the states with a large action coverage (cf. the states visited
by the first policy), we can rely more on the RL signal to
choose a good action from the distribution of sampled actions.
However, although previous methods consider the trade-off
between the RL and BC signals, they do not adjust the trade-
off on different states adaptively. This may lead to suboptimal
performance when the dataset is collected by behavior policies
with different levels of stochasticity.

Second, the distribution of the action samples in certain
states is multimodal. Previous methods that use the mean-
squared-error [12] or the Kullback-Leibler (KL) divergence
[8] as the BC regularizer are mean-seeking, i.e., encouraging
the policy to take the mean action of the action samples.
However, when the action samples present multiple modes
(cf. the states visited by both policies in Figure 1), such
regularization encourages the policy to take the actions in the
middle of the modes that may be out-of-distribution.

To address these challenges, we propose a simple yet
effective method that uses adaptively weighted reverse KL
divergence between the learned policy and the behavior action
distributions as the BC regularizer. On one hand, the mode-
seeking property of the reverse KL divergence (i.e., encour-
aging the policy to select the actions from one of the modes)
can prevent the policy from selecting out-of-distribution ac-
tions when the behavior action distribution is highly multi-
modal. On the other hand, we weight the BC regularization
adaptively for a given state with a transformation of the
aleatoric uncertainty (or the standard deviation) of the action
samples on this state. Then, we combine the BC regularization
using reverse KL divergence with one of the state-of-the-art
offline RL algorithms TD3+BC [12] resulting in our algorithm
called TD3+RKL. We compare TD3+RKL with several strong
baselines on the MuJoCo locomotion tasks with the standard
D4RL dataset [13]. Empirically, we find that TD3+RKL not

only outperforms these baselines when learning from datasets
collected using a single behavior policy but also achieves
significantly better performance on mixed datasets that are
collected using different policies.

Our contributions are summarized as follows:

• We consider a special offline RL setting that requires the
agent to learn from mixed dataset collected by multiple
distinct behavior policies. We summarize the two chal-
lenges for this setting: different variances of the action
samples on different states and the multi-modality of the
behavioral action distribution on certain states.

• To face these challenges, we propose TD3+RKL that
uses adaptively weighted reverse KL divergence as the
BC regularizer. We show that this simple technique not
only adjusts for the trade-off between the RL and BC
signals on different states adaptively but also avoids
selecting out-of-distribution actions when the behavior
action distribution is highly multi-modal.

• We empirically show that TD3+RKL outperforms the
previous methods on most of the offline RL tasks using
the D4RL dataset and achieves the best performance
when the dataset is collected by a mixture of behavior
policies.

II. RELATED WORK

In this paper, we propose a new form of behavior cloning
(BC) regularization for the offline RL setting that learns from
datasets collected by a mixture of behavior policies. To handle
different variances of the behavior action samples on different
states, we weight the BC regularizer according to the aleatoric
uncertainty of the action samples. In this section, we provide
a brief survey on offline RL from mixed datasets, different BC
regularizers in offline RL, and using uncertainty in offline RL.

Offline RL from mixed datasets. Although most offline
RL formulation accepts the dataset collected from multiple
behavior sources, few papers focus on learning from such
mixed datasets. However, this setting is very common in real-
world problems. Many previous methods rely on estimating
the behavior policy πβ(·|s) with a uni-modal Gaussian model
[e.g., 5, 7–10, 14]. However, a uni-modal Gaussian model
may fail to estimate the highly multi-modal action distribution
accurately and can result in a policy that selects out-of-
distribution actions [15]. To deal with multi-modal action
distribution, several previous methods circumvent explicit be-
havior policy estimation by using samples to approximate the
behavior distribution. For example, Kumar et al. [16] propose
CQL that tries to increase the estimated Q values on behavior
state-action samples while decrease those collected by the
target policy. Peng et al. [17] and Nair et al. [18] present
advantage-weighted forms of behavior cloning that maximizes
the weighted log-probability that the target policy can generate
the behavior data. Similar to these methods, we derive a
BC regularizer that can be calculated based on samples and
avoid estimating the behavior policy. Moreover, we focus on
the changing variance of the behavior action distribution on

different states and design a mode-seeking BC regularizer to
deal with this challenge.

Behavior cloning in RL. Behavior cloning (BC) sig-
nals/regularizers are used in both online and offline RL set-
tings. In online RL, BC signals are used to accelerate the learn-
ing process [18, 19], encourage exploration [20, 21], impose
safety constraints [22], or overcome the sparse reward problem
[23]. In offline RL, previous policy-based methods incorporate
various forms of BC signals, including the divergence regular-
ization between the target and the behavior policies (e.g., KL
divergence [5, 24], maximum mean discrepancy, [9], or others
[8]), or direct behavior cloning regularizers [17, 18, 25, 26].
Our paper uses reverse KL divergence as the BC regularization
in offline RL, which will be shown to address the challenges in
offline RL from mixed datasets. Several previous papers such
as BRAC [8] also use the reverse KL divergence. However,
minimizing the reverse KL divergence leads to an entropy
maximization of the target policy and may result in an overly
exploratory policy when using stochastic target policies as
in these papers. We overcome this limitation by learning a
deterministic target policy.

Using uncertainty in offline RL. We use aleatoric uncer-
tainty (i.e., the inherent uncertainty in the dataset) to balance
RL and BC signals on different states, whereas previous offline
RL methods usually use epistemic uncertainty (due to the
lack of data) [27, 28] to detect out-of-distribution state-action
pairs. Specifically, these methods treat the state-action pairs
with large epistemic uncertainty as out-of-distribution and
encourage the learned policy to stay away from the OOD
state-action pairs in both model-free methods [16, 29–32] and
model-based methods [33, 34].

III. PRELIMINARY AND BACKGROUND

A. Offline Reinforcement Learning

We consider the discounted infinite-horizon Markov deci-
sion process (MDP) M = (S,A, P, r, ρ, γ), where S and A
are the state space and action space respectively, P : S×A →
∆S is the transition dynamics, r : S × A → R is the reward
function, ρ is the initial state distribution, and γ ∈ [0, 1] is
the discounted factor [36]. Given a policy π : S → ∆A,
the return starting from the state-action pair on the t-th step
(st, at) is defined as the sum of the discounted rewards
Rπt =

∑∞
τ=t γ

τ−tr(sτ , aτ) where st+1, at+1, st+2, at+2, · · ·
are collected by rolling out the policy π starting from (st, at).
The objective of online reinforcement learning (RL) is to
learn a policy that maximizes the expected return J(π) =
Es0∼ρ,a0∼π(·|s0)[R

π
0]. Given a state-action pair (s, a) and a

policy π, the Q function is defined as Qπ(s, a) = E[Rπ0 |s0 =
s, a0 = a] where the expectation is taken over all the possible
trajectories starting from (s, a). The Q function is the fixed
point of the following Bellman evaluation operation [37]:

T πQ(s, a) := r(s, a)+γEs′∼P (·|s,a),a′∼π(·|s′)[Q(s′, a′)]. (8)

Besides, the Q function of the optimal policy π∗ denoted
as Q∗ := Qπ

∗
is the fixed point of the following Bellman

optimality operation:

T ∗Q(s, a) := r(s, a) + γEs′∼P (·|s,a)

[
max
a′

Q(s′, a′)
]
. (9)

For the offline RL setting, the objective is to learn a policy
that maximizes the expected return with the provided offline
dataset D = {(st, at, rt, s′t)}Nt=1 instead of interactions with
the environment [15]. Furthermore, we consider the setting
where the dataset is collected by a mixture of behavior policies
denoted as πb.

B. Offline RL with Policy-Based Constraints

As previously introduced, the key for offline RL is to
control distribution shift by learning a conservative policy that
can avoid visiting out-of-distribution state-action pairs. One
category of the methods impose constraints on the learned
policies with behavior cloning (BC) regularizers to encourage
the learned policy to be close to the behavior policy. We
summarize the BC regularizers in several popular existing
methods in Table I. Previous offline RL methods either model
the target policy as the estimated behavior policy π̂b plus a
perturbation or learn parameterized policies directly.

The representatives of the first category include BCQ [7]
and EMaQ [35]. BCQ models the target distribution as
π̂b(·|s) + ξφ(s) where π̂b is the estimated behavior policy and
ξφ is a parameterized perturbation network. EMaQ simplifies
BCQ by removing the perturbation network at the cost of
more computational costs at the testing time (i.e., sampling
from estimated behavior policy multiple times to select a best
action). As shown in Eq. (1) and Eq. (2) in the table, BCQ
and EMaQ can evaluate and optimize the Q values only on the
state-action pairs near the behavior state-action samples from
the dataset with the help of such modeling. These methods
construct the target policy on top of the estimated behavior
policy and therefore rely on the quality of the estimated
behavior policy. However, when the dataset is generated by
multiple distinct behavior policies with complex patterns in
the state-action distribution, it is hard to estimate the mixture
of behavior policies accurately. Therefore, the success of these
methods largely depends on a careful design on the generative
model used to approximate the behavior policies [35].

The second category of methods learn a deterministic policy
(denoted as µφ : S → A) or a stochastic policy (denoted as
πφ : S → ∆A) directly. For example, as shown in Eq. (3)-
(5), BEAR [9], CDC [24] and BRAC [8] constrain the policy
using the maximum mean discrepancy (MMD), the forward
KL divergence and the reverse KL divergence with the pre-
estimated cloned policy π̂b respectively1. The benefit of using
forward KL divergence is that is does not require sampling
from the target policy πφ. However, we will later show that
the forward KL divergence is mean-seeking, which means

1Although the author claims that they use a reverse KL, CDC actually uses
a forward KL regularizer in which the latter term is the learnable distribution
according to the definition in, for example, [38, 39].

TABLE I
Comparison of the behavior cloning regularization in the update rules of different policy constraint based methods.

Algorithms Update Rules

BCQ [7] maximizeξφE(s,a)∼D

[
Qθ
(
s, a′ + ξφ(s, a

′)
)∣∣∣a′ ∼ π̂b(·|s)] (1)

EMaQ [35] arg maxa∼π̂b(·|s)
[
Qθ
(
s, a
)]
, and Qθ

(
s, a
)
← r(s, a) + γEs′

[
max

a′∼π̂b(·|s′)
Qθ(s

′, a′)

]
(2)

BEAR [9] maximizeπφE(s,a)∼D

[
Qθ
(
s, πφ(s)

)
− λMMD

(
π̂b(·|s)

∣∣∣∣πφ(·|s))] (3)

CDC [24] maximizeπφE(s,a)∼D

[
Qθ
(
s, πφ(s)

)
− λKL

(
π̂b(·|s)

∣∣∣∣πφ(·|s))] = E(s,a)∼D

[
Qθ
(
s, πφ(s)

)
+ λ log πφ(a|s)

)]
(4)

BRAC [8] maximizeπφE(s,a)∼D

[
Qθ
(
s, πφ(s)

)
− λKL

(
πφ(·|s)

∣∣∣∣π̂b(·|s))] (5)

TD3+BC [12] maximizeµφE(s,a)∼D

[
Qθ
(
s, µφ(s)

)
− λ
(
µφ(s)− a

)2] (6)

TD3+RKL (ours) maximizeµφE(s,a)∼D;a1,a2∼D

[
Qθ
(
s, µφ(s)

)
− λ(s)

((
µφ(s)− a

)2 − α(µφ(s)− a1 + a2

2

)2
)]

(7)

that it cannot prevent the target policy from selecting out-of-
distribution actions between multiple modes of the action sam-
ples. BRAC uses the reverse KL divergence which is mode-
seeking an can avoid selecting out-of-distribution actions.
However, BRAC models the target policy as a parameterized
stochastic policy, and consequently minimizing the reverse
KL divergence induces a term that maximizes the entropy of
the target policy. This term incentivizes an overly exploratory
policy which is not suitable for offline RL. Moreover, BRAC
still requires an pre-estimated behavior policy π̂b. TD3+BC
[12] proposes a simple method that is free from modeling a
complex target policy (e.g., using the perturbation network
or a stochastic policy) and estimating the behavior policy
and achieves impressive performance. However, the MSE
regularization used in TD3+BC is also mean-seeking and
may result in suboptimal policies when learning from mixed
datasets. Later, we will introduce our method that inherits the
simplicity of TD3+BC but can handle mixed datasets.

C. KL Divergence in Offline RL

Consider two distributions over a space X : a data dis-
tribution denoted as p(x) and a parameterized distribution
qθ(x) to approximate the data distribution for some x ∈ X .
The forward and reverse Kullback-Leibler (KL) divergence
[40, 41] are defined as follows:

Forward KL: KL(p||qθ) =
∑
x

p(x) log
p(x)

qθ(x)
(10)

Reverse KL: KL(qθ||p) =
∑
x

qθ(x) log
qθ(x)

p(x)
(11)

In offline RL, although all BC regularizers try to match the
target policy with the data distribution, using different regu-
larizers captures different properties of the data distribution.

Fig. 2. Comparison between different behavior cloning regularizers. The red
and green arrows correspond to the first term and the second term in Eq. (16)
respectively.

We compare the effect of the MSE, reverse KL and forward
KL regularizer in Fig. 2. In our example, the mixture of behav-
ior policies generates an action selection probability with two
modes denoted as D(s) on the state s. As shown in Fig. 2(a),
MSE motivates a deterministic policy that outputs an out-of-
distribution action in the middle of the two modes. In Fig. 2(b),
we show that the learned policy πφ(·|s) under the forward KL

regularizer covers the support of the data distribution D(s)
and samples out-of-distribution actions with large probability.
This results from the formulation of forward KL where πφ(·|s)
appears in the denominator which encourages the learned
policy to sample the actions with nonzero probability in the
region where D(a|s) > 0. In the middle of the two modes, the
difference between πφ(·|s) and D(a|s) is ignored by forward
KL since the weight D(a|s) vanishes in this area. Therefore,
the forward KL is also mean-seeking. In Figure 2(c), we show
that the learned policy πφ(·|s) under the reverse KL regularizer
captures one of the modes in D(·|s). Such mode-seeking effect
is what we need since it helps us to avoid sampling out-of-
distribution actions.

In offline RL, previous methods usually use the forward KL
as BC signals to encourage the learned policy to be closed
to the behavior policy [15]. As we have mentioned before,
the policy learned by minimizing the forward KL divergence
covers the whole support of the behavior policy. Hence, it
is not suitable to use the forward KL regularizer to learn
a deterministic policy on the standard D4RL dataset where
the behavior policies used to collect the dataset are stochastic
policies.

IV. METHODOLOGY

In this section, we introduce our algorithm TD3+RKL
that regularizes the policy using the reverse KL divergence
with samples collected by behavior policies. Specifically, we
consider learning a deterministic policy and derive the mode-
seeking regularizer used in our algorithm starting from the
reverse KL divergence formulation. Moreover, to adaptively
balance the RL and BC signals, we weight the BC regulariza-
tion on different states according to the aleatoric uncertainty
on the states. At last, we present our practical algorithm.

A. Mode-Seeking Regularizer

As previously introduced, we need a mode-seeking regu-
larizer to prevent the policy from selecting out-of-distribution
actions. Here, we first consider the following learning objec-
tive with a BC regularizer using the reverse KL divergence:

maxπφEs∼D
[
Qθ
(
s, πφ(s)

)
− λ(s)KL

(
πφ(s)

∣∣∣∣π̂b(s))], (12)

where the weight λ is adaptive depending on different states.
This adaptive weight can be used to balance the RL and BC
signals on different states and the detailed formulation will be
introduced later. We can rewrite the reverse KL divergence as
follows:

KL
(
πφ(s)

∣∣∣∣π̂b(s))
=
∑
a∈A

πφ(a|s) log
πφ(a|s)
π̂b(a|s)

=−H
(
πφ(a|s)

)
−
∑
a∈A

πφ(a|s) log π̂b(a|s).

(13)

We can see that minimizing the reverse KL divergence leads
to maximization on the entropy of the target policy. This term
encourages exploration which may be useful for online RL but

should be avoided in offline RL since an exploratory policy
makes it easy for the target policy to select out-of-distribution
actions. To avoid an overly exploratory target policy, we model
the target policy as a Gaussian policy with a fixed standard
deviation σ, i.e., πφ(s) = N (µφ(s), σ). Notice that modeling
the target policy with uni-modal Gaussian does not contradict
with the mixed behavior policy which may not be Gaussian.
This is because there always exists a deterministic optimal
policy [42] and it is reasonable to model the deterministic
policy with a uni-modal Gaussian distribution. With fixed
standard deviation σ, we can get rid of the first term and
obtain

min
φ

KL
(
πφ(s)

∣∣∣∣π̂b(s)) = max
φ

∑
a∈A

πφ(a|s) log π̂b(a|s).

Due to the complexity of behavior policies, we do not want
to base the regularizer on an estimated π̂b. Therefore, we want
to formulate a sample-based behavior distribution π̂b. For ease
of notation, we assume the action space is discrete and the
action samples do not overlap with each other. Extending this
formulation to continuous case is straightforward. Given a
state s ∈ D, we define the probability mass function based
on samples:

π̂b(a|s) =

{
e−M+N if (s, a) ∈ D
e−M otherwise

, (14)

where M > N > 0 and M is a large constant so that
e−M → 0, and they should satisfy the normalization condition∑
a∈A π̂b(a|s) = 1.
With this assumption, we have

max
φ

∑
a∈A

πφ(a|s) log π̂b(a|s)

=N
∑

a:(s,a)∈D

πφ(a|s)−M
∑
a∈A

πφ(a|s).
(15)

The above optimization problem is equivalent to

max
φ

 ∑
a:(s,a)∈D

πφ(a|s)− α
∑
a∈A

πφ(a|s)

 , (16)

for some hyperparameter α > 0. We can see that the first term
is to maximize the probability of the action samples selected
by the target policy (see also the red arrows in Fig. 2) and the
second term is to minimize the probability on negative samples
(see also the green arrows in Fig. 2) . The combination of
these two term can push the target policy away from selecting
out-of-distribution actions.

Next, we replace πφ(a|s) with the probability density
function of Gaussian and obtain the following form of our
regularizer:

max
φ

[∑
a:(s,a)∈D

exp

(
− (µφ(s)− a)2

2σ2

)

− α
∑
a∈A

exp

(
− (µφ(s)− a)2

2σ2

)]
.

(17)

Algorithm 1 TD3+RKL
1: Input: The offline dataset D
2: Hyperparameters: Batch size N ; Clip constant c; Stan-

dard deviation of target policy σ; Update frequency d
3: Initialize the critic networks Qθ1 , Qθ2
4: Initialize the actor network µφ
5: Initialize the policy πψ(·|s) := N (µψ(s), σψ(s))
6: . Aleatoric Uncertainty Estimation
7: Estimate πψ based on D to clone the behavior policy
8: β̂b(·)← βφ(·) := log σψ(·)2

9: . Offline Reinforcement Learning
10: for t = 1, 2, · · · do
11: Sample N transitions {(si, ai, ri, s′i)} from D
12: a′i ← µφ̄(s′i)+εi; εi ∼ clip(N (0, σ)),−c, c),∀i ∈ [N]
13: yi ← ri + γminj=1,2Qθ̄j (s

′
i, a
′
i);∀i ∈ [N]

14: θj ← arg minθi
1
N

∑N
i=1(yi −Qθj (si, ai))2; j = 1, 2

15: if t mod d = 0 then
16: Construct λ(s) using Eq. (18) and β̂b(s)
17: Update µφ by optimizing Eq. (7) with λ(s)
18: Update target networks using Polyak averaging
19: end if
20: end for

To get rid of the effect of σ that essentially serves only as
a temperature hyperparameter, we remove the monotonically
increasing exponential function and the coefficient 1/2σ2.
Moreover, to obtain negative action samples, we randomly
sample two actions a1, a2 from the dataset D and use their
mean (a1 + a2)/2 as the negative sample. In this way, the
negative sample lies within the convex hull spanned by all
the action samples. At last, we obtain the regularizer that
is applicable to the practical algorithm, i.e., updating the
deterministic policy µφ to minimize

E(s,a)∼D;a1,a2∼D

[
(µφ(s)− a)

2 − α
(
µφ(s)− a1 + a2

2

)2
]
.

B. Adaptive Regularizer

Since the variance of action samples changes on different
states, we would better balance the RL and BC signals
adaptively on different states according to the aleatoric uncer-
tainty of the samples. Our algorithm uses estimated standard
deviation of the action samples conditioned on different states
σ̂b(s) as the aleatoric uncertainty. Specifically, we use

λ(s) =
1

1 + exp
[
ζ1β̂b(s)− ζ2

] ∈ [0, 1], (18)

where β̂b(s) := log σ̂b(s)
2 and ζ1, ζ2 are hyper-parameters.

The motivation for this formulation is to design numerically
stable and well distributed weights with the sigmoid function
and linear transformation. In practical algorithms, we use the
log-variance β̂b(s) in a pre-estimated Gaussian policy πψ .

Notice that, different from the previous work that estimates
a Gaussian policy to regularize the target policy, πψ estimated
in our algorithm is only used to adjust the weight and therefore
is not required to be highly accurate.

For the states on which σ̂b(s) is large (i.e., the behavior
policy takes a wide range of actions on these states), we reduce
the BC regularization since we have sufficient knowledge on
the effect of different actions and can select a good action
among them to maximize the cumulative reward following the
indication of the RL signal. Otherwise, we have to restrict the
policy to select only actions similar to the ones that have been
tried by the behavior policy.

C. The TD3+RKL Algorithm

We present the details of TD3+RKL in Algorithm 1. Note
that we also adopt the useful tricks used in TD3+BC (such
as using target networks, pre-normalizing the states in the
dataset, and adaptively adjusting the weight of the RL signal
by dividing E(s,a)∼D[Q(s, a)]) and do not present them in the
algorithm block for simplicity.

In Line 6-8, we estimate a behavior policy that is modeled
as a Gaussian distribution conditioned on s ∈ S parameterized
by µψ : S → R and βψ : S → R with βψ(s) := log σψ(s)2.
This process is similar to the behavior cloning process in
many offline algorithms such as [16]. Although this cloned
behavior policy may not accurately approximate the mixed
behavior policy used for dataset collection, we only use the
log-variance of the cloned policy which does not require a high
accuracy to calculate the adaptive weights for later offline RL
process. Later in Section V-B, we will show that the estimated
variance can nicely reveal the aleatoric uncertainty and result
in reasonable weights.

In Line 9-20, we learn the Q function following the TD3
algorithm [24, 37]. The key of our algorithm is to calculate the
adaptive weights for each state in the batch following Eq. (18)
(cf. Line 16) and update the target policy by optimizing both
the RL and BC signals following the update rule defined in
Eq. (7) (cf. Line 17).

V. EXPERIMENTS

In this section, we conduct experiments to evaluate our
algorithm from the following aspects2:
• We compare TD3+RKL with the previous offline RL

algorithms on the standard D4RL datasets as well as
several new mixed datasets to evaluate the performance of
different algorithms on the datasets collected by a mixture
of policies.

• For the adaptive weights, we study how well can we learn
the aleatoric uncertainty σ̂b on both a toy example and
the Halfcheetah task with D4RL datasets [13].

• For the new behavior cloning regularizer, we further con-
duct controlled experiments to compare the performance
of different behavior cloning regularizers on the MuJoCo
locomotion tasks using the D4RL datasets.

2Codes are available at https://github.com/yuanying-cc/TD3-RKL.

Fig. 3. Evaluation of the learned aleatoric uncertainty on a toy example with
one-dimensional states and actions. The x-axis represents the state and the y-
axis represents the action. The orange bars represent the predicted aleatoric
uncertainty on different states.

Fig. 4. Histogram of per-state BC weights λ(s) computed with the learned
aleatoric uncertainty of the behavior policy in the Halfcheetah-random and
Halfcheetah-expert D4RL datasets. The blue (orange) bars represent the
uncertainty learned from the random (expert) dataset. The x-axis represents
the weight value and the y-axis represents the count.

In our experiments, we choose ζ1 = 10 and ζ2 = 5
according to pre-estimated log-variance on the action samples.
For simplicity, we use α = 1.0 which results in reasonable
performance. Other hyper-parameters are set following the
implementation of TD3+BC. We use the open-source D4RL
datasets in our experiments and will release our code when
the paper is published.

A. Comparison with Previous Offline RL Algorithms

In this part, we compare TD3+RKL with existing policy-
constraint based offline RL algorithms. To evaluate the per-
formance of different algorithms when learning from mixed
datasets, we obtain new datasets by mixing the random D4RL
dataset with the others, resulting in Random-MeduimReplay,
Random-MeduimExpert, and Random-Expert datasets. We
evaluate the algorithms on standard D4RL datasets and the
new mixed datasets. We present the result in Table II. First,
we observe that existing methods perform poorly on the new
mixed datasets. Notice that, even if the sizes of the mixed
datasets are larger than those of the D4RL datasets (since

they are the combination of two of the D4RL datasets),
the algorithms perform worse on the mixed datasets. This
indicates that learning from mixed datasets is a harder task
than learning from datasets generated by pure policies. Second,
we can observe that TD3+RKL outperforms the previous
algorithms on most D4RL datasets, resulting in an average
performance increase of 5.3% compared with the best baseline
TD3+BC. Third, we can see that TD3+RKL outperforms the
other baselines significantly on the new mixed datasets and
achieves an average normalized score that is 25.5% higher
than TD3+BC. This suggests that TD3+RKL performs well
on the scenarios where the dataset is collected by a mixture
of distinct policies.

B. Evaluation on Learned Aleatoric Uncertainty

Recall that, we estimate the aleatoric uncertainty condi-
tioned on different states and adaptively balance the RL and
BC signals based on the estimated uncertainty in TD3+RKL.
Therefore, the effectiveness of adaptive weights depends on the
quality of the estimated uncertainty. In this part, we evaluate
the quality of the learned aleatoric uncertainty and show the
resultant weights.

Evaluation on the toy example. We first evaluate the
aleatoric uncertainty extracted from the cloned policy πψ
modeled using Gaussian on a toy example. In this toy example,
we consider the one-dimensional state and action spaces. We
show the state-action pairs in the training dataset with blue
points in Figure 3, where the x-axis represents the state and the
y-axis represents the action. Based on the dataset, we learn the
aleatoric uncertainty as in TD3+RKL and show the uncertainty
of the action samples with the orange bars in Figure 3, the
lengths of which represent the level of uncertainty.

We can observe that the action samples on the left have
higher uncertainty than those on the right. Accordingly, the
predicted uncertainty on the left is larger than that on the
right, which indicates that the learned aleatoric uncertainty
can nicely capture the uncertainty or coverage of the action
samples on different states.

Evaluation on the Halfcheetah dataset from D4RL.
To further evaluate the effectiveness of uncertainty esti-
mation combined with our weight formulation on robotic
control tasks, we present the per-state BC weight λ(s) on
the Halfcheetah-Random and Halfcheetah-Expert dataset from
D4RL. We show the weight λ(s) on the states from different
datasets with a histogram in Figure 4. The weight is calculated
based on the aleatoric uncertainty learned on the combination
of both datasets. The orange bars represent the weights for the
samples from the expert dataset while the blue bars represent
the weights for the samples from the random dataset. We
expect that the random dataset has larger action coverage
and aleatoric uncertainty than the expert dataset and therefore
smaller BC weights. We can see that our experiment result is
consistent with this intuition, which indicates the effectiveness
of the adaptive weight formulation on standard offline datasets.

TABLE II
Comparison of difference algorithms on Mujoco tasks using the D4RL dataset and mixed datasets. The first four groups of benchmarks use the standard

D4RL datasets [13], and the last three groups use new datasets generated by mixing the standard datasets. The scores for BC, BRAC, and TD3+BC for the
first four groups are taken from the original papers, while the other scores are obtained by our implementation and averaged over 10 evaluations with 5 seeds.

Task Name BC BRAC CDC TD3+BC TD3+RKL

HalfCheetah-Random 2.0±0.1 23.5 27.4 10.2±1.3 23.2±1.1
Hopper-Random 9.5±0.1 11.1 14.8 11.0±0.1 11.1±0.1
Walker2d-Random 1.2±0.2 0.8 7.2 1.4±1.6 2.2±1.3

HalfCheetah-MediumReplay 37.4±1.8 45.6 44.7 43.3±0.5 47.1±1.5
Hopper-MediumReplay 19.7±5.9 0.7 55.9 31.4±3.0 45.3±2.5
Walker2d-MediumReplay 8.3±1.5 -0.3 23.0 25.2±5.1 24.5±2.3

HalfCheetah-MediumExpert 67.6±13.2 43.8 59.6 97.9±4.4 105.4±4.8
Hopper-MediumExpert 89.6±27.6 1.1 86.9 111.2±0.2 112.0± 0.6
Walker2d-MediumExpert 12.0±5.8 -0.3 70.9 101.1±9.3 98.4±10.6

HalfCheetah-Expert 105.2±1.7 3.8 82.1 105.7±1.9 106.4±2.9
Hopper-Expert 111.5±1.3 6.6 102.8 111.2±0.2 112.3±0.6
Walker2d-Expert 56.0±24.9 -0.2 87.5 105.7±2.7 106.9± 1.6

Average on D4RL datasets 43.3 11.4 55.2 62.9 66.2 (+5.2%)

HalfCheetah-Random-MediumReplay 24.2±5.0 36.0±4.2 28.9±5.2 33.6±1.9 40.9±4.8
Hopper-Random-MediumReplay 11.4±8.3 8.2±3.3 26.0±7.9 19.0±2.4 28.3±5.2
Walker2d-Random-MediumReplay 3.3±2.6 0.6±0.2 13.7±6.8 5.8±2.6 16.7±5.9

HalfCheetah-Random-MediumExpert 43.9±19.6 37.7±6.8 34.2±7.7 84.5±6.5 101.1±8.6
Hopper-Random-MediumExpert 41.2±22.7 6.2±2.5 34.4±3.7 103.2±2.8 106.5±2.5
Walker2d-Random-MediumExpert 5.6±2.9 1.0±0.2 7.9±1.3 5.4±1.1 24.9±7.1

HalfCheetah-Random-Expert 47.3±17.2 16.9±3.7 38.5±8.3 89.8±4.4 107.5±5.2
Hopper-Random-Expert 69.6±24.4 9.4±1.5 88.4±9.6 99.7±10.5 111.8±4.5
Walker2d-Random-Expert 11.3±18.8 0.5±0.1 8.6±2.1 3.5±0.2 20.7±6.4

Average on mixed datasets 28.6 12.9 31.2 49.4 62.0 (+25.5%)

C. Effects of Different BC Signals

In this part, we design controlled experiments to further
compare different kinds of behavior cloning signals listed
in Table I. We evaluate the per-state weighted reverse KL
divergence used in TD3+RKL (ours), the MSE loss used in
TD3+BC [12], the forward KL used in CDC [24] and the
reverse KL used in BRAC [8]. The first two BC signals are
used for learning deterministic policies and the latter two BC
signals are used for learning stochastic policies. To study the
effect of pure BC signals, we evaluate them under the behavior
cloning setting, i.e., we do not use any RL signal. We use the
expert datasets from the D4RL datasets in these experiments.

We show the experiment results in Figure 5. First, we note
that although BRAC also uses the reverse KL divergence,
its performance in pure behavior cloning is poor. This may
result from the implicit entropy maximization for the target
policy which is not suitable especially for the expert dataset.
Second, we observe that the MSE loss used in TD3+BC works
significantly better than the losses in BRAC and CDC that
optimize the stochastic target policy. This motivates us to learn
a deterministic target policy that is simple as well as effective.
At last, the per-state weighted loss derived from minimizing
the reverse KL divergence used in our algorithm learns a
better policy than TD3+BC on the Walker2d task and achieves
comparable performance on the other two tasks. This shows
that our BC regularization can clone the behavior policy well
given an expert dataset.

VI. CONCLUSION

In this paper, we consider the offline reinforcement learning
(RL) setting where the agent should learn from a dataset
collected by a mixture of behavior policies. For this setting,
the algorithm should not only balance the RL and behavior
cloning (BC) signals adaptively on different states but also
avoid selecting out-of-distribution actions in the face of multi-
modal behavior action distributions. To meet these require-
ments, we propose TD3+RKL (reverse KL divergence) that
uses the BC regularzier derived from adaptively weighted
reverse KL divergence with a deterministic target policy. Our
method is simple since it does not require us to estimate
an accurate behavior policy or maintain a stochastic target
policy. Nevertheless, our method is effective empirically when
learning from both the standard D4RL datasets and the new
dataset generated by mixing the samples collected by different
behavior policies.

We note that, although our algorithm outperforms the pre-
vious methods on mixed datasets, the performance of the
policy learned based on a mixed dataset (e.g., Walker2d-
Random-Expert) is not as good as that based on a subset
of this dataset (e.g., Walker2d-Expert). This motivates us to
adjust the behavior cloning regularizer based on not only the
variance of the action samples conditioned on the state but also
the performance of the underlying behavior policy. However,
this requires more complicated techniques to discriminate and
evaluate the underlying behavior policies. We leave it as a

Fig. 5. Comparison of the performance learned only using BC signals on expert datasets from D4RL. We use four kinds of BC signals listed in Table 1.
The reverse and forward KL signals are used as constraints in BRAC and CDC. Each score is averaged over 10 evaluations with 5 random seeds. The x-axis
represents the evaluation time steps while the y-axis represents the normalized scores.

future research direction.

REFERENCES

[1] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and
L. Fei-Fei, “GTI: Learning to generalize across long-
horizon tasks from human demonstrations,” in Robotics:
Science and Systems, 2020.

[2] G. Kahn, P. Abbeel, and S. Levine, “Badgr: An au-
tonomous self-supervised learning-based navigation sys-
tem,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1312–1319, 2021.

[3] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman,
M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. An-
thony Celi, and R. G. Mark, “Mimic-iii, a freely acces-
sible critical care database,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

[4] G. Liao, Z. Wang, X. Wu, X. Shi, C. Zhang, Y. Wang,
X. Wang, and D. Wang, “Cross dqn: Cross deep q
network for ads allocation in feed,” in Proceedings of
the ACM Web Conference 2022, 2022, pp. 401–409.

[5] N. Jaques, A. Ghandeharioun, J. H. Shen, C. Fergu-
son, A. Lapedriza, N. Jones, S. Gu, and R. Picard,
“Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog,” arXiv preprint
arXiv:1907.00456, 2019.

[6] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforce-
ment learning,” in Reinforcement learning. Springer,
2012, pp. 45–73.

[7] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep
reinforcement learning without exploration,” in Interna-
tional Conference on Machine Learning. PMLR, 2019,
pp. 2052–2062.

[8] Y. Wu, G. Tucker, and O. Nachum, “Behavior regu-
larized offline reinforcement learning,” arXiv preprint
arXiv:1911.11361, 2019.

[9] A. Kumar, J. Fu, G. Tucker, and S. Levine, “Stabilizing
off-policy q-learning via bootstrapping error reduction,”
arXiv preprint arXiv:1906.00949, 2019.

[10] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Ab-
dolmaleki, M. Neunert, T. Lampe, R. Hafner, N. Heess,
and M. Riedmiller, “Keep doing what worked: Behav-
ioral modelling priors for offline reinforcement learning,”
arXiv preprint arXiv:2002.08396, 2020.

[11] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum,
“Offline reinforcement learning with fisher divergence
critic regularization,” in International Conference on
Machine Learning. PMLR, 2021, pp. 5774–5783.

[12] S. Fujimoto and S. S. Gu, “A minimalist ap-
proach to offline reinforcement learning,” arXiv preprint
arXiv:2106.06860, 2021.

[13] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine,
“D4RL: Datasets for deep data-driven reinforcement
learning,” arXiv preprint arXiv:2004.07219, 2020.

[14] T. D. Simão, R. Laroche, and R. T. d. Combes, “Safe
policy improvement with an estimated baseline policy,”
arXiv preprint arXiv:1909.05236, 2019.

[15] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline
reinforcement learning: Tutorial, review, and perspectives
on open problems,” arXiv preprint arXiv:2005.01643,
2020.

[16] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Con-
servative q-learning for offline reinforcement learning,”
arXiv preprint arXiv:2006.04779, 2020.

[17] X. B. Peng, A. Kumar, G. Zhang, and S. Levine,
“Advantage-weighted regression: Simple and scal-
able off-policy reinforcement learning,” arXiv preprint
arXiv:1910.00177, 2019.

[18] A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerat-
ing online reinforcement learning with offline datasets,”
arXiv preprint arXiv:2006.09359, 2020.

[19] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul,
B. Piot, D. Horgan, J. Quan, A. Sendonaris, I. Osband
et al., “Deep q-learning from demonstrations,” in Thirty-
second AAAI conference on artificial intelligence, 2018.

[20] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba,

and P. Abbeel, “Overcoming exploration in reinforcement
learning with demonstrations,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 6292–6299.

[21] Y. Flet-Berliac, J. Ferret, O. Pietquin, P. Preux, and
M. Geist, “Adversarially guided actor-critic,” arXiv
preprint arXiv:2102.04376, 2021.

[22] S. Malik, U. Anwar, A. Aghasi, and A. Ahmed, “In-
verse constrained reinforcement learning,” in Interna-
tional Conference on Machine Learning. PMLR, 2021,
pp. 7390–7399.

[23] V. G. Goecks, G. M. Gremillion, V. J. Lawhern,
J. Valasek, and N. R. Waytowich, “Integrating behavior
cloning and reinforcement learning for improved per-
formance in dense and sparse reward environments,” in
Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, 2020, pp.
465–473.

[24] R. Fakoor, J. Mueller, P. Chaudhari, and A. J. Smola,
“Continuous doubly constrained batch reinforcement
learning,” arXiv preprint arXiv:2102.09225, 2021.

[25] Q. Wang, J. Xiong, L. Han, P. Sun, H. Liu, and T. Zhang,
“Exponentially weighted imitation learning for batched
historical data.” in NeurIPS, 2018, pp. 6291–6300.

[26] A. Nair, A. Gupta, M. Dalal, and S. Levine, “AWAC:
Accelerating online reinforcement learning with offline
datasets,” arXiv preprint arXiv:2006.09359, 2020.

[27] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning
using uncertainty to weigh losses for scene geometry and
semantics,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 7482–
7491.

[28] A. Kendall and Y. Gal, “What uncertainties do we need
in bayesian deep learning for computer vision?” in NIPS,
2017.

[29] J. Buckman, C. Gelada, and M. G. Bellemare, “The
importance of pessimism in fixed-dataset policy opti-
mization,” arXiv preprint arXiv:2009.06799, 2020.

[30] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brun-
skill, “Provably good batch reinforcement learning with-
out great exploration,” arXiv preprint arXiv:2007.08202,
2020.

[31] Y. Wu, S. Zhai, N. Srivastava, J. Susskind, J. Zhang,
R. Salakhutdinov, and H. Goh, “Uncertainty weighted
actor-critic for offline reinforcement learning,” arXiv
preprint arXiv:2105.08140, 2021.

[32] Y. Jin, Z. Yang, and Z. Wang, “Is pessimism provably
efficient for offline rl?” in International Conference on
Machine Learning. PMLR, 2021, pp. 5084–5096.

[33] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine,
C. Finn, and T. Ma, “Mopo: Model-based offline policy
optimization,” arXiv preprint arXiv:2005.13239, 2020.

[34] R. Kidambi, A. Rajeswaran, P. Netrapalli, and
T. Joachims, “Morel: Model-based offline reinforcement
learning,” arXiv preprint arXiv:2005.05951, 2020.

[35] S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu,

“Emaq: Expected-max q-learning operator for simple yet
effective offline and online rl,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 3682–
3691.

[36] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[37] S. Fujimoto, H. Hoof, and D. Meger, “Addressing func-
tion approximation error in actor-critic methods,” in
International Conference on Machine Learning. PMLR,
2018, pp. 1587–1596.

[38] A. Malinin and M. Gales, “Reverse kl-divergence train-
ing of prior networks: Improved uncertainty and ad-
versarial robustness,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[39] A. Chan, H. Silva, S. Lim, T. Kozuno, A. R. Mahmood,
and M. White, “Greedification operators for policy op-
timization: Investigating forward and reverse kl diver-
gences,” arXiv preprint arXiv:2107.08285, 2021.

[40] S. Kullback and R. A. Leibler, “On information and suf-
ficiency,” The annals of mathematical statistics, vol. 22,
no. 1, pp. 79–86, 1951.

[41] Y. Anzai, Pattern recognition and machine learning.
Elsevier, 2012.

[42] M. L. Puterman, “Markov decision processes,” Hand-
books in operations research and management science,
vol. 2, pp. 331–434, 1990.

	I Introduction
	II Related Work
	III Preliminary and Background
	III-A Offline Reinforcement Learning
	III-B Offline RL with Policy-Based Constraints
	III-C KL Divergence in Offline RL

	IV Methodology
	IV-A Mode-Seeking Regularizer
	IV-B Adaptive Regularizer
	IV-C The TD3+RKL Algorithm

	V Experiments
	V-A Comparison with Previous Offline RL Algorithms
	V-B Evaluation on Learned Aleatoric Uncertainty
	V-C Effects of Different BC Signals

	VI Conclusion

