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Abstract—Graph generative models have broad applications
in biology, chemistry and social science. However, modelling and
understanding the generative process of graphs is challenging
due to the discrete and high-dimensional nature of graphs, as
well as permutation invariance to node orderings in underlying
graph distributions. Current leading autoregressive models fail
to capture the permutation invariance nature of graphs for the
reliance on generation ordering and have high time complexity.
Here, we propose a continuous-time generative diffusion process
for permutation invariant graph generation to mitigate these
issues. Specifically, we first construct a forward diffusion pro-
cess defined by a stochastic differential equation (SDE), which
smoothly converts graphs within the complex distribution to
random graphs that follow a known edge probability. Solving
the corresponding reverse-time SDE, graphs can be generated
from newly sampled random graphs. To facilitate the reverse-time
SDE, we newly design a position-enhanced graph score network,
capturing the evolving structure and position information from
perturbed graphs for permutation equivariant score estimation.
Under the evaluation of comprehensive metrics, our proposed
generative diffusion process achieves competitive performance in
graph distribution learning. Experimental results also show that
GraphGDP can generate high-quality graphs in only 24 function
evaluations, much faster than previous autoregressive models.

Index Terms—Graph Generation, Generative Diffusion Pro-
cess, Graph Neural Network

I. INTRODUCTION

Graph data is a ubiquitous and highly applicable type of
high-dimensional data in data mining. Modelling and under-
standing the generative process of graphs has been studied
for a long time in network science [1] and continues as an
active research topic incorporating deep learning [2]. Graph
generative models aim to capture the underlying distributions
over a particular family of graphs and generate diverse novel
graphs with high fidelity, which serves as the foundation for
wide applications, such as de novo drug discovery [3]–[6],
computation graph creation for network architecture design
[7], semantic parsing in natural language [8], and analysis in
network science [9]–[11].

Learning the distribution of discrete and combinatorial
graph structures is a challenging task, which is also a necessary
and fundamental step for further jointly modelling attributes
[4]–[6] and labels [12] in semantic abundant graphs. Tradi-
tional methods for graph generation date back to random graph

∗ Corresponding author.
• Code is available at https://github.com/GRAPH-0/GraphGDP.

models [9], [10], [13], which rely on hand-crafted stochastic
generation processes and capture limited graph statistic proper-
ties. Recent deep graph generative models utilize the capacity
of neural networks to learn graph structure distribution effec-
tively. The prominent paradigms include variational autoen-
coder (VAE) based models [14]–[16], generative adversarial
network (GAN) based models [17], [18], flow-based models
[4]–[6], [19], and autoregressive models [3], [20]–[23]. Among
them, autoregressive models achieve the most impressive gen-
eration quality on discrete graph structures. However, they rely
on node generation orderings with high time complexity and
fail to capture the important permutation invariant properties of
graphs. The desired likelihood-based graph generative models
should estimate invariant likelihood to all possible equivalent
adjacency matrices of the same graph. To reach this goal,
Niu et al. [24] creatively integrate score-based generative
models [25] with graph neural networks to implicitly repre-
sent permutation-invariant distributions, but still suffer from
generation quality and sampling speed.

In this paper, we propose continuous-time generative dif-
fusion processes for permutation invariant graph generation
(GraphGDP), which exhibit high graph generation quality and
efficient sampling potential. Analogous to the diffusion pro-
cesses in a non-equilibrium thermodynamic system in which
particles move stochastically under the influence of a heat bath
and spread out over the entire space in equilibrium [26]–[28],
we perturb the edges in graphs with a sequence of noise (a.k.a,
forward diffusion processes), and generate graphs by learning
to reverse this process from noise to data (a.k.a, generative
diffusion processes). It is non-trivial to adapt current methods
to graph data effectively due to the permutation invariance
constraint and the necessity to account both discrete local
motifs and overall topological properties of graphs.

Inspired by the seminal work [29] with superior image
generation quality, which connects diffusion-based models and
score matching by defining the stochastic differential equation
(SDE) describing continuous-time perturbing processes and
the reverse-time SDE for generation, we define a forward
diffusion process described by the specialized SDE with a
closed-form expression over the real-valued adjacency matri-
ces. We make an important observation that such a forward
diffusion process implicitly defines a corresponding conversion
process on the discrete distribution of graphs through a simple
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Fig. 1: Perturbing graph data to random graphs with an underlying simple edge distribution can be achieved by a continuous-time
forward diffusion process described by an SDE. We can convert this SDE with the score of the data distribution ∇Alog pt(A)
at each time t . Thus, a graph sample can be transformed from a newly sampled random graph via the generative diffusion
process. The lower triangle part of adjacency matrices perturbed from the same graph at different times are shown in the first
row, and the corresponding discrete graphs are below them.

quantization on perturbed adjacency matrices. During the
diffusion process, the edge existing probability in the Bernoulli
distribution evolves stochastically over time, and the signal-to-
noise ratio of the graph continues to decrease. In the final
equilibrium state, the graph distributions are converted to
Erdős-Rényi random graphs [13] with an edge probability
of 0.5. The correlation between continuous-valued adjacency
matrices and discrete graphs provides not only an intuitive
understanding of the diffusion process on graphs, but also extra
topology information for denoising in the reverse process.

Our ultimate goal is to recover the complex graph distri-
bution from the prior noise distribution through generative
diffusion processes. The success of reverse-time SDEs is heav-
ily dependent on the neural networks (named score networks)
to estimate scores (a.k.a., the gradient field of the perturbed
data distribution). To capture the evolving graph topology, we
emphasize the use of discrete graph states quantized from
perturbed continuous-valued adjacency matrices. Intuitively,
the evolving node or edge position information is critical in
graph structure denoising. We propose an effective position-
enhanced graph score network (PGSN) for permutation equiv-
ariant edge score estimation, which extracts structure and
position features from quantized graphs and combines them
with dense continuous adjacency matrices. With the optimized
PGSN, we utilize numerical solvers for reverse-time SDEs
and obtain final graph samples along approximate trajectories.
For the graph generation quality evaluation, we apply metrics
based on recent works [30], [31] to benchmark graph gener-
ative models on widely used datasets, and we find that our
model achieves better or comparable performance to strong
autoregressive models. Using the probability flow ordinary
differential equation (ODE) sharing marginal probability den-
sities with the SDE, we also show that our model can achieve
efficient graph sampling with considerable quality in only 24

function evaluations using ODE solvers. The framework is
summarized in Fig. 1.

Our main contributions are summarized as:
• We propose a novel continuous-time generative diffusion

process for permutation invariant graph generation, which
incorporates observations of continuous-valued adjacency
matrices and corresponding discrete graphs for the inter-
conversion between graph samples and random graphs.

• We design a position-enhanced graph score network
that accurately estimates scores on perturbed graphs by
leveraging the perturbed adjacency matrices as well as
the structure and position information of discrete graphs.

• With the carefully designed evaluation setting, our pro-
posed model achieves better or comparable sampling
quality to autoregressive models in graph generation and
displays strong potential for efficient sampling.

II. PRELIMINARIES

A. Continuous-time Generative Diffusion Processes

For a datapoint x ∈ Rd , consider a forward diffusion
process xt defined by an Itô SDE:

dx = f(x, t)dt+ G(x, t)dw , (1)

with an indexed continuous time variable t ∈ [0, T ], a
standard Wiener process w (a.k.a., Brownian motion) , a drift
coefficient f(·, t) : Rd → Rd and a diffusion coefficient
G(·, t) : Rd → Rd×d. According to [29], [32], [33], running
backwards in time from T to 0 (i.e., with negative dt),
a corresponding reverse-time diffusion process inverting the
above forward diffusion process can derived as:

dx = {f(x, t)−∇ · [ G(x, t)G(x, t)> ]

−G(x, t)G(x, t)>∇xlogpt(x)}dt+ G(x, t)dw̄ ,
(2)



where ∇xlogpt(x) is the score function of the marginal
distribution over data x at time t and w̄ is a reverse-time
standard Wiener process.

Song et al. [29] show that the reverse-time diffusion process
can be converted into a generative model known as the
continuous-time generative diffusion process. The SDEs com-
monly used for diffusion take the simple form for drift and dif-
fusion coefficients with f(x, t) = f(t)xt and G(x, t) = g(t)I.
With some specific designs for f(t) and g(t), the marginal
and equilibrium density of the SDE approximates a Normal
distribution at time T , i.e., xT ∼ N (xT ; 0, I). 1 Initializing x0

with a sample from the complex data distribution, the state xt
gradually approaches equilibrium via Eq. (1). After training
a time-dependent score network sθ(xt, t), i.e., the parametric
score function, for estimating the score ∇xt log pt(xt), we
can synthesize data via the reverse-time SDE in Eq. (2). The
denoising score matching [34] objective is modified for score
estimation training as:

min
θ

Et{λ(t)Ex0
Ext|x0

[ ||sθ(xt, t)−∇xlog p0t(xt|x0)||22 ]} ,
(3)

where λ(t) is a given positive weighting function. When f(·, t)
and G(·, t) are affine, the transition kernel p0t(xt|x0) keeps a
tractable Gaussian distribution [35], which helps compute the
score target and perturbed data efficiently.

B. Permutation Invariant Generation

The goal of graph generative models is to capture the
underlying distribution p(G) over graph instances and then
sample a new graph from the learned distribution. A graph
G with n nodes is defined as G = (V,E), where V,E
correspond to the node set and the edge set. In this paper,
we only consider the undirected graphs without self-loops
and multi-edges. Given a node ordering π = (π1, ..., πn), the
graph G is determined by its adjacency matrix Aπ ∈ Rn×n.
Therefore, the graph distribution can also be represented by
marginalizing over all adjacency matrices. We omit the π in
Aπ if not emphasizing the node ordering. Since the graph
distribution is inherently invariant to any node permutation,
graph generative models are expected to estimate the same
likelihood to equivalent adjacency matrices. Niu et al. [24]
make a theoretical analysis that if the edge output of the
score network is permutation equivariant, then the gradient
of log-likelihood estimation sθ(A) is permutation equivariant
and the implicitly defined log-likelihood function log pθ(A)
is permutation invariant.

III. MODEL

Our approach aims to apply continuous-time generative
diffusion processes to graphs, capturing the desirable permu-
tation invariant graph distribution. Below, we first describe
the forward diffusion process that perturbs graph instances
towards random graphs in Section III-A. Then we illustrate
our specialized position-enhanced graph score network for

1We only use the ”variance-preserving” SDEs in this paper, while there are
other SDEs with different Gaussian distributions in equilibrium.
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Fig. 2: The illustration of the objective computation for the
proposed graph score network. Uniformly sample t ∈ (0, 1],
compute perturbed graphs and the gradient of log probability
density at time t, and then train graph score networks to
estimate scores.

estimating graph scores (i.e., denoising perturbed graphs)
in Section III-B. The detail of graph generative diffusion
processes is provided in Section III-C.

A. Perturbing Graphs Towards Random Graphs

Our goal is to construct a diffusion process that perturbs
graphs towards the equilibrium state like Eq. (1). Intuitively, a
straightforward but effective method is to add noise into each
element in adjacent matrices considering the discrete elements
as continuous variables. For a graph diffusion process At

indexed by a continuous time variable t ∈ [0, T ], we denote
A0 ∼ p0 as an adjacency matrix drawn from the original data
distribution p0, and AT ∼ pT as the final perturbed adjacency
matrix drawn from the prior distribution pT .

The choice of the drift coefficient function f(t) and diffu-
sion coefficient function g(t) is indispensable for the success
of diffusion process as shown in Section II-A. On the one
hand, it should ensure that the corresponding SDE can diffuse
the data from a complex high-dimensional distribution into
a tractable prior distribution with a low signal-to-noise ratio
that is convenient for sampling. On the other hand, it is
assumed to be designed as affine functions that allow us to
efficiently sample the state At at any time t in the forward
diffusion process without model parameters. We apply the
variance-preserving SDE introduced by [29] for graph data,
whose discrete-time form is a denoising diffusion probabilistic
model [28]. Considering the linear scaling function β(t) =
β̄min + t(β̄max − β̄min) for t ∈ [ 0, 1 ], we derive the SDE



from Eq. (1) as:

dA = −1

2
β(t)Adt+

√
β(t)dw . (4)

In detail, the values of A are linearly scaled to [−1, 1]. At time
t, β(t) actually control the scale of adding noise. β(t) is shared
for all elements in A, while the noise term from w is inde-
pendently sampled for each element. As graphs are undirected
here, we manipulate the lower triangular part of adjacency
matrices and make them symmetric afterwards. According to
Eq. (4), with affine drift coefficients, the perturbation kernels
p0t(At|A0) are Gaussian distributions as [35]:

p0t(At|A0) = N (At; A0e
− 1

2

∫ t
0
β(s)ds, I− Ie−

∫ t
0
β(s)ds) .

(5)
With these perturbation kernels, we can perturb the graphs
and compute the score target efficiently at any time without
running the forward diffusion process step by step.

The forward diffusion process on graphs also implicitly
defines a corresponding transformation on the discrete dis-
tribution, although it manipulates the continuous distribution.
A simple quantization of the sampled At (i.e., with the
discretization threshold of 0.5 for the edge values) converts it
to a graph denoted by Āt that is sampled from the {0, 1}n×n
Bernoulli distribution with gradually erased original signals.
The final equilibrium state ĀT represents the graph with
adjacency matrix elements independently sampled from the
Bernoulli distribution with an equal probability of having an
edge or not, which is equivalent to sampling from Erdős-
Rényi random graphs [13] with the edge probability of 0.5.
From the perspective of Āt, it is actually a diffusion process
on the discrete distribution. We emphasize the significance of
leveraging the association with discrete graphs, which allows
us to gain additional observations of intermediate graph states,
such as changes in graph structure and position, while still
benefiting from the convenient continuous SDE descriptions.

With the defined forward diffusion process including both
continuous and discrete states, we build up the training pro-
cedure shown in Fig. 2 to supervise the learning of the graph
score network. The training objective is defined as

min
θ

Et{λ(t)EA0EAt|A0
[ ||sθ(At, Āt, t)

−∇Alog p0t(At|A0)||22 ]}.
(6)

We expect to utilize hybrid states for the graph score network
to denoise the added Gaussian noise. At the beginning of dif-
fusion processes, the node position, including the distance to
other nodes, is quickly lost in real-valued adjacency matrices,
since every element in the adjacency matrix is perturbed at
the same time. Thus, if we estimate scores directly on dense
adjacency matrices like EDP-GNN [24], such graph topology
information will be absent, which is an important clue for
graph structure representation learning. This motivates us to
better design the graph score network.

B. Position-enhanced Graph Score Networks

A graph score network sθ(At, Āt, t) learns to estimate
the score of graphs with varying perturbation degrees, also

known as a denoising model. Message passing based graph
neural networks (GNNs) have become the de facto standard for
graph structure representation learning, whose representation
power is bounded by 1-WL test [36]–[38]. To enhance the
representation power of GNNs, recent works [39]–[43] attempt
to add the position encoding of nodes or edges to message
passing architectures, including the position information from
graph spectrum, random walks, and so on. Here, we pro-
pose a specialized Position-enhanced Graph Score Network
(PGSN) that utilizes graph structure and position features
from intermediate discrete graphs, with real-valued adjacency
matrices serving as initial edge features and contributing to
score estimation through an edge feature updating mechanism.

We first extract appropriate node features and edge features
from At and Āt. As the time information is added to all
extracted features with the sinusoidal position embedding [44],
we omit t in the description of PGSN. We take the degree
onehot feature h0 as the initialization of node features, and
obtain graph position information via the random walk RW =
ĀD−1 following [41], [43]. The node position feature consists
of the landing probabilities of node i from the r-step random
walks are defined as:

pi = [ RWii,RW2
ii, · · · ,RWr

ii ] . (7)

Using the same matrix of random walks, we also obtain the
shortest-path-distance feature between node i and node j by

espdij = φ([ RWij ,RW2
ij , · · · ,RWr

ij ]) , (8)

where φ(·) takes the first non-zero position of the input vector
and turns it to the onehot feature. Then the initial edge features
are concatenated by e0 = [AW0, e

spd].
In order to capture the current graph structure thoroughly,

we apply an L-layer message passing architecture incorpo-
rating node and edge features. The edge set is constructed
by elements in A that are greater than the threshold γ
(a hyperparameter controlling the computation burden and
usually set to 0.2 in our experiments). We compute the two
types of message for the node i at the l-th message passing
layer as follows:

αk,li,j = softmax

(
qk,li (kk,lj ◦ ck,li,j )

>
√
d

)
, (9)

mk,l
i,j,(h) = αk,li,j vk,lj ◦ c̄k,li,j , (10)

mk,l
i,j,(p) = mk,l

i,j,(h) ◦ pljW
k,l
p , (11)

where ◦ denotes element-wise multiplication. Here, ql , kl and
vl are node features projected by different learnable matrices
from the concatenation [hl,pl], while cl and c̄l are edge
features projected from el. The edge features not only bias
the attention computation but also as a part of the aggregated



features. We aggregate and update the node embedding and
the node position encoding by

Ml
i,(h) =

H

||
k=1

∑
j∈N(i)

mk,l
i,j,(h) , (12)

ĥl+1
i = Norm(Ml

i,(h) + hliW1) , (13)

hl+1
i = Norm

(
ĥl+1
i + FFN(ĥl+1

i )
)
, (14)

Ml
i,(p) =

H

||
k=1

∑
j∈N(i)

mk,l
i,j,(p) , (15)

pl+1
i = pli + act(Ml

i,(p) + pli) , (16)

where || is the concatenation of multi-head messages, Norm
is a normalization layer, FFN is a two-layer feed forward
network and act is an activation layer. Another important step
is to update the edge feature after message passing as

el+1
i,j = eli,j + act

(
(hl+1
i + hl+1

j )W2

)
. (17)

Getting the final edge embedding eL, we concatenate it with
the original e0 and adopt a multilayer perceptron (MLP) for
the score estimation of each edge.

The standard message passing in graphs is theoretically
guaranteed to be permutation equivariant [45]. Since the ex-
tracted node features and edge features are permutation equiv-
ariant, and since the operations in our PGSN consist purely
of message passing and node-wise/edge-wise projections, the
output edge scores are still permutation equivariant.

C. Graph Generation via Generative Diffusion Processes

After training with the time-dependent graph score network
sθ, we can construct the generative diffusion processes by the
reverse-time SDE from Eq. (2) as

dA = [−1

2
β(t)A−β(t)∇Alog pt(A) ]dt+

√
β(t)dw̄ , (18)

where ∇Alog pt(A) is the score function parametrized by
sθ. By first sampling from the prior Normal distribution (i.e.,
sampling from random graphs), a new graph instance is gener-
ated by performing the generative diffusion process described
by Eq. (18). Therefore, graph generation is transformed into
a problem of numerically solving SDEs.

We utilize three numerical methods for solving the special
reverse-time SDE, suitable for graph generation in different
situations. First, many numerical solvers directly provide the
approximate trajectory simulation of SDEs. For example, the
Euler-Maruyama method is a simple discretization to the SDE,
which is defined as

At−∆t = At + [
1

2
β(t)At +β(t)sθ(At, Āt, t)]∆t+

√
β(t)

√
∆tzt,

(19)
where zt ∼ N (0, I). Given the number of discretization steps,
we can determine ∆t and generate graphs iteratively using the
gradient information from the graph score network in Eq. (19).
For simple and small graphs, such general SDE solvers provide
adequate generation quality.

Second, for those graphs with complex structural character-
istics (e.g. , large graph diameters), we can further employ

Langevin MCMC [46] like score-based models [25], [29]
to improve the sample quality at each discretization step.
Specifically, after using Eq.19 to estimate the graph sample
for the next step, we correct the estimated graph sample by

At ← At + εtsθ(At, Āt, t) +
√

2εtz , (20)

where the step size εt is determined by the norm of noise, the
norm of scores and a hyperparameter r. The extra correction
steps reduces the error from numerical solvers, obtaining more
accurate margin distribution of graph samples.

Third, we can employ the corresponding ODE for efficient
graph generation. [47] and [29] have explored the connection
between generative diffusion processes and ODEs. Without
the stochastic term in Eq. (18), we can derive the probability
flow ODE [29], which corresponds to a deterministic process
sharing the same marginal probability densities with the SDE.
The probability flow ODE is defined as

dA = [−1

2
β(t)A− 1

2
β(t)sθ(A, Ā, t) ]dt . (21)

It allows us to use current well-established ODE solvers
to generate high-quality graphs in very few steps, which
we describe in detail in Section IV-E. We quantize all the
generated continuous adjacency matrices for final graphs.

IV. EXPERIMENTS

In this section, we empirically demonstrate the power of the
proposed GraphGDP in the task of graph generation.

A. Datasets

We compare our graph generative model on four common
graph datasets that vary in graph sizes and characteristics. (1)
Community-small: 100 community graphs with 12 ≤ |V | ≤
20. The graphs are constructed by two communities with
equal nodes, each of which is generated by the Erdős-Rényi
model (E-R) [13] with p = 0.7. The inter-community edges
are added with the uniform probability 0.05. (2) Ego-small:
200 one-hop ego graphs with 4 ≤ |V | ≤ 18, extracted from
Citeseer network [48]. The nodes represent documents and
edges represent citation relationships. (3) Ego: 757 three-
hop ego graphs with 50 ≤ |V | ≤ 399, also extracted from
Citeseer network [48]. (4) Enzymes: 563 protein graphs with
10 ≤ |V | ≤ 125 selected from BRENDA database [49].

We further split the datasets into training and test sets with
a ratio of 8 : 2. The validation set comes from the first 20% of
the training graphs. When evaluating the model performance
on Community-small and Ego-small, we generate 1024 graph
samples following [19], [24] to receive more stable evaluation
results on small graphs. For Ego and Enzymes, we generate
the same number of graphs as the test set.

B. Evaluation Metrics

Evaluating and comparing graph generative models is a
challenging task, as it is difficult to obtain perceptual differ-
ences for graph visualization. We apply two type of metrics
to comprehensively evaluate the quality of graph generation.



1) Classical Structure Metrics: The widely-used evaluation
metrics are based on Maximum Mean Discrepancy (MMD)
measures to assess the distance between the distributions of
the generated graph set Sg and the test set St [19]–[24].
Specifically, several graph property descriptor functions (e.g.
degree distribution, clustering coefficient, 4-node orbit count
histograms, and Laplacian spectrum) are applied to map each
graph to high-dimensional representations. The estimate of
MMD [50] on these representations can be derived as

MMD(Sg,St) :=
1

m2

m∑
i,j=1

k(xti,x
t
j) +

1

n2

n∑
i,j=1

k(xgi ,x
g
j )

− 2

nm

n∑
i=1

m∑
j=1

k(xgi ,x
t
j) ,

(22)
where k(·, ·) is an optional kernel function, including a kernel
using the first Wasserstein distance (EMD) or total variation
distance (TV), and the radial basis function kernel (RBF).

Recently, O’Bray et al. [30] point out that the current
practice of MMD metrics fail to faithfully reflect the distance
of graph distributions. For example, MMD necessitates the use
of positive definite kernel functions, and the previously-used
hyperparameters fail to align with maximum discrimination
in MMD. Following the suggestions from [30], we employ
a more reasonable structure evaluation process to reflect the
performance of graph generative models. First, we choose a
valid and efficient kernel function, i.e., an RBF kernel with a
smoothing parameter σ ∈ R as k(xi, xj) = exp(

−‖xi−xj‖2
2σ2 ).

Second, we employ three graph-level structure descriptor
functions, which are described in [20], [21], including (i) the
degree distribution, (ii) the clustering coefficient distribution,
and (iii) the Laplacian spectrum histograms. Third, we report
the highest MMD values under a set of σ, expected to show
the maximum distance between the two distributions. The 50
candidate values of logσ are taken evenly at the interval in
[10−5, 105]. As for the number of bins used for the histogram
conversion, we inherit the setting of [20], [21], which takes
100 bins for clustering coefficient and 200 bins for Laplacian
spectrum. Four, MMD between the test and training graphs
is included to provide a meaningful performance bound.

2) Neural-network-based Metrics: Thompson et al. [31]
introduce several random GIN-based metrics for graph gen-
erative model evaluation, as the pre-existing structure metrics
fail to capture the diversity of graph samples. The graph repre-
sentations are extracted by random-initialized GIN [37], where
MMD RBF (i.e., MMD computed with the RBF kernel), F1 PR
(i.e., the harmonic mean of improved precision and recall) and
F1 DC (i.e., the harmonic mean of density and coverage) are
built. MMD RBF is a more stable and comprehensive metric to
measure the diversity and realism of generated graphs, while
F1 PR and F1 DC are sensitive to detecting mode collapse
and mode dropping. We follow the configuration of GIN in
[31] and report the mean result of 10 random GINs.

C. Baselines

We compare the performance of our models against other
graph generative models including VGAE [14], GraphRNN
[20], GRAN [21], EDP-GNN [24] and BIGG [22]. For au-
toregressive graph generative models, we train models with the
breadth-first-search (BFS) or depth-first-search (DFS) canoni-
cal node ordering schemes. In addition, we utilize uniformly
distributed random node orderings to train several autoregres-
sive models denoted by the extra −U, which can be considered
as an order-agnostic autoregressive model [51] that maximize
the average likelihood over all node orderings of the graph
[3], [23]. An Erdős-Rényi (ER) baseline [13] is also added,
where the edge probability is estimated by the maximum
likelihood over training graphs. The brief explanations and
implementation details of deep graph generative models are
listed as follows. VGAE [14] is a variational autoencoder that
utilizes a graph convolution network encoder and a simple
MLP decoder with inner product. GraphRNN [20] is an
autoregressive model using a graph-level Recurrent Neural
Network (RNN) to maintain graph states and another edge-
level RNN to generate edges of the newly generated node.
We re-train the officially implemented models with our dataset
split using random BFS node orderings. GRAN [21] maintains
the autoregressive process and utilizes graph neural networks
with attention to model the graph generated context. GRAN
generates a row of the adjacency matrix in a decision step to
improve efficiency. The fixed DFS node orderings are utilized
for Enzymes dataset, and the BFS node orderings for others.
BIGG [22] is the state-of-the-art autoregressive tree-based
model which utilizes the sparsity of realistic graphs. Over the
sequence of nodes, it adopts a binary tree data structure to
generate each edge and associates the set of edges with each
node via a tree-structured autoregressive model. EDP-GNN
[24] is a permutation invariance approach for graph generation
via graph score matching and annealed Langevin dynamic
sampling. We exploit its original model hyperparameters.

D. Graph Generation Quality

In this part, we benchmark the sample quality of our
proposed graph generative model against other competitive
models. For implementation details of our GraphGDP, the
hidden dimensions are selected from 64, 128 and 256 for
different datasets. We stack 4 message passing layers with
8 attention heads for graph score networks and adopt an MLP
with 2 hidden layers for final score estimation. All our models
are trained with Adam optimizer [52] and a constant learning
rate 2e − 5. We also apply the exponential moving average
(EMA) with the momentum 0.9999 for the parameter updating
to improve stability as in [29]. Notably, the model parameters
are shared across time, which is specified to the graph score
network using the sinusoidal position embedding [44]. At the
start of generation, we first sample the number of nodes based
on the probability mass function of nodes in the training set.
For datasets with high variance on graph sizes, we could also
add the node number information to models as the condition
like time information. We configure the variance preserve SDE



TABLE I: Comparison of the graph generation performance among graph generative models with classical structure metrics.
The Train/Test shows the MMD results in a set of σ values between training and test graphs. For MMD metrics, the closer
the value is to the Train/Test results, the better the performance. The top two cells in each column are coloured according to
their rank. Deg.: degree distribution, Clus.: clustering coefficient distribution, Spec.: spectrum of graph Laplacian, Avg.: the
average values of three MMD metrics.

Community-small Ego-small Enzymes Ego
|V |max = 20, |E|max = 62 |V |max = 17, |E|max = 66 |V |max = 125, |E|max = 149 |V |max = 399, |E|max = 1071

|V |avg ≈ 15, |E|avg ≈ 36 |V |avg ≈ 6, |E|avg ≈ 9 |V |avg ≈ 33, |E|avg ≈ 63 |V |avg ≈ 145, |E|avg ≈ 335

Deg. Clus. Spec. Avg. Deg. Clus. Spec. Avg. Deg. Clus. Spec. Avg. Deg. Clus. Spec. Avg.
Train/Test 0.035 0.067 0.045 0.049 0.025 0.029 0.027 0.027 0.011 0.011 0.011 0.011 0.009 0.009 0.009 0.009
Order-dependent
GraphRNN 0.106 0.115 0.091 0.104 0.155 0.229 0.167 0.184 0.397 0.302 0.260 0.320 0.140 0.755 0.316 0.404
GRAN 0.125 0.164 0.111 0.133 0.096 0.072 0.095 0.088 0.215 0.147 0.034 0.132 0.594 0.425 1.025 0.682
BIGG 0.041 0.073 0.050 0.055 0.024 0.029 0.028 0.027 0.020 0.019 0.019 0.019 0.034 0.108 0.077 0.073
Order-independent
ER 0.300 0.239 0.100 0.213 0.200 0.094 0.361 0.218 0.844 0.381 0.104 0.443 0.738 0.397 0.868 0.668
VGAE 0.391 0.257 0.095 0.248 0.146 0.046 0.249 0.147 0.811 0.514 0.153 0.493 0.873 1.210 0.935 1.006
GraphRNN-U 0.410 0.297 0.103 0.270 0.471 0.416 0.398 0.429 0.932 1.000 0.367 0.766 1.413 1.097 1.110 1.207
GRAN-U 0.106 0.127 0.083 0.106 0.155 0.229 0.167 0.184 0.343 0.122 0.041 0.169 0.099 0.170 0.179 0.149
EDP-GNN 0.100 0.140 0.085 0.108 0.026 0.032 0.037 0.032 0.120 0.644 0.070 0.278 0.553 0.605 0.374 0.511
GraphGDP 0.039 0.074 0.052 0.055 0.023 0.029 0.030 0.027 0.023 0.025 0.019 0.022 0.037 0.099 0.021 0.052

TABLE II: Evaluation of different graph generative models using three neural-network-based metrics. The 50/50 split represents
the results computed with a random 50/50 split of the dataset and shows the ideal scores for metrics. The top two cells in
each column are coloured according to their rank.

Community-small Enzymes Ego

MMD RBF (↓) F1 PR (↑) F1 DC (↑) MMD RBF (↓) F1 PR (↑) F1 DC (↑) MMD RBF (↓) F1 PR (↑) F1 DC (↑)
50/50 split 0.037 ± 0.002 0.994 ± 0.012 1.065 ± 0.008 0.007 ± 0.000 0.988 ± 0.004 0.979 ± 0.006 0.005 ± 0.000 0.985 ± 0.004 1.025 ± 0.012

Order-dependent

GraphRNN 0.353 ± 0.088 0.252 ± 0.183 0.407 ± 0.171 1.495 ± 0.037 0.000 ± 0.000 0.000 ± 0.000 1.283 ± 0.053 0.019 ± 0.016 0.007 ± 0.007

GRAN 0.196 ± 0.014 0.824 ± 0.141 0.793 ± 0.099 0.069 ± 0.008 0.915 ± 0.035 0.738 ± 0.027 0.244 ± 0.064 0.238 ± 0.141 0.207 ± 0.088

BIGG 0.052 ± 0.003 0.135 ± 0.087 1.048 ± 0.035 0.019 ± 0.000 0.964 ± 0.008 0.966 ± 0.012 0.022 ± 0.002 0.956 ± 0.014 0.896 ± 0.026

Order-independent

ER 0.278 ± 0.046 0.363 ± 0.201 0.335 ± 0.096 0.808 ± 0.065 0.046 ± 0.030 0.019 ± 0.005 0.118 ± 0.035 0.516 ± 0.116 0.377 ± 0.120

VGAE 0.360 ± 0.065 0.292 ± 0.165 0.292 ± 0.113 0.716 ± 0.033 0.012 ± 0.016 0.002 ± 0.003 0.520 ± 0.003 0.000 ± 0.000 0.000 ± 0.000

GraphRNN-U 0.970 ± 0.113 0.066 ± 0.043 0.079 ± 0.003 1.263 ± 0.177 0.000 ± 0.000 0.000 ± 0.000 1.317 ± 0.022 0.000 ± 0.000 0.000 ± 0.001

GRAN-U 0.164 ± 0.016 0.859 ± 0.082 0.888 ± 0.053 0.242 ± 0.033 0.671 ± 0.056 0.364 ± 0.024 0.128 ± 0.041 0.720 ± 0.041 0.564 ± 0.026

EDP-GNN 0.125 ± 0.004 0.913 ± 0.108 0.977 ± 0.044 0.119 ± 0.010 0.954 ± 0.012 0.846 ± 0.020 0.295 ± 0.061 0.395 ± 0.028 0.192 ± 0.036

GraphGDP 0.066 ± 0.012 0.656 ± 0.138 1.042 ± 0.014 0.026 ± 0.001 0.974 ± 0.005 0.932 ± 0.015 0.034 ± 0.004 0.877 ± 0.014 0.721 ± 0.023

with β̄min = 0.1 and pick β̄max from {5, 10, 20}, ensuring
that the signal-to-noise ratio at the last perturbed graphs is
kept small. On Ego-small dataset, we apply Euler-Maruyama
method with 1000 discretization steps for graph sampling, and
we incorporate extra Langevin MCMC steps on other datasets.

The generation quality evaluation results with classical
structure metrics are reported in Table I, where the smaller
values of MMD metrics represent the smaller distance be-
tween the two distributions. Table II shows the performance
using neural-network-based metrics. We colour the top two
performance for each metric. Some visualizations of generated
diffusion processes are shown in Figure 3.

We summarize the observations after analyzing the model
performance for graph sample quality. (1) Among order-
independent graph generative models, GraphGDP achieves
remarkable performance improvement. (2) Under the same
requirement to capture the permutation invariance property
of graphs, the proposed GraphGDP outperforms the score-
based EDP-GNN obviously, especially in larger graphs. (3)

Compared to the dominant autoregressive generative mod-
els, GraphGDP surpasses the performance of competitive
GraphRNN and GRAN for most metrics. Our method also
shows better or comparable results to BIGG without using any
predefined node orderings, except for slightly less diversity
on the Ego dataset. In conclusion, GraphGDP demonstrates
the high fidelity and diversity of generated graph samples on
datasets with different characteristics.

E. Efficient Graph Generation
Sampling efficiency is a crucial property pursued by graph

generative models [21], [22]. For generative diffusion pro-
cesses, the connection between the reverse-time SDE and the
deterministic probability flow ODE provides a way for fast
sampling. We can generate graphs by solving the neural ODE
described by Eq. 21. Through controlling the error tolerance
of off-the-shelf adaptive-step solvers or the step size of fixed-
step solvers [53], we generate high-quality graphs with many
fewer steps (a.k.a., function evaluations). Compared to other
domains, the elements in graph adjacency matrices are less
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Fig. 3: Graph visualization of different steps in the generative diffusion processes on Community-small (a), Enzymes (b-c),
Ego (d) datasets.

(a) Graph generation performance and NFE used by ODE solvers.
MMD AVG: average values of three structure MMD metrics. R 0.18:
”rk4” fixed-step solver with 0.18 step size. D 1e-2: ”dopri5” adaptive-
step solver with 1e-2 error tolerance.

158 NFE80 NFE50 NFE24 NFE

(b) Graphs generated from the same latent code through ODE solvers
with various NFE.

Fig. 4: Graph generation quality for the same model using
different settings of the ODE solvers. The larger error tolerance
or step size reduces the number of function evaluations (NFE),
maintaining high generation quality.

informative with only 2 values, and may be more tolerant to
errors, while the pixels in images have 256 values. As shown
in Figure 4a, with different solver settings, our model keeps the
structure fidelity with even 24 steps. The graph visualization
in Figure 4b also shows that the overall structure patterns of
the graph are maintained even if the graph topology changes
slightly due to the numerical precision.

We compare the sampling quality and inference time of our

efficient version with other models in Fig. 5. GraphGDP has
clear performance and speed advantages compared to GRAN
(designed for efficient sampling) and EDP-GNN. Another
powerful model, BIGG, does not support graph generation in
batch form, and is not put into Fig. 5 for comparison. On Ego
dataset, our model takes on average 0.41s to generate a graph
with one batch size, which is still faster than BIGG’s 2.19s. In
contrast to autoregressive models, graph generative diffusion
processes have strong potential for efficient generation.

Fig. 5: Comparison of the log-scale running time for generat-
ing 16 graphs in a batch on Enzymes and Ego datasets.

F. Ablation Study

Utilizing generative diffusion processes, we compare PGSN
with its variants and other graph score network parameteriza-
tion methods on Enzymes dataset to validate the effectiveness
of the design for graph score networks. All the models are
trained with the unified 64 hidden dimensions and 1M training
steps. The methods are denoted as follows:
• MLP: an MLP consisting of 3 hidden layers with per-

turbed graph adjacency matrices as input.



TABLE III: The results of various score function parameteri-
zation methods in generative diffusion processes on Enzymes
dataset. RW: the steps of random walks in graphs.

Score Network RW Deg. Clus. Spec. Avg.

MLP - 0.703 1.044 0.213 0.654
GIN - 0.331 0.468 0.071 0.290
GAT - 0.365 0.479 0.071 0.305
GTN - 0.158 0.457 0.074 0.230

PGSN w/o P 32 0.083 0.213 0.050 0.116
PGSN w/o U 32 0.107 0.212 0.048 0.122

PGSN 4 0.095 0.233 0.059 0.130
PGSN 8 0.097 0.222 0.054 0.124
PGSN 16 0.084 0.208 0.049 0.114
PGSN 32 0.079 0.198 0.047 0.108

• GIN: a 4-layer graph isomorphism network [37] that takes
the degree onehot embedding as the initial node feature.
The edge representations are obtained by adding the pair
of node representations from the GIN. After concatenat-
ing the edge representations and original perturbed edge
values, a 2-layer MLP outputs the estimated scores.

• GAT: a 4-layer graph attention network [54] with 8
attention heads which follows the same setup of GIN.

• GTN: a graph transformer network that modifies the
graph attention networks with the dot-product attention
and feed-forward network [40].

• PGSN w/o P: a PGSN variant without node position
features consisting of landing probabilities of the node
itself, but with the shortest-path-distance features.

• PGSN w/o U: a PGSN variant without updating edge
features after message passing.

From the results in Table III, it can be observed that using
node degree features and the shallow message passing archi-
tecture does help the generative models capture the overall
degree distribution of the graphs, but fail to go further on the
clustering coefficient metric which requires the more accurate
graph local structure. Notably, introducing the shortest-path-
distance features and learnable edge representations greatly
improves the ability of the graph score network to denoise
the perturbed graphs, while the node position feature from the
landing probability of random walks also make contributions.

We also conduct parameter sensitivity analysis for the
random walk steps, the results of which are included in Table
III. Consistent with the intuition that more random walk steps
yield more topology information of graphs, the model with
more walks achieves better sample quality. Considering the
computation cost of random walks, we recommend choosing
an appropriate step number according to the characteristic of
datasets to take into account both efficiency and effectiveness.

V. RELATED WORK

In addition to the graph generation approaches mentioned
before, we summarize the notable existing literature on the
construction of our framework.

Generative Diffusion Processes. Diffusion probabilistic
models [27] are inspired by non-equilibrium thermodynamics.
By defining a Markov chain of diffusion steps to slowly add
noise to data, they learn to reverse the inference path to
generate data from the noise. Ho et al. [28] propose a simpli-
fied objective of diffusion models and connect it with noise-
conditioned score networks [25] which use Gaussian noise to
perturb data distribution over the full space. As it is relatively
slow to generate a sample from the Markov chain of the
generative diffusion process, a simple stride sampling schedule
is proposed by [55]. Song et al. [47] define a deterministic
generative process and generates high quality samples with a
fewer number of steps. During the same period, Song et al.
[29] propose a continuous-time generative diffusion process
that takes advantage of the SDE and improves performance.
The flexible model architecture and high sample quality on
high-dimensional data attract us to adapt the continuous-
time generative process for graph generation. Most recently,
concurrent work [56] also studies diffusion models for graph
generation but overlooks the discreteness of graphs.

Position-aware Graph Neural Networks. Position en-
coding plays a significant role in current neural networks
like ConvNets and Transformers. For graph neural networks,
position information of nodes or edges is also critical for graph
structure representation learning [57], [58]. Adding unique or
discriminating features to all nodes in graphs is one way to
incorporate the node position [59]. But this type of position
encoding lacks the generalization of unseen graphs. Laplacian
positional encoding takes graph Laplacian eigenvectors that
maintain global structure information as external node features
[40], [42]. The existence of the sign ambiguity is the main
weakness of Laplacian positional encoding. Random walk
based position encoding [41], [43] reflects the graph topology
by landing probabilities and path distances. Inspired by these
position-aware GNNs, we realize that the position information
in perturbed graphs can reflect the changes in graph structure,
and design a position-enhanced graph score network.

VI. CONCLUSIONS

We propose a novel continuous-time generative diffusion
process for permutation invariant graph generation. After con-
structing a forward diffusion process by an SDE to perturb
graph instances towards random graphs, we design a position-
enhanced graph score network to extract graph features from
hybrid intermediate states, setting up the reverse-time SDE.
We generate high-fidelity and diverse graphs by leveraging the
numerical solvers for simulating reverse-time SDE trajectories.
Experiment results show that GraphGDP can generate high-
quality graphs in 24 function evaluations for efficient sam-
pling, much faster than autoregressive models. In the future,
we would like to explore this framework with lower compu-
tational complexity and further improve efficient sampling.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China (51991395 and 62272023).



REFERENCES

[1] M. Newman, Networks. Oxford university press, 2018.
[2] X. Guo and L. Zhao, “A systematic survey on deep generative models

for graph generation,” arXiv preprint arXiv:2007.06686, 2020.
[3] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep

generative models of graphs,” arXiv preprint arXiv:1803.03324, 2018.
[4] C. Zang and F. Wang, “Moflow: an invertible flow model for generating

molecular graphs,” in SIGKDD, 2020, pp. 617–626.
[5] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “Graphaf:

a flow-based autoregressive model for molecular graph generation,” in
ICLR, 2020.

[6] Y. Luo, K. Yan, and S. Ji, “Graphdf: A discrete flow model for molecular
graph generation,” in ICML, vol. 139, 2021, pp. 7192–7203.

[7] S. Xie, A. Kirillov, R. B. Girshick, and K. He, “Exploring randomly
wired neural networks for image recognition,” in ICCV, 2019, pp. 1284–
1293.

[8] B. Chen, L. Sun, and X. Han, “Sequence-to-action: End-to-end
semantic graph generation for semantic parsing,” arXiv preprint
arXiv:1809.00773, 2018.

[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[10] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[11] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: an approach to modeling networks.” Journal
of Machine Learning Research, vol. 11, no. 2, 2010.

[12] N. Goyal, H. V. Jain, and S. Ranu, “Graphgen: a scalable approach to
domain-agnostic labeled graph generation,” in WWW, 2020, pp. 1253–
1263.
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