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Abstract—Multi-label classification is becoming increasingly
ubiquitous, but not much attention has been paid to interpretabil-
ity. In this paper, we develop a multi-label classifier that can be
represented as a concise set of simple “if-then” rules, and thus,
it offers better interpretability compared to black-box models.
Notably, our method is able to find a small set of relevant patterns
that lead to accurate multi-label classification, while existing
rule-based classifiers are myopic and wasteful in searching rules,
requiring a large number of rules to achieve high accuracy. In
particular, we formulate the problem of choosing multi-label
rules to maximize a target function, which considers not only
discrimination ability with respect to labels, but also diversity.
Accounting for diversity helps to avoid redundancy, and thus, to
control the number of rules in the solution set. To tackle the said
maximization problem we propose a 2-approximation algorithm,
which relies on a novel technique to sample high-quality rules.
In addition to our theoretical analysis, we provide a thorough
experimental evaluation, which indicates that our approach offers
a trade-off between predictive performance and interpretability
that is unmatched in previous work.

I. INTRODUCTION

Machine-learning algorithms are nowadays being used in
almost every domain. While such algorithms are known to
perform well in many tasks, they are often used as “black-
boxes,” i.e., the decision processes involved are too complex
for humans to interpret. The lack of interpretability limits
considerably the level of trust humans put in machine-learning
algorithms and thus, poses a barrier for the wide adoption of
machine-learning techniques in the real world. In an attempt
to overcome this barrier, interpretable and explainable machine
learning have recently emerged as increasingly prominent topics.
In the standard classification setting, the goal is to learn a
classifier that accurately maps data points to two or more
mutually exclusive classes.

In this paper, we focus on a different setting, namely, multi-
label classification. In contrast to the standard setting, in multi-
label classification, a point can be associated with more than
one class at the same time. Though multi-label classification has
been extensively studied, the main focus is still on improving
predictive performance [24]. Significantly less attention has
been paid to interpretability aspects.

Classification rules, due to their simple structure, are gaining
popularity in interpretable multi-label classification literature.
In rule-based approaches, the goal is to learn a set of rules
that captures the most prominent patterns between features
and labels in the data. A rule usually takes the form “{set

of predicates} → {set of labels}.” For a given data point,
a rule would predict the associated labels to be present, if
all the predicates in the rule evaluate to true. Due to the
structural simplicity of rules, classifiers based on a set of rules
are generally considered more interpretable than other types
of classifiers, such as neural networks or even decision trees.

The research question that we bring forward is whether
we can design rule-based multi-label classification methods
that are both accurate and interpretable. BOOMER [19], [20],
a recently-proposed rule-based classifier based on gradient
boosting, gives promising results in accuracy. However, despite
being a rule-based approach, its interpretability is limited due
to producing a set of rules that is both too large and redundant.

In this work, we propose CORSET, a rule-based method that
significantly improves over the state-of-the-art BOOMER. The
improvement is due to (1) reducing rule redundancy, which is
achieved by incorporating a term in our objective that penalizes
for rule overlap, and (2) explicitly limiting the complexity
of rules via a suite of novel sampling schemes. As a result,
our method produces a concise set of interpretable rules. An
illustration of the concept of our approach is given in Fig. 1.

Example. To illustrate the improvement of CORSET over
BOOMER, we consider as an example the bibtex dataset, where
each data point represents a scientific article, with bag-of-words
as features and topics as labels. We first consider predictive
performance as a function of the number of rules. In Fig. 2,
we show the (micro-averaged) balanced F1 scores, a popular
measure for multi-label classification used throughout this
paper, for both CORSET and BOOMER. Due to the conciseness
of its learned rules, CORSET achieves a score close to 0.36 with
about 100 rules, whereas BOOMER needs over 800 rules to
achieve similar performance. Note that CORSET’s performance
starts to drop after about 100 rules, as there are no more
good rules to learn. The drop indicates overfitting, which can
be addressed by standard methods, e.g., cross validation. In
addition, Fig. 3 demonstrates the conciseness of the rules
found by CORSET vs. the ones by BOOMER. Here, we show
a subset of rules as a bipartite graph, where nodes at the
top represent labels and nodes at the bottom represent the
predicates (features). Rules are represented by colors and two
nodes are connected if they are part of the same rule. CORSET
uses fewer rules than BOOMER and rules tend to contain fewer
predicates, resulting in a sparser graph.
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Fig. 1: Illustration of the concept of our approach for multi-
label rule selection. A toy dataset is visualized as a feature
matrix and a label matrix. Four rules are shown as colored
regions. Regions covered by the same rule are connected by a
dashed arrow. The rules in green are chosen because of accuracy,
generality, and diversity. The rules in red are discarded.
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Fig. 2: Micro F1, as a function of number of rules for CORSET
vs. BOOMER in the bibtex dataset.

Concretely, in this work we make the following contributions.
• We frame the problem of learning concise rule sets as an

optimization problem. The problem is NP-hard and our
proposed algorithm CORSET, given a set of rule candidates,
achieves an approximation ratio of 2.

• The performance of CORSET depends on the quality of the
candidate rules. To find good rules efficiently, we design
a suite of fast sampling algorithms with probabilistic
guarantees as well as an effective heuristic.

• Our experiments show that CORSET achieves competitive
predictive performance compared to the state-of-the-art,
while offering significantly better interpretability.

The rest of this paper is organized as follows. Section II
discusses related work. Section III formalizes the problem we
consider. Section IV illustrates CORSET, omitting the details of
the rule-sampling algorithms it relies on, which are described
in Section V and VI. Afterwards, Section VII analyses the
complexity of CORSET and finally Section VIII presents a
thorough experimental evaluation of CORSET.

II. RELATED WORK

Multi-label classification. In multi-label classification the goal
is to learn a function that maps input points to one or more
predefined categories. For instance, a song can be associated
with multiple music genres. A plethora of algorithms have
been proposed for this problem; interested readers may refer
to a recent survey [24]. The simplest approaches for multi-
label classification are the so-called transformation methods,
which convert the original problem into multiple single-label
classification problems. The main drawback of these approaches
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Fig. 3: An example set of rules returned by our algorithm
(top) and BOOMER (bottom) on the bibtex dataset. We depict
all rules for the set of labels {SNA, socialnets, social, networks,
analysis}.

is that they fail to capture label correlations. To overcome this
issue, label power-set approaches map each distinct set of
labels to a unique meta-label, which serves as target label
for a single-label classifier. Clearly, these approaches do not
scale with the number of labels and the pruned problem
transformation method [21] has been proposed as a remedy.
Another line of research focuses on designing ad-hoc multi-
label classification methods by extending existing single-
label algorithms. Examples include adaption from support
vector machines [7], k-nearest neighbor classifiers [28], and
perceptrons [6].

Interpretable machine learning. There is no agreed formal
definition of interpretability, but it can be loosely defined as
the degree to which a human can understand the cause of a
decision [16]. Broadly speaking, interpretability in machine
learning can be achieved by constraining the complexity of
algorithms so that the process behind the decision of the
algorithm is understandable to humans. A related topic is
explainable machine learning, where the goal is to provide
explanations to the predictions of black-box models.

Rule-based approaches to single-label classification. Re-
search in interpretable machine learning has boomed in
the last years. Rule-based (or associative) approaches have
shown promising potential, because decisions are driven by
a simple set of “if-then” rules. Liu et al. [15] are among
the first to investigate association rule mining for single-label
classification tasks, followed by extensions such as MCAR [22]
and ADA [25]. These approaches are conceptually similar, but
differ in their methodologies for rule learning, ranking, pruning,
and prediction.

Concise rule sets. Our work pursues for the first time the goal
of designing a multi-label associative classifier for achieving a
given classification performance with the smallest possible num-



ber of rules. A similar objective has been recently considered
in the context of single-label classification. In particular, Zhang
et al. [26] frame the problem of learning a set of classification
rules as an optimization problem with an objective function
combining rule quality and diversity. A 2-approximation
algorithm is then proposed to solve this problem, which relies
on existing frameworks for max-sum diversification and pattern
sampling. In this paper, we investigate how to extend these
ideas to the multi-label classification setting. The problem of
controlling the number of rules has also been studied for rule
boosting, where learned rules are combined additively [3]. An
extension to multi-label classification represents a possible
direction of future work. In addition to the number of rules,
conciseness of a rule set, and thus interpretability, has been
defined in terms of number of conditions [10] as well as of
the Minimum Description Length principle [8].
Rule-based approaches to multi-label classification. In gen-
eral, adaptation from the single-label to the multi-label setting
is not trivial and while single-label associative classification
has been studied extensively, relatively few attempts have been
made for associative multi-label classification. In an early work,
Thabtah et al. [23] propose a label ranking-based assignment
method. More recently new approaches have been developed,
and SECO [12] and BOOMER [20] are state-of-the-art in the
current literature of rule-based multi-label classification. The
main limitation of the existing works, addressed in our paper,
is that they use a very large set of highly redundant rules,
which hinders interpretability. We compare our method against
SECO [12] and BOOMER [20] in Section VIII.
Pattern sampling. Association pattern discovery is challenging
due to the prohibitive size of the pattern space. This challenge
is inherited by rule-based classifiers. To avoid exhaustively
searching the pattern space, efficient pattern-sampling methods
have been proposed [1], [2]. In this work we extend these
sampling methods to efficiently find high-quality candidate
multi-label rules, as discussed in detail in Section V.

III. PROBLEM STATEMENT

At a high level, our objective is to capture the relevant
patterns in the data that best discriminate a set of labels and
are as concise as possible. Next we formally define the problem.

A. Preliminaries

We denote sets and multisets by uppercase letters e.g., X .
For a finite X , we denote by P (X) its power set. We consider
a binary dataset D over a feature set F and a label set L.
The dataset D is a set of data records, D1, . . . , Dn. A data
record D = (F,L) consists of a set of features F ⊆ F and
a set of labels L ⊆ L. We denote by FD and LD the feature
set and label set of D, respectively. Furthermore, we denote
by |F| and |L| the dimensions of the feature and label space,
respectively, and we denote by |D| the total number of data
records. We use ‖F‖ and ‖L‖ to refer to the total number of
feature and label occurrences over all data records.

In multi-label classification, the goal is to learn a function
mapping as accurately as possible the features FD to one or

more labels LD. We use mappings consisting of conjunctive
rules. A conjunctive rule R = (H → T ) consists of a non-
empty feature set H (called head) and a non-empty label
set T (called tail). The head H can be viewed as a predicate
H : {0, 1}|F| → {true, false}, which states whether an instance
F contains all the features in H . If the predicate evaluates to
true for some instance, the tail T of R specifies that labels T
should be predicted as present.

We say that a head H matches a data record D if H ⊆ FD.
Similarly, a tail T matches D if T ⊆ LD. We say that a rule R
covers a data record D if HR ⊆ FD and similarly R matches
a data record D if both HR and TR match D. For a dataset D,
we denote the support set of X ∈ {H,T,R} by:

D [X] = {D ∈ D | X matches D} .
The space of all possible rules we consider is U = P (F)×
P (L), i.e., the Cartesian product of the power set of the feature
set and the power set of the label set.

B. Problem formulation

We want to discover rules that are accurate and general,
but also sufficiently different from each other. To capture this
trade-off, we design an objective function that consists of a
quality term q : U → R measuring the accuracy and generality
of a single rule, and a diversity term d : U ×U → R measuring
the distance between pairs of rules.

Quality term. Given a rule R and a set of rules R, the quality
q(R;R) of R with respect to R is the product of two values:
the uncovered area area(R;R), capturing the generality of R
with respect to R, and its adjusted accuracy a(R),

q(R;R) = area(R;R) · a(R).

Next we describe these two functions. To capture generality,
we first define the coverage of R as:

cov(R) = {(i, k) | R matches Di ∈ D and k ∈ T} . (1)

In other words, the coverage of a rule is the set of label
occurrences it matches in a dataset. To incorporate what
is already covered by a set of selected rules R, we define
uncovered area of R with respect to R as

area(R;R) =

∣∣∣∣∣cov(R) \
⋃

R∈R
cov(R)

∣∣∣∣∣, (2)

that is, the size of covered label occurrences by R after
excluding those already covered by R. Thus, a rule R is
considered general with respect to R if area(R;R) is large.

Before introducing the adjusted-accuracy function, we need
some additional notation. Data records whose labels contain T
are said to be positive with respect to T , whilst the remaining
ones are negative. More formally, a tail T bi-partitions a dataset
D into two disjoint sets: a set of positive data records D+

T =
{D ∈ D | T ⊆ LD} and a set of negative data records
D−T = {D ∈ D | T * LD}. Given a rule R, let PD[R] = |D[R]|

|D[H]|
be the precision of R and PD = |D[T ]|

|D| is the base rate of



T in D. We denote the corresponding binomial distributions
as Bin

(
PD[R]

)
and Bin(PD), respectively. Then the adjusted

accuracy of R is defined as:

a (R) = I(R) ·DKL
(
Bin
(
PD[R]

)
|| Bin(PD)

)
, (3)

where I(R) is 1 if PD[R] > PD and 0 otherwise, and DKL(· || ·)
is the KL divergence between two probability distributions.
The underlying intuition is that if the precision of a rule is
below its base rate, it is useless, and receives a zero score. If
instead the precision of a rule is larger than the base rate, the
higher the precision is, the larger the score.

Diversity term. We measure the distance between two rules
by how much their coverages overlap. Formally, given two
rules R1 and R2, their distance is defined as

d (R1, R2) = 1− |cov(R1) ∩ cov(R2)|
|cov(R1) ∪ cov(R2)| ,

which is the Jaccard distance between cov(R1) and cov(R2).

Problem definition. We frame the learning problem as a
combinatorial optimization problem with budget constraint,
where we set a budget on the maximum number of rules to
discover, and rules should be selected to maximize a linear
combination of the quality and diversity term.

Problem 1: Given a dataset D = {Di}ni=1, a budget B ∈ Z+,
a space of rules S ⊆ U , and a parameter λ ∈ R+, find a set of
B rules R = {R1, . . . , RB} ⊆ S, to maximize the following
objective

f (R) =
∑
R∈R

q (R;R \ {R})+λ
∑

Ri,Rj∈R,i6=j

d(Ri, Rj). (4)

This problem is known to be NP-hard [4]. In the next section,
we present a greedy algorithm which finds a solution to
Problem 1 with an approximation factor of 2, provided that
the space of rules S can be visited in polynomial time.

IV. CORSET LEARNING ALGORITHM

In this section, we present a meta algorithm named CORSET
(concise rule set) for Problem 1. CORSET greedily picks one
rule at a time from a pool of candidate rules, so as to maximize
the marginal gain for the objective in (4), i.e.,

f ′ (R∪ {R})− f ′ (R) =
1

2
q (R;R) + λ

∑
Rj∈R

d(R,Rj).

The candidate rules are generated by a procedure called GEN-
CANDRULES. The effectiveness of GENCANDRULES heavily
affects the predictive performance of the classifier. The goal is
to sample high-quality rules in terms of generality, diversity
and accuracy. This is a challenging goal since the size of rule
space is exponential [9] and GENCANDRULES should therefore
avoid exploring the whole space. We defer the description of
the candidate generation to Sections V and VI.

For now, we focus on the description of the main algorithm.
CORSET maintains a set of selected rules, R, which is initially
empty. At each iteration, CORSET considers a pool of candidate
rules generated by GENCANDRULES. Within this pool, the

Algorithm 1: The CORSET algorithm.
Data: data D, tolerance τ
Result: a set of multi-label classification rules R.

1 R, R′ ← ∅, CR ← ∅;
2 while c > τ do
3 C ← GENCANDRULES(R);
4 CR ← CR ∪ C;
5 R∗ ← arg maxR∈C [f ′ (R∪ {R})− f ′ (R)];

6 c←
∑

D matched by R∗ |LD∩TR∗\∪R∈R|R matches DTR|
‖L‖ ;

7 R ← R∪R∗;
8 end
9 for i = 1, ..|R| do

10 R∗ ← arg maxR∈CR

[
f ′
(
R′ ∪ {R}

)
− f ′

(
R′
)]

;
11 R′ ← R′ ∪R∗;
12 end
13 if f(R′) > f(R) then return R′;
14 else return R;

rule R∗ maximizing the marginal gain of (4) with respect to
R is selected and added to R. The process stops when the
proportion of labels in L predicted by R∪R∗ and not by R
falls below a user-specified tolerance level τ .

To ensure the aforementioned approximation guarantee, we
need to obtain a new set of rules R′ by repeating the greedy
procedure a second time, over the full set of candidates rules,
because using a different candidate set at each iteration does
not offer a guarantee. As in practice R′ is not necessarily better
than R, we return as solution the set that yields the largest
objective function value, between the two.

The pseudocode of CORSET is shown in Algorithm 1. Note
that GENCANDRULES receives as input the current rule set R,
so as to generate rules different from R. The solution is
guaranteed to be within a constant factor of the optimal solution.

Proposition 1: For a fixed pool of candidate rules, CORSET
is a 2-approximation algorithm for Problem 1.

As shown by Borodin et al. [4], the approximation factor is
guaranteed by the properties of the objective function, namely
by the submodularity of the quality function and the fact that
the Jaccard distance is a metric. Proof is given in Appendix.

Prediction. At prediction time, given the set of selected rulesR,
we return the set of predicted labels for an instance F as⋃

R∈R|HR⊆F TR, that is, the union of tails of rules such that
F evaluates to true for the head predicate.

V. RULE SAMPLING

In the next two sections, we present the main contribu-
tion of our work, a suite of rule-sampling algorithms used
by GENCANDRULES. In this section, we first describe the
technical basis of our proposal, then we formulate our sampling
problem, and present our algorithms for it. In the next section,
we discuss some important limitations of the proposed sampling
method and describe practical enhancements.



A. Background: Two-stage pattern sampling

Our sampling scheme builds on the pattern-sampling algo-
rithms proposed by Boley et al. [1], [2]. These algorithms allow
us to sample patterns according to a target distribution over
the pattern space, without the need of exhaustive enumeration.
The target distribution reflects a measure of interestingness for
the patterns. Example measures include support, area, and, if
the data are labelled, discriminativity. Sampling algorithms for
a variety of measures share a two-stage structure, whilst the
details depend on the measure under consideration.

The key insight brought by Boley et al. [1], [2] is that random
experiments reveal frequent events. We use sampling by support
and area for illustration. Consider a dataset D = {D1, . . . , Dn}
over a finite ground set E , with D ⊆ E for each D ∈ D.
Consider the problem of sampling an itemset (pattern) F ⊆ E
with probability proportional to its support qsupp(F ) = |D [F ]|.

For each D ∈ D, the set of itemsets including D in their
support is P (D). It can be shown that sampling an itemset
F uniformly from

⋃·D∈D P (D), where
⋃· denotes the union

operator of multi-sets, is the same as sampling F according to
|D[F ]|. To avoid materializing

⋃·D∈D P (D), Boley et al. use
a two-step procedure:

1. sample a data record D with probability proportional to
the weight w(D) =

∑
F∈P(D) 1 = 2|D|.

2. sample an itemset F uniformly from P (D).
To sample from the “area” distribution qarea(F ) = |F ||D [F ]|,
the above procedure is changed as follows: w(D) =∑

F∈P(D) F = |D|2|D|−1, and then sample F with weight
|F | from P (D).

The two-stage sampling idea can be generalized to a number
of other measures. Some of them, such as discriminativity,
which we use later, require sampling tuples of data records
rather than a single one in the first stage.

Next we describe two sampling distributions and the
corresponding sampling algorithms for our objective. The
first distribution is a generalization of the area function (not
discussed by Boley et al. [1], [2]) and is used for tail sampling.
The second distribution is discriminativity and is used for head
sampling. For the latter, we propose an improved sampling
algorithm, which is faster than the original version [2].

B. Sampling objectives

Our rule sampling objective is a product of two values,
reflecting the generality of a rule R = (H → T ) given the
current set of rules R, and its discriminative power:

Pr (H,T ) ∝ w(H,T ;R) = qa(H;T ) · area(T ;R) . (5)

Note that the uncovered area function in 2 generalizes to tails,
i.e., area(T ;R) =

∣∣∣cov(T ) \⋃T ′∈R cov(T
′
)
∣∣∣ and cov(T ) =

{(i, k) | T matches Di ∈ D and k ∈ T}.
For qa we choose the discriminativity measure studied by

Boley et al. [1], which permits sampling in polynomial time.
Given a tail T ⊆ L, the discriminativity of H is defined as

qdisc(H;T ) =
∣∣D+

T [H]
∣∣ ∣∣D−T \ D−T [H]

∣∣. (6)

The goal is to sample heads that have as large support as
possible in D+

T and as small support as possible in D−T .
To sample from distribution (5), we use the following steps:
1. sample T with probability proportional to area(T ;R);
2. sample H with probability proportional to qa(H;T ).

We explain each sampling step next.

C. Tail sampling

To sample from area(T ;R), we apply a similar two-step
sampling procedure as in Boley et al. [1]: we first sample
a data record D with probability proportional to its weight
w(D;R) and then sample T from D. The function area(T ;R)
is a generalization of the area function considered in Boley et
al. [1]. Adapting the original algorithm to our case requires
to design a weight function w(·;R) appropriate for our target.
To define w(·;R), a few new definitions are needed. Given a
rule R and a data record D, the D-specific coverage of R is
defined to be

covD(R) =

{
LD ∩ TR, if R matches D,
∅, otherwise.

(7)

Extending D-specific coverage to a rule set R, we have:

covD(R) =
⋃

R∈R
covD(R) . (8)

Given a label set T , its marginal coverage with respect to R is

covD(T ;R) = (LD ∩ T ) \ covD(R) , (9)

that is, the covered label occurrences in D by T , excluding
those by R. As a shortcut, we define covD(R) = covD(LD;R),
i.e., the set of label occurrences in D not covered by R.

The weight of a label set T on a data record D is:

w(T,D;R) = |covD(T ;R)|. (10)

We give a small example to illustrate these definitions:

D : FD = {0, 1, 2, 3} , LD = {a, b, c}
R1 : {0, 1} → {a}
R2 : {1, 2} → {a, b}
R3 : {2, 3} → {a, c}

R = {R1, R2, R3}

T = {b, c}

For R1, R2, R3, the sets covD(·) are {a} , {a, b} , ∅, respec-
tively. Therefore, covD(T ;R) = {c} and w(T,D;R) = 1.

The intuition of the definition of w(T,D;R) is that T has
large weight on D if it contains many label occurrences not
covered by R. Therefore, the weight of any data record D is
simply the summation of the weights over all possible tails:

w(D;R) =
∑

T⊆LD

w(T,D;R) = |covD(R)| 2|LD|−1, (11)

where the second equality can be shown by simple algebra.
Using these weights, we adapt the sampling algorithm of Boley
et al. [1], [2] as per Algorithm 2.

By a similar proof technique as in Boley et al. [1], we have:



Algorithm 2: Two-stage tail sampling.
Data: a dataset D, weights w(D;R) (as in 11).
Result: a tail T ⊆ L with T ∼ area(T ;R).

1 draw D ∼ w(D;R);
2 return T ∼ w(T,D;R)

Proposition 2: Algorithm 2 returns T ∼ area(T ;R).
The proof is provided in Appendix.

D. Head sampling

After a tail T is sampled, we sample H according to
qa(H;T ) = qdisc(H;T ), from (6). The two-stage sampling
scheme by Boley et al. can be applied for this case. In contrast
to the previous cases, the weight function is defined on pairs
of data records:

w(D+, D−) = 2|D+| − 2|D+∩D−| −
∣∣D+ \D−

∣∣, (12)

where D+ ∈ D+
T and D− ∈ D−T , and |D+| (resp. |D−|)

denotes the number of features present in D+ (resp. D−). Thus,
pre-computing the weights leads to quadratic space complexity
in |D|, which limits the practicality of the sampling procedure.

The above limitation is addressed by Boley et al. [2] using
the technique of coupling from the past (CFTP), which leads
to linear space complexity. Unlike many Markov chain Monte
Carlo (MCMC) methods, CFTP can guarantee that samples are
generated according to the target distribution. It operates by
simulating the Markov chain backwards by sampling from
a proposal distribution, until all states coalesce to the same
unique state. The main challenge of using CFTP is the design
of the proposal distribution and the efficient monitoring of
coalescence condition.

The proposal distribution should be (i) efficient to sample
from; and (ii) an appropriate approximation to the target
distribution to obtain fast convergence. Boley et al. [2]
devise a “general-purpose” proposal distribution, which works
for all target distributions they consider. For the case of
discriminativity, the proposal distribution is defined as

w(D+, D−) =
√
w1(D+) · w2(D−), (13)

where w1(D+) = 2|D+| − |D+| − 1 and w2(D−) = 2|F| −
2|D−|−|D−|−1. Sampling from w(·, ·) can be done efficiently
by sampling separately from w1(·) and w2(·). However, we
argue that the choice of w(·, ·) is not a good approximation
of the target, and therefore it suffers from slow convergence.
The reason is that when a data record is high-dimensional but
sparse, as is often the case in multi-label classification, w2(D−)
and hence w(D+, D−) grow exponentially with the number
of features, making the acceptance probability extremely low
and, as a consequence, convergence is extremely slow.

To overcome the convergence issue, we use a different
proposal distribution better suited for our setting. Our proposal
is the same as in (13), except that w2 is defined as a uniform
function, w2(D−) = 1 for all D− ∈ D−T and the square root is
removed. An appealing property is that the new choice is a tight

Algorithm 3: Two-stage head sampling.
Data: a dataset D, a tail T , weights w1(·) and w2(·).
Result: a head H ∈ F with H ∼ qa(H;T ).

1 initialize i← 1, D←⊥;
2 while D =⊥ do
3 i← i+ 1;
4 for t = 2i, . . . , 0 do
5 draw ut ∼ u([0, 1]) and Ct ∼ w(Ct);
6 if ut ≤ w(D)w(Ct)

w(D)w(Ct)
then D← Ct ;

7 end
8 end
9 draw

H1 ∼ u(P(D+ \D−) \ ∅), H2 ∼ u(P(D+ ∩D−));
10 return H = H1 ∪H2

upper bound of 12, therefore providing a better approximation
to the original version. Further, we empirically verify that using
our proposal gives much faster convergence than using the one
by Boley et al [2].

Head sampling is summarized in Algorithm 3. We first use
CFTP (lines 1-7) to sample a pair (D+, D−). Then we sample
a head in line 9. We denote u(·) as the uniform distribution
over a set. For brevity, we use a boldface letter to denote a
pair of records, e.g., D. We denote an empty pair by ⊥, and
define w(⊥)/w(⊥) = 1.

VI. ENHANCEMENTS TO THE SAMPLING SCHEME

A. Limitations of the two-stage pattern-sampling framework

While theoretically sound, in our setting, the two-stage
sampling framework [1], [2] suffers from two limitations, as
can be verified empirically. First, we observe that most of the
sampled rules are very specific, with very low support. Second,
rule interpretability is not explicitly considered.

Heavy-hitter problem for tail sampling. Consider the tail
sampling part. Notice that the weight of a data record D in (11)
is exponential in LD. If there is a data record D ∈ D whose
|LD| is moderately larger than the rest, its weight dominates,
making it very likely to be sampled in the first sampling step.
We refer to this issue as the heavy-hitter problem. For instance
in bibtex, the largest label set of a data record D∗ contains 28
labels while the second largest contains 16. The probability of
D∗ being sampled is 99.97%. A tail sampled from D∗ has an
expected length of 14.5. Empirically, tails of about this length
match only a few data records. Thus, most of the sampled
tails have low support, hampering the goal of sampling general
rules.

Heavy-hitter problem for head sampling. A similar issue
arises in head sampling. The weight function in (12) grows
exponentially with |D+|, so that CFTP most likely returns
the positive data records with the highest number of present
features. Therefore, sampled heads tend to be very long and
have small support (often 1). Thus, they may have high
discriminativity but cannot generalize to unseen data.



Algorithm 4: Tail sampling under S− according to
uncovered area.

Data: a dataset D, sample space S−, and a rule set R
Result: a tail T ∈ S− with T ∼ area(T ;R).

1 let I [D]← {S ∈ S− | S ⊆ LD} , for each D ∈ D;
2 let w (D)←∑

S∈I[D] |S \ covD (R)| for each D ∈ D;
3 draw D ∼ w (D);
4 draw T ∈ I [D] ∼ |T |;
5 return T

Tail interpretability. Interpretability of tails is a central focus
in our work. Nonetheless, in the original pattern-sampling
algorithms [1], [2] all elements in P(L) are considered possible
tails, regardless of whether they are interpretable or not. Some
tails are sampled simply because labels in them co-occur
frequently, rather than because they are truly interpretable.

The root of the above limitations is the enormous sample
space under consideration, which we address next.

B. Tail sampling under interpretable label space

We propose to restrict the label sample space to a much
smaller sample space S− ⊆ P(L) designed to contain only
interpretable label sets so as to mitigate the heavy-hitter
problem. We call S− the interpretable label space. Before
describing the construction of S−, we notice that pattern
sampling under any subspace of P(L) is a slight generalization
of the original sampling setting. Most importantly, the original
sampling algorithms can be adapted to different sample spaces,
such as S−, while preserving probabilistic guarantees.

In Algorithm 4, we describe a procedure for sampling by
uncovered area under S−. The algorithm can be easily adapted
for other sampling objectives e.g., discriminativity. Compared to
sampling under P(L), we require the extra step of determining
the set I [D] of patterns in S− contained by D ∈ D and
computing the weight for D accordingly.

Constructing S−. To construct the interpretable label space,
we first define interpretability in our setting. Humans like to
think in an associative manner [17]. To accommodate such
tendency, we argue that a label set is interpretable if the
corresponding labels are sufficiently associated. The problem of
constructing S− is then framed as finding sufficiently associated
label sets.

We rely on a graph-based approach whereby we construct a
suitable label graph and extract its dense subgraphs. Specifically,
we construct a directed weighted graph G = (V,E, p). Each
node represents a label. A node pair (u, v) is an edge in E if
D [{u}] ∩ D [{v}] 6= ∅. The corresponding weight is defined
as p(u, v) = |D[{u}]∩D[{v}]|

|D[{u}]| , which can be interpreted as the
conditional probability that label v occurs given that label u
occurs. The need of a directed graph arises because in real-
world multi-label datasets, association of labels is asymmetric.

Finally, probabilistic interpretation of the edge weights
suggests that G can be viewed as a probabilistic graph [29].
Under such point of view, our problem can be seen as finding

highly probable cliques in G [18], whose probability of forming
is above pre-specified threshold. To solve this problem, we
adapt a depth-first search (DFS) procedure similar to the one
proposed by Mukherjee et al. [18].
Efficient preprocessing. Execution of line 1 in Algorithm 4
can be done efficiently by framing the problem appropriately.
In this problem, we are given a set of subsets S− and we
are asked to find, for each D ∈ D, the subsets in S− that
are contained in LD. A naive solution checks the containment
relations for all pairs of LD and S−, and in practice can take
hours for many datasets. However, the problem is an instance
of the the set containment problem, extensively studied by
the database community. Among several efficient solutions
proposed for this problem, we resort to one well-established
algorithm, PRETTI [11], built upon the idea of inverted index
and prefix trees. The running time is effectively brought down
to a few seconds.

C. Improved head sampling

To alleviate the heavy-hitter problem during head sampling,
we consider two approaches. The first approach is based on
reduced sample space, but may have scalability issues. The
second is a greedy heuristic, which explicitly maximizes a
modified version of discriminativity.
1. Using reduced sample space. We adapt a similar idea as
in tail sampling (Section VI-B) and use a reduced sample space
S− for head sampling. However, when the feature matrix is
dense, a scalability issue arises. The DFS procedure may take
exponential time. For sufficiently sparse graphs this is not a
concern in practice, whereas in denser graphs, constructing S−
becomes a bottleneck.
2. A greedy heuristic. To address the above scalability issue,
we propose a greedy heuristic, which drops the probabilistic
guarantee, but is highly effective in practice. We use CFTP as
in Algorithm 3 to sample a tuple (D+, D−). Then we greedily
select features in D+ \D− to maximize a modified version
of discriminativity: for any H , we define the measure

φ(H) =
∣∣D [H] ∩ D+

T

∣∣− γ∣∣D [H] ∩ D−T
∣∣, (14)

where γ weighs the importance of positive and negative support,
so smaller values of γ lead to more general but more error-
prone heads. Further, we use early stopping (controlled by ε)
when |D [H]| is too small.

The algorithm is described in Algorithm 5. It iteratively picks
a feature h ∈ FD+ ∪FD− , which maximizes the marginal gain
of φ. The best feature h∗ is added to H and the support is
updated accordingly. Finally, a linear sweep over H finds the
head with the highest objective value (in (14)). In practice,
we use a pre-computed inverted index to allow for efficient
intersection of supports. Variations of Algorithm 5 have been
investigated in which the input is deterministic, the difference
in line 4 is normalized by D[{h}] and the support is replaced
by support not covered by previously chosen rules.
Summary. The second approach scales better for dense feature
matrices than the first approach. However, the first approach has



Algorithm 5: A greedy heuristic for head sampling.

Data: a dataset D, sets D+
T , D−T , parameters γ and ε.

Result: a head H ∈ F .
1 let F

′ ← FD+ \ FD− ;
2 initialize H ← an empty list, Qdisc ← an empty list;
3 while |H| < |F ′ | do
4 h∗ ← arg maxh∈F ′ [φ(H ∪ {h})− φ(H)];
5 add h∗ to H , add φ(H) to Qdisc ;
6 F

′ ← F
′ \ h∗;

7 if |D[H]| < ε |D+
T | then break;

8 end
9 i∗ ← arg maxi=1,...,|H|Qdisc[i];

10 return H[1 : i∗]

the following advantages: (1) head sampling has probabilistic
guarantees, (2) it is much faster to run when the feature matrices
are sparse. In the sequel, we use CORSET-SURS to denote the
version where the first approach is used for head sampling,
and CORSET-GH when the second approach is used.

VII. COMPLEXITY ANALYSIS

Time complexity. Let Tf be the time complexity of evaluating
the quality and diversity function. Tf is bounded by |D|(|F|+
|L|). Let S−L be the interpretable sample space for tail sampling
and S−F be the reduced sample space for head sampling. The
pre-processing times TLS and TFS to construct S−L and S−F
are exponential in the worst case. It follows that the time
complexity of CORSET is O(B|CR|Tf + TLS + TFS ). If F is
sufficiently sparse, the exponential complexity is not a concern
in practice. When F is dense, it is appropriate to use CORSET-
GH, for which the time complexity is O(B|CR|Tf + TLS ).

Space complexity. Space SR =O(|D|+ |F|+ |L|) is required
to keep a single rule, as we store head, tail, and coverage. Let
SS denote the space complexity of sampling. In both tail and
(owing to CFTP) head sampling, we only need to store a single
weight value for each data record. Building S−L and S−F requires
space O(|F|2) and O(|L|2), respectively. Furthermore, storing
samples from S−L (S−F ) takes space O(|D|

∣∣S−L ∣∣) (O(|D|
∣∣S−F ∣∣)).

Despite this theoretical complexity, the graphs are very sparse
in practice. Combining the above, we have that SS =O(|L|2 +
|F|2+|D|

∣∣S−L ∣∣+|D|∣∣S−F ∣∣) and the space complexity of CORSET
is O(||F||+ ||L||+ |CR|SR + SS). When CORSET-GH is used,
the greedy head sampler only takes space O(|F|) and hence
SS reduces to SS+ =O(|L|2 + |D|

∣∣S−L ∣∣+ |F|) so that the space
complexity of CORSET-GH is O(||F||+ ||L||+ |CR|SR +SS+).

VIII. EXPERIMENTAL EVALUATION

The main goal in this section is to empirically show that
CORSET (and in particular its two implementations CORSET-
SURS and CORSET-GH) deliver a concise set of rules while still
providing competitive performance in multi-label classification.
We first present the experimental setup and then the results.

TABLE I: Summary statistics of the datasets used in the
experimental evaluation. The last two columns refer to the
average number of labels per example, and the total number
of distinct label sets.

Dataset Instances Attributes Labels Cardinality Distinct

mediamill 43 907 120 101 4.38 6 555
Yelp 10 810 671 5 1.64 32
corel-5k 5 000 499 374 3.52 3 175
bibtex 7 395 1 836 159 2.40 2 856
enron 1 702 1 001 53 3.38 753
medical 978 1 449 45 1.24 94
birds 645 260 19 1.01 133
emotions 593 72 6 1.87 27
CAL500 502 68 174 26.04 502

A. Experimental setup

Datasets. We use both synthetic and real-world datasets.
We use synthetic datasets to better understand the behavior

of the methods with respect to different parameters. Data are
obtained from a set of generating rules, and as a consequence,
a notion of ground truth is available. For each generating rule,
we sample its support either (i) uniformly at random, or (ii)
from a skewed distribution where a small subset of rules covers
a large portion of the data, mimicking the typical behaviour of
real-world data. All generating rules have the same number of
attributes and labels. Thus, to obtain the synthetic dataset, we
start with a feature and label matrices in which all entries are
identically 0. Then, for each rule, once its support is sampled,
we set to 1 its attributes and labels over its support.

For real-world data, we use heterogeneous benchmark
datasets for multi-label classifications1. Summary statistics
of the datasets are shown in Table I. Categorical and numerical
features are converted to binary form. For simplicity, we convert
numerical features into binary ones by setting to 0 all values
lower than a given percentile p (90-th percentile by default)
and by setting to 1 the rest of the values. A more refined
pre-processing is advisable to improve performance.

Metrics. To measure the quality of a classifier, we use the
popular balanced F1 score, which micro-averages precision
and recall. To monitor rule diversity, we report the average
pairwise intersection between the coverage of different rules.
To assess interpretability we report the number of rules R.

Baselines. We compare our classifier with three baselines.

SECO [13] is a rule-based classifier, which extracts new rules
iteratively and discards the associated covered examples from
the training data if enough of their labels are predicted by
already learned rules. Given a rule head, SECO searches for
the best possible tail according to a metric, while pruning
the search space by exploiting properties of the metric, and
introducing bias towards tails with multiple labels.

BOOMER [3], [20] utilizes the gradient-boosting framework
to learn ensembles of single-label or multi-label classification

1http://mulan.sourceforge.net, https://www.uco.es/kdis/mllresources/



rules that are combined additively to minimize the empirical
risk with respect to a suitable loss function.

SVM-BR [5], [27] is a linear support vector machine classifier
based on the binary relevance approach, whereby each label
is treated independently. This classifier is not rule-based, and
serves as a black-box baseline.

In general, BOOMER takes advantage of a large number of
rules, which are then combined to generate the final scores from
which the predictions are derived. In this way, it achieves state-
of-the-art performance in associative multi-label classification.
In addition, it controls the number of rules in the ensemble
with a single parameter. Thus, it is the most important baseline.
For the synthetic datasets, we focus on comparing our approach
with BOOMER for increasing number of rules, whereas for the
real-world datasets we consider all baselines.

Parameter setting. For the experiments with synthetic data,
we explore the scalability of our algorithm with respect to the
number of attributes and labels, as well as robustness with
respect to noise. We vary the level of noise (proportion of
flipped entries in the feature and label matrix), and the number
of attributes and labels by a geometric progression of ratio
1.5. When not varied, the number of attributes and labels are
fixed to 100, and the noise level to 0.01. When the noise is
varied there are 10 ground truth rules, otherwise the number
of generating rules increases with the size of the data and it is
given by bmin(|F|,|L|)

3 c.
For the experiments with real-world data, we tune the hyper-

parameters of all methods via random search to minimize
micro-averaged F1 on a validation set. The size of each sampled
pool of rules C does not need to be tuned. Larger C improves
performance at the cost of increased runtime. While tuning we
fix C = 150, otherwise C is set to 500 by default. All hyper-
parameters are searched in the range (0, 1), except for λ that
is searched in (10−2, 102). We also investigate the impact of λ
on the the diversity of the set of chosen rules R, by varying it
in a geometric progression of ratio 10. All experiments results
are obtained as average over 10 repetitions to account for
randomness.

Implementation. Experiments are executed on a machine with
2×10 core Xeon E5 2680 v2 2.80 GHz processor and 256 GB
memory. Our implementation is available online2. To speed-up
and facilitate hyper-parameter tuning for CORSET we have
implemented two practical changes. First, we run only the first
round of greedy selection in Algorithm 1. The second round
guarantees the approximation factor, but often offers a modest
increase in performance, not worth the increase in running time.
Second, we pass as input to CORSET the number of rules to be
returned (at most 150) instead of the tolerance parameter (c in
Algorithm 1) to reduce variability and simplify hyperparameter
optimization.
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Fig. 4: Synthetic datasets generated from rules with uniform
(top) and skewed (bottom) coverage. Micro-averaged F1 score
against proportion of noise (left), number of attributes (middle)
and labels (right). The x-axis is in log scale.

B. Results

Synthetic datasets. Results on synthetic datasets, both for data
generated from rules with uniform and skewed coverage, are
shown in Fig. 4. The number of rules retrieved by CORSET
is at most the number of generating rules, 33. On the other
hand, BOOMER based on 10 rules consistently offers poor
performance. The classification accuracy of BOOMER increases
when the number of rules increases, but even with 1000 rules,
our method outperforms BOOMER while using a very concise
set of rules. Unlike BOOMER, CORSET seeks to uncover the
true set of generating rules and only use those for classification.
Thus, the experiments with synthetic datasets clearly show the
advantage of our approach. Also note that the performance
of CORSET, unlike that of BOOMER, does not significantly
deteriorate when |F| increases.

Real datasets: classification performance and interpretabil-
ity. Results on real datasets, for classification performance and
interpretability, are shown in Table II. In some cases, SECO
does not terminate within a time interval of 12 hours, in such
cases we report NA in the corresponding table entry. Table II
shows that BOOMER requires a very large number of rules to
achieve competitive performance. Thus, it does not offer high
interpretability. Similarly, SVM-BR performs well but it is not
interpretable. Instead, CORSET extracts a small set of rules,
guaranteeing ease of interpretation, and yet it is consistently
competitive with the baselines on all the datasets. CORSET
always requires fewer rules than rule-based alternatives to
attain the same performance in multi-label classification, and
it is never drastically worse than BOOMER with 1000 rules
or even SVM-BR, suggesting that the price of interpretability,
if there is one, is small when CORSET is used. Finally, note
that CORSET-GH often outperforms CORSET-SURS but using a
larger set of rules.

Real datasets: diversity and impact of λ. A fundamental
characteristic of CORSET is that it allows to control the degree

2https://github.com/DiverseMultiLabelClassificationRules/CORSET



TABLE II: Micro-averaged F1-scores on real datasets achieved by CORSET-SURS , CORSET-GH, SECO, BOOMER with
increasing number of rules, and SVM-BR. The last three columns show the number of rules for CORSET-SURS , CORSET-GH,
and SECO.

Dataset CORSET-SURS CORSET-GH SECO Boomer Boomer Boomer BR-SVM |R| |R| |R|
(10) (100) (1000) CORSET-SURS CORSET-GH SECO

mediamill 0.44 0.51 NA 0.43 0.44 0.50 0.50 150 150 NA
Yelp 0.66 0.64 NA 0.47 0.63 0.75 0.70 67 82 NA
corel-5k 0.18 0.18 NA 0.00 0.00 0.03 0.16 142 150 NA
bibtex 0.36 0.40 NA 0.00 0.13 0.36 0.41 74 150 NA
enron 0.55 0.53 NA 0.39 0.47 0.54 0.52 41 48 NA
medical 0.81 0.83 0.63 0.00 0.50 0.91 0.99 27 88 199
birds 0.37 0.42 0.39 0.00 0.34 0.46 0.42 42 48 122
emotions 0.53 0.54 0.53 0.17 0.49 0.54 0.56 42 68 199
CAL500 0.29 0.32 NA 0.31 0.31 0.33 0.53 150 150 NA
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Fig. 5: Real datasets. Average coverage overlap between
pairs of rules as a function of λ (lower values indicate higher
diversity). Both axes are in log scale.

of diversity in the set of recovered rules via a single tunable
parameter λ. In Fig. 5, we show for a subset of datasets that
the shared coverage within rules is lower for CORSET than for
BOOMER, and moreover that increasing the value of λ is very
effective in reducing overlap between rules. In practice λ must
be carefully tuned to optimize the performance of CORSET. As
the impact of λ is not significantly different in CORSET-SURS
and CORSET-GH, we only show results for the former.

IX. CONCLUSION

We propose a novel rule-based classifier, CORSET, for multi-
label classification tasks. Our training objective explicitly
penalizes rule redundancy, encouraging the algorithm to learn
a concise set of rules. Furthermore, we design a suite of
fast sampling algorithms, which can generate rules with good
accuracy and interpretability. We show that CORSET achieves
competitive performance comparable to strong baselines, while
offering better interpretability.

Our work opens interesting questions for future research. Can
we design training objectives that reflect popular multi-label
classification metrics, while producing concise rule sets? Can

we use the techniques in this work to address the interpretability
issue of existing rule-based classifiers?
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APPENDIX

PROOF OF PROPOSITION 1

To show that CORSET is a 2-approximation algorithm for
Problem 1, we need to show that in the objective function:

f (R) =
∑
R∈R

q (R;R \ {R}) + λ
∑

Ri,Rj∈R,i6=j

d(Ri, Rj)

the first term (quality function) is monotone and submodular
and the distance junction, namely the Jaccard distance, is a
metric.

First, the quality function is a sum of non-negative terms,
and hence it is monotone non-decreasing. It is straightforward
to prove that the function is additionally submodular. Consider
two rule sets R′ and R′′ such that R′ ⊆ R′′.

Given a new rule R∗ marginal gain in q (R∗;R′) is:

∆′ = a (R∗)×
∣∣∣∣∣cov(R∗) \

⋃
R∈R′

cov(R)

∣∣∣∣∣.
Similarly, the marginal gain in q (R∗;R′′) is:

∆′′ = a (R∗)×
∣∣∣∣∣cov(R∗) \

⋃
R∈R′

cov(R)

∣∣∣∣∣
= a (R∗)×

∣∣∣∣∣∣cov(R) \
⋃

R∈R′
cov(R) \

⋃
R∈R′′\R′

cov(R)

∣∣∣∣∣∣.

Since ∣∣∣∣∣cov(R∗) \
⋃

R∈R′
cov(R)

∣∣∣∣∣
≥

∣∣∣∣∣∣cov(R) \
⋃

R∈R′
cov(R) \

⋃
R∈R′′\R′

cov(R)

∣∣∣∣∣∣,
it immediately follows that ∆′ ≥ ∆′′. Therefore, we conclude
that the quality function is submodular.

As concerns the Jaccard distance, first notice that:

d (R,R) = 1− |cov(R) ∩ cov(R)|
|cov(R) ∪ cov(R)| = 0.

Furthermore, the Jaccard distance is symmetric:

d (R1, R2) = d (R2, R1) = 1− |cov(R1) ∩ cov(R2)|
|cov(R1) ∪ cov(R2)|

= 1− |cov(R2) ∩ cov(R1)|
|cov(R2) ∪ cov(R1)| .

Finally,to prove that the Jaccard distance is a metric, it is left to
prove that it satisfies the triangle inequality. Several proofs that
the triangle inequality holds for the Jaccard distance exist [14].

Borodin et al. [4] show that the properties we have proved
for the quality and distance function in f (R) guarantee that
CORSET is a 2-approximation algorithm for Problem 1.

PROOF OF PROPOSITION 2

We prove that Algorithm 2 returns T ∼ area(T ;R).

Pr(T is drawn) =
∑
D∈D

Pr(T is drawn and D is drawn)

=
∑
D∈D

Pr(D is drawn)Pr(T is drawn from P (LD))

=
∑

D∈D[T ]

Pr(D is drawn)Pr(T is drawn from P (LD))

∝
∑

D∈D[T ]

w(D;R)× w(T,D;R)

w(D;R)

=
∑

D∈D[T ]

w(T,D;R) =
∑

D∈D[T ]

|covD(T ;R)| = area(T ;R) .

The first and second equalities follow from the law of total
probability, and the chain rule of probabilities, respectively. The
third equality is guaranteed because T can only be sampled
from D ∈ D [T ]. If D is not in D [T ], it has null probability
of generating T . In the fourth equality, we have used:∑

T⊆LD

w(T,D;R) = w(D;R) .

Finally, the last equality follows since area(T ;R) can be
obtained by summing the marginal coverage |covD(T ;R)| of
T on D, given R, over all data records D ∈ D [T ].


	I Introduction
	II Related Work
	III Problem Statement
	III-A Preliminaries
	III-B Problem formulation

	IV CORSET Learning Algorithm
	V Rule Sampling
	V-A Background: Two-stage pattern sampling
	V-B Sampling objectives
	V-C Tail sampling
	V-D Head sampling

	VI Enhancements to the Sampling Scheme
	VI-A Limitations of the two-stage pattern-sampling framework
	VI-B Tail sampling under interpretable label space
	VI-C Improved head sampling

	VII Complexity Analysis
	VIII Experimental Evaluation
	VIII-A Experimental setup
	VIII-B Results

	IX Conclusion
	References
	Appendix

