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Abstract—Time series forecasting is one of the most essential
and ubiquitous tasks in many business problems, including
demand forecasting and logistics optimization. Traditional time
series forecasting methods, however, have resulted in small
models with limited expressive power because they have difficulty
in scaling their model size up while maintaining high accuracy.
In this paper, we propose Forecasting orchestra (Forchestra), a
simple but powerful framework capable of accurately predicting
future demand for a diverse range of items. We empirically
demonstrate that the model size is scalable to up to 0.8 bil-
lion parameters. The proposed method not only outperforms
existing forecasting models with a significant margin, but it
could generalize well to unseen data points when evaluated
in a zero-shot fashion on downstream datasets. Last but not
least, we present extensive qualitative and quantitative studies
to analyze how the proposed model outperforms baseline models
and differs from conventional approaches. The original paper
was presented as a full paper at ICDM 2022 and is available at:
https://ieeexplore.ieee.org/document/10027662.

I. INTRODUCTION

Demand forecasting is a crucial component of supply chain
management; to make better inventory planning decisions and
maximize revenue, both E-commerce and offline retail stores
require accurate forecasting of future demand for products they
offer [1]. As such, several sales forecasting competitions, such
as the M competitions [2]–[6], have been held over the past
decades, and various forecasting methods have been presented
for more accurate and robust time series prediction.

Deep learning-based algorithms have recently gained popu-
larity due to their flexibility, which allows them to be applied
to a wide range of time series without requiring handcrafted
features or additional training on new products [6]. However,
their performance is often even worse than classical algorithms
due to their tendency to overfit [7], [8]. Likewise, those
methods struggle to scale up their model size effectively, and
in this paper we also empirically observe that a single large
model with hundreds of layers or thousands of hidden states
performs poorly when forecasting on our datasets.

†This work has been completed while the authors were working at NAVER.
∗contributed equally and share joint second authorship.

Very recently, several studies have attempted to build foun-
dation models [9] for time-series forecasting [10]–[12]. These
foundation models have tried to build a large-scale forecasting
model to generalize to unseen data in a zero-shot manner
rather than building instance-specific forecasting. As such,
authors believe this work resonates with a such burgeoning
trend, establishing itself as one of the pioneering endeavors to
conceive a scalable and transferable framework (for demand
forecasting).

Meanwhile, ensemble approaches combining classical and
deep learning methods have seen a relatively high amount of
success in the time series forecasting domain, partly attributed
to their increased robustness to the distribution shift; since time
series prediction is a task that requires inference on future
where no data has been observed, a distribution shift between
the training, validation, and test periods is inevitable [13].

Despite the benefits of ensemble learning, selecting and
assigning base models from the pool remains a challenging
task [14]. If ensembling methods are not applied carefully,
they may run the risk of smoothing or disharmonizing the
forecasting results, and lowering forecast accuracy. In addition,
for problems like demand forecasting, where the number of
time series to be forecasted is in the order of hundreds of
thousands, the issues become even more pronounced because
each time series instance has different temporal characteristics
that a model needs to capture and extend into the future.

Moreover, conventional ensemble methods often rely on a
user-defined set of base models individually that have been
trained. According to [15], however, an ensemble using deep
learning models is able to improve its accuracy and out-of-
distribution robustness when each base model is trained to
explore different modes in the function space. As such, this
paper is shaped by investigating the question: How can we
construct a large number of distinct but jointly-working base
models and guide them in a more flexible manner? To address
this question, we present a scalable and flexible time series
prediction framework, illustrated in Figure 1.

The rest of the paper is organized as follows: In Section II,
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Fig. 1. The network architecture of Forchestra. Forchestra consists of K base predictors and a neural conductor. For a given time series, each base predictor
outputs its forecast and the meta learner scores the importance weight of each base predictor based on the representation vector inferred by the representation
module. All modules in Forchestra are jointly trained in an end-to-end manner.

we describe how the proposed framework works and is trained
in detail. Section III introduces literature in demand fore-
casting, ensemble forecasting, and representation learning for
time series. Finally, in Section IV and Section V, we present
extensive qualitative and quantitative studies to analyze the
proposed model in depth, using two large-scale real-world
demand forecasting datasets, E-commerce and M5.

II. METHODOLOGY

A. Problem Definition

Given a training dataset of N time series of length T :
Dtrain = {x(i)

1:T }Ni=1 where x
(i)
t = [y

(i)
t ,u

(i)
t ] ∈ R1+F .

y
(i)
t ∈ N0 and u

(i)
t ∈ RF are a sequence of past observations

(e.g., daily sales) and a sequence of features (e.g., availability
status), respectively, of the ith instance at time t. The aim of
demand forecasting is to predict the time series for the next
P time steps: {y(i)T+1:T+P }Ni=1. For the sake of simplicity, we
drop the superscript i for the following sections.

B. Forchestra

This paper proposes a simple but powerful forecasting
framework, Forchestra. Forchestra consists of two parts: 1)
base predictors (Section II-B1) and 2) a neural conductor
(Section II-B2). For a given time series, each base predictor
outputs its respective forecast based on historical observations.
On top of the base predictors, the neural conductor adaptively
assigns the importance weight for each predictor by looking at
the representation vector provided by a representation module.
Finally, Forchestra aggregates the predictions by the weights
and constructs a final prediction. In contrast to previous
forecasting approaches, the neural conductor and all base pre-
dictors of Forchestra are trained in an end-to-end manner; this
allows each base predictor to modify its reaction to different
inputs, while supporting other predictors and constructing a
final prediction jointly.

1) Base Predictors (BPs): This section introduces the first
principal component in the proposed method, a set of K base
predictors fθ. Each base predictor is represented as a mapping
fθk : RC×(F+1) 7→ RP parameterized by trainable weights
θk, and maps historical data over a context window C to a
prediction window of length P . More precisely, the prediction
of a single base predictor can be described as:

ŷk,t+1:t+P = fθk(xt−C−1:t) ∈ RP . (1)

However to increase readability we refer to the joint output of
the base predictors as:

ŷBP =

 ŷ1,t+1:t+P

...
ŷK,t+1:t+P

 ∈ RK×P . (2)

Unlike methods comprised of a single model, such as Prophet
[16] and DeepAR [17], our proposed framework consists of
K distinct predictors, with θk as the learnable parameters.

The authors have pondered the qualities that a good set of
BPs should have in order to function effectively. Of course,
as in general ensemble approaches, any BP by itself must
possess decent predictive ability to some degree in order to be
useful to the ensemble. However, even if all BPs have excellent
predictive power, the margin of improvement when they are
combined might be small if they have similar predictive
behavior. In light of this, we hypothesized that, even if each
BP’s performance is low, the synergy between the BPs can be
further strengthened when BPs effectively operate together.
Discussion on the BP’s role is analyzed in Section V.

2) Neural Conductor (NC): To make the most of the
capability of competent base predictors, it is also essential to
have a high-level conductor that can guide those predictors and
provide a unified view of the forecasts. With this in mind, we
introduce the next key component, a neural conductor (NC).

The first and most important function of the neural con-
ductor is to produce an expressive representation of a given



time series such that the neural conductor is able to activate
the base predictors flexibly. As such, this paper introduces a
neural network gϕr : RW×(F+1) 7→ RD parameterized by ϕr

that maps historical data to a latent representation for each
time series, extracting a representation vector:

rt = gϕr
(xt−W−1:t) ∈ RD (3)

where W is a window size. We refer to gϕr as representation
module from here on. Note that we refer to rt by r to increase
readability and that the window size W must not necessarily be
equal to the context length C. The representation is expected to
capture important characteristics that can identify a given time
series and distinguish it from other instances or time points.

Based on its representation, a trainable meta learner hϕw
:

RD 7→ RK parameterized by ϕw extracts the importance
weights for each base predictor:

w = {w1, · · · , wK} = Softmax (hϕw
(r)) ∈ RK . (4)

The final prediction of the Forchestra is obtained by aggre-
gating the predictions from each base predictor based on the
weights computed by the neural conductor:

ŷ =

K∑
k=1

wkŷBPk
∈ RP . (5)

Finaly, the network parameters, {ϕr, ϕw, θ1, . . . , θK}, are
learned to minimize the L1-norm (i.e., MAE) between the final
prediction and ground truth:

L =
∑
i

∑
t

∥y(i)t+1:t+P − ŷ
(i)
t+1:t+P ∥1 (6)

In this paper, we used LSTMs for base predictors, a dilated
CNN for the representation module, and a fully-connected
layer for the meta learner. See Appendix A for more details.

C. Pre-Training a Neural Conductor

From the viewpoint of deep generative modeling, the neural
conductor acts as the encoder, and ϕr and ϕw are optimized
to output compact representations that can distinguish time
series with dissimilar patterns. Following the observation, we
introduce a self-supervised pre-training strategy for a neural
conductor. Despite the fact that any method could be applied,
the TS2Vec [18], one of the state-of-the-art self-supervised
contrastive learning methods, is applied in this paper.

First, time series are augmented by both cropping and
masking. Instead of feeding a single value of a time series at a
timestamp values are projected to a higher dimensional space
using an embedding layer. As every timestep gets its own
representation, the embedding over a period is aggregated by
applying max-pooling over the single timestep representations
in the time dimension. For a time series of N time units
there are ⌊log2 N⌋ levels of pooling in this approach. In every
batch the masking and cropping augmentations are applied
separately twice to every sample, producing two partially
overlapping and differently masked time series snippets. Let r
and r′ be these two masked and cropped representations and

Ω the set of time indices in a period we are learning on, on a
hierarchical level we are currently working on.

L(i,t)
temporal = − log

[
exp(ri,t·r′i,t)∑

t′∈Ω

(
exp(ri,t·r′i,t′ )+1[t ̸=t′] exp(ri,t·ri,t′ )

)] (7)

For the temporal loss the model should maximize the inner
product between the representations of the same instance
(sample) at the same timestamp (just cropped and masked dif-
ferently) while minimizing the similarity to the representations
at other timesteps of both augmentations.

L(i,t)
instance = − log

[
exp(ri,t·r′i,t)∑B

j=1

(
exp(ri,t·r′j,t)+1[i̸=j] exp(ri,t·rj,t)

)] (8)

For the instance loss the model should maximize the inner
product between the representations of the same instance at the
same timestamp while minimizing the similarity to all other
instances in the same batch.

For a batchsize of B and P stages of pooling let tp, p ∈
{1, .., P} denote the amount divisions of the time axis at every
pooling level. Through the iterative max pooling tp becomes
smaller with every pooling step, following an exponential de-
cay. Finally, the neural conductor is pre-trained by minimizing
the following the hierarchical loss function:

Lpre =
1

2PB

∑
p∈{1,...,P}
i∈{1,...,B}
t∈{1,...,tp}

1

tp

(
L(i,t)
temporal + L(i,t)

instance

)
(9)

III. RELATED WORK

A. Time Series Forecasting Overview

The goal of forecasting time series data, which is charac-
terized by trend, seasonality, stochasticity, heteroscedasticity,
etc., is to predict how sequential data extends into the future.

It is natural to assume that bigger and more complex models
will provide better forecasting power. However, the ”M”
competitions [2]–[6], one of the most famous competitions
focused on time series forecasting, have shown that this is
not always true. It was not until the fourth iteration of M
competitions (M4) that sophisticated machine learning (ML)
based models started to beat traditional approaches. However,
only two ML based methods were more accurate than the
classical statistics-based models while the majority of spots at
the top of the ranking were still taken by classical models.

Finally, in the M5 competition [6], where the target values
are retail sales from Walmart, ML models started to assert their
dominance. The top 50 ranking models were all ML based
ones and their average performance beat the most accurate
statistical model by 14%. Therefore the M5 competition is
the first competition where top-performing models are both
pure ML and significantly better than the statistical models.
Promising results from state-of-the-art deep learning imple-
mentations such as DeepAR [17] and N-BEATS [19] have
further motivated research in this direction.



B. Ensemble Forecasting

Ensemble methods have found a significant degree of suc-
cess in the domain of time series forecasting and demonstrated
superior performance in forecasting competitions [5], [20],
[21]. The flexible selection of an appropriate set of weights
for the underlying base models is one of the most critical
challenges that ensemble approaches have attempted to resolve
[14]. Conventionally, ensemble methods simply average base
model predictions for the final forecast or adjust weights based
on the validation score of base models. [22] select the top K
base models and weigh them based on the performance of
the most recent data points. [23] tune weights using heuristic
functions (e.g., an inverse of the performance score) and rank
3rd in the M4 competition. [21], the runner-up of the M4
competition, use an ensemble method that weighs base models
in the pool by using handcrafted time series features [24].
Additionally, there have been some studies that have focused
on the selection of base models; in forward [25] or eliminating
models in backward [23], based on their validation error.

Despite these efforts, most existing ensemble approaches
are built upon a pool of user-defined models and do not
further optimize the base models in order to produce the best
ensemble result. Additionally, these methods choose the model
that is most likely to perform the best in the future, rather
than effectively combining models. However, as discussed in
Section V, such a strategy does not guarantee the best.

The most similar approach to the proposed method would
be the mixture-of-experts (MoE) [26]. However, the previous
work has not clearly introduce the way to train a more effective
and scalable gating network (i.e., a neural condcutor). As
illustrated in Section IV-F, the performance of the final pre-
diction could be improved with the proposed self-supervised
pre-training, which is one of the contributions of this paper.

C. Unsupervised Representation Learning for Time Series

Following the success of unsupervised learning in computer
vision [27], [28] and natural language processing [29], dif-
ferent unsupervised learning frameworks for time series data
have been proposed that try to make efficient use of large
amounts of unlabeled time series data and produce powerful
representations [18], [30], [31].

In one of the earliest applications of unsupervised learning
[30] propose a scalable representation learning framework
for time series by applying a triplet loss to positive samples
from a timeseries’ subseries and negative samples from other
instances. The encoder employs exponentially dilated causal
convolutions to capture information over inputs of arbitrary
length, setting a trend for the majority of encoders in recent
works on unsupervised representation learning for time series.

[18] extend this approach with the following ideas: they re-
move the causality part in the dilated convolution, calculate the
loss at different levels in the hierarchy and use the contrastive
loss [32] instead of the triplet loss, whereby augmented context
views can be contrasted both across instances and across the
time dimension. Time series are augmented by both cropping
and masking. [31] propose an alternative approach whereby

(a) E-Commerce (b) M5

(c) E-Commerce (d) M5

Fig. 2. t-SNE visualization of the representations of Forchestra for time series
from E-Commerce and M5 datasets, colored by the value of the title.

strong and weak augmentations are fed through an encoder
to then predict each other’s latent space representations in a
cross-view prediction task in a contrastive learning fashion
while also minimizing an instance-wise contrastive loss.

Notably, all these methods can provide a scalable, ex-
pressive, and transferable (i.e., universal) representation, and
they performed particularly well in time series classification
problems.

IV. EXPERIMENTS

A. Datasets

We evaluate our model and baselines on our proprietary
E-Commerce and M51 [6] datasets. Both datasets are large-
scale non-zero daily time series datasets, with E-Commerce
and M5 containing sales histories of 105, 336 products over
1, 035 days and 30, 490 products over 1, 941 days, respec-
tively. To assess the transferability in Section IV-D, we ran-
domly selected 5% of products (5, 310 and 1, 524, respec-
tively) from each dataset as a transfer task and did not train
on them. For simplicity’s sake, the experiment used only sales
history and availability status data (i.e., whether the product
was on sale or not), which are the two most critical time series
features in demand forecasting.

Following the competition, the prediction length of M5 is set
to 28 days. For the E-Commerce dataset, we use a prediction
length of 7 days to align with our business logic. However,
because a single test period of E-Commerce is insufficiently
long to adequately evaluate the performance [8], we backtest
on four consecutive test periods (i.e., 28 = 7 × 4 days in
total). In short, for both datasets, we kept the last 28 days as
test period and the preceding 28 days as validation period to
select the hyperparameters.

1https://www.kaggle.com/c/m5-forecasting-accuracy/data

https://www.kaggle.com/c/m5-forecasting-accuracy/data


TABLE I
COMPARISON OF FORECAST ACCURACY BETWEEN BASELINES AND OURS. THE HIGHEST SCORES ARE HIGHLIGHTED IN BOLD. THE STANDARD

DEVIATION OF EACH METRIC IS REPORTED WITHIN ROUND BRACKETS. ARIMA AND PROPHET ARE NOT REPORTED SINCE THEY WERE NOT SCALABLE.

Model E-Commerce M5
MASE MAE RMSE MASE MAE RMSE

Local
ARIMA ✗ ✗ ✗ ✗ ✗ ✗
Prophet ✗ ✗ ✗ ✗ ✗ ✗
SMA 1.140 (2.95) 1.260 (6.74) 1.477 (6.45) 1.084 (1.60) 1.099 (2.05) 1.420 (1.84)

Global

DeepAR 0.927 (2.99) 1.004 (6.06) 1.331 (5.79) 0.943 (1.89) 1.056 (2.27) 1.550 (1.97)
MQCNN 0.908 (2.91) 0.965 (5.91) 1.267 (5.65) 0.907 (1.77) 0.977 (2.01) 1.403 (1.74)
MLP 0.908 (2.90) 0.984 (5.83) 1.304 (5.57) 0.906 (1.79) 0.987 (2.08) 1.456 (1.79)
LSTM 0.920 (2.89) 1.002 (5.97) 1.300 (5.71) 0.894 (1.82) 0.968 (2.05) 1.447 (1.75)
Transformer 1.030 (2.98) 1.187 (6.29) 1.494 (6.00) 0.909 (1.85) 0.999 (2.14) 1.482 (1.84)
TS2Vec 1.108 (2.77) 1.156 (5.84) 1.364 (5.60) 1.074 (1.55) 1.071 (1.91) 1.378 (1.70)

Ensemble
Ensemble (Best) 0.900 (2.89) 0.945 (5.68) 1.251 (5.43) 0.893 (1.80) 0.968 (2.05) 1.439 (1.75)
Deep Ensembles 0.944 (2.85) 0.977 (5.87) 1.262 (5.61) 0.893 (1.78) 0.963 (2.00) 1.417 (1.71)
N-BEATS 0.888 (2.89) 0.926 (5.60) 1.242 (5.36) 0.890 (1.79) 0.959 (2.00) 1.419 (1.70)

Ours Forchestra 0.880 (2.87) 0.920 (5.69) 1.233 (5.44) 0.880 (1.78) 0.947 (1.96) 1.400 (1.67)

B. Representation Qualities

To assess the quality of the learned representation, we
compute an instance-level representation of each time series
by max-pooling representations r

(i)
t along the time so that it

can capture general characteristics of the given time series.
We visualize the representations on a two-dimensional plane
using t-SNE [33], one of the most prominent non-linear
dimensionality reduction methods.

As illustrated in Figure 2, on both E-Commerce and
M5 datasets, our representation module places instances
with similar time series features — such as average
daily sales (≡ MEANt(yt)) or coefficient of variation (≡
STDt(yt)/MEANt(yt), CoV) — closer together. As such, our
framework is capable of learning useful representations to
distinguish different time series even without using any self-
supervised learning technique.

C. Forecasting Accuracy and Robustness

We compare Forchestra to prominent single model based
baselines: Auto ARIMA [34], Prophet (Meta) [16], Simple
Moving Average (SMA), DeepAR (Amazon) [17], MQCNN
(Amazon) [35], MLP, LSTM [36], and Transformer [37]. We
further test widely used ensemble methods, including Top-
K averaging methods (K = {1, 2, 5, 10, all}) and weighted
ensemble methods [14], [23], by using baselines mentioned
above as base models.

Due to the lack of space, the ensemble method with the best
test score is reported. In addition, we implement the simplest
version of Deep Ensembles [15] by averaging predictions
from LSTMs (with the same structure as the base predictor
of Forchestra) that is trained with a different random initial-
ization. We also compare our model to N-BEATS [19] with
ensemble size 100. We evaluate the models using a scale-free
error metric, mean absolute scale error (MASE) [38], while
providing mean absolute error (MAE) and root mean square
error (RMSE) of predictions as supplements. See Appendix A

and B for details of model configurations and the evaluation
method, respectively.

Primarily, as illustrated in Table I, our model outper-
forms competing models by a significant margin. Furthermore,
Forchestra has a relatively low standard deviation across all
metrics compared to single model based methods, a desir-
able property classically attributed to ensembling methods,
implying that Forchestra is not only accurate but also reliable
in forecasting a wide range of products which is a highly
desirable attribute in real-world business applications. We
also observe that a model solely based on self-supervised
representations (i.e., TS2Vec) fails to achieve low MASE
and MAE but shows the overall lowest standard deviation,
demonstrating a high level of robustness. Based on these
findings, we believe Forchestra is capable of making accurate
predictions by learning the base predictor more effectively
than previous ensemble methods, while also demonstrating the
robustness that ensemble methods and representation learning
show.

D. Transferability

We further assess the transferability of the proposed method
on E-Commerce (5.3K) and M5 (1.5K) hold-out datasets (i.e.,
on the unseen test period of unseen products). We compared
our method to supervised models that are trained on the history
of the downstream dataset and pre-trained models that are
trained on the original dataset used in Section IV-C. The results
are reported in Table II. Despite the fact that Forchestra did not
observe any time series from the downstream dataset during
its training, it maintains a level of accuracy comparable to
the one from the training dataset (MASE : 0.880 → 0.882
on E-Commerce) and outperforms supervised models that
were trained on the downstream dataset (MASE: 0.882 vs.
0.912 of the best among supervised models on E-Commerce)
significantly. It is also worth noting that Forchestra does not
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suffer from overfitting and is successfully generalizing to
unseen datasets despite having 0.8 billion parameters.

E. Scalability

One of the core research questions we attempt to explore
in this paper is the scalability of the proposed framework. To
answer this question, we evaluate Forchestra with different
numbers of base predictors, K = {2, 5, 10, 50, 100}, on the
E-Commerce and M5 datasets. As illustrated in Appendix A,
we use 4-layer LSTMs with hidden size = 512 for base pre-
dictors. In addition, we make a comparison with Forchestra to
400-layer LSTM and 4-layer LSTM with hidden size = 5120,
which have nearly the same number of parameters.

As shown in Figure 4, we observe that the proposed frame-
work’s performance tends to improve as K increases, and
Forchestra performs best on both datasets with K = 100. The
number of learnable parameters of Forchestra with K = 100
is 842, 301, 076 (0.8 billion). In contrast, as illustrated in
Figure 3, simply increasing the parameter size of the base
predictors degraded the performance.

F. Effectiveness of Initialization

In order to demonstrate the effectiveness of the initialization
for the base predictors and the neural conductor, we conduct
multiple ablation studies on Forchestra. The result is shown
in Table III.

First of all, we freeze the representation module of the
neural conductor and train the base predictors, {fθk}Kk=1 and
the meta learner of the neural conductor hϕw

. It is worth noting
that the resulting performance is comparable to the original
Forchestra, implying that the pre-trained self-supervised rep-
resentation module is fairly capable of providing expressive
and meaningful information to classify the time series appro-
priately. Likewise, we believe that the TS2Vec initialization
for Forchestra stabilizes the training and reinforces the final
performance.

In addition, we evaluate the performance without pre-
training for base predictors and neural conductors (i.e.,
mixture-of-experts) and report the results in the bottom rows

101 102
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0.886
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Fig. 4. MASE by the number of base predictors (K) on (a) E-Commerce
and (b) M5 datasets.

of Table III. The pre-training phase appears to be beneficial
in achieving the best possible performance for Forchestra.
Here we observe a puzzling result; training from randomly
initialized BPs but pre-trained NC performs worse than train-
ing from both randomly initialized BPs and NC. Given that
it performs better when the NC is frozen, we suspect that
randomly initialized BPs disturb the NC and prevent the model
from converging to a better optimum. We leave this for future
research and we think that better initialization methods for the
BPs and the NC are interesting topics to explore. Nonetheless,
the models which receive no or only partial initialization are
superior compared to other competing baselines.

V. DISCUSSION

A. How are the base predictors constructed?

Existing ensemble approaches gain benefits by forming a
pool of strong base models. To see if Forchestra operates with
such a rationale, we evaluate the fine-tuned base predictors and
report the average MASE on the original dataset in Figure 5.
The performance of the BP used for initialization, which
is equivalent to a 4-layer LSTM, is reported as reference.
Noteworthily, the performance level of the fine-tuned BPs is
far from the final score achieved by Forchestra. They perform
on average even worse than the initial BP. This finding shows
that Forchestra does not simply construct a set of strong
base models. In the following section, we investigate how
Forchestra can achieve superior performance by aggregating
such weak predictors.



TABLE II
FORECAST ACCURACY ON DOWNSTREAM DATASET (I.E., UNSEEN PRODUCTS).

MODELS PERFORMING ZERO-SHOT INFERENCE ARE TRAINED ON THE ORIGINAL DATASET.

Model E-Commerce (Unseen Products) M5 (Unseen Products)
MASE MAE RMSE MASE MAE RMSE

tr
ai

ne
d

on
do

w
ns

tr
ea

m
da

ta
se

t 

Local
ARIMA 1.045 (1.84) 0.987 (3.83) 1.202 (4.01) 1.108 (1.67) 1.163 (2.36) 1.482 (2.17)
Prophet 1.112 (1.97) 1.126 (4.21) 1.356 (4.34) 1.125 (1.66) 1.172 (2.08) 1.501 (1.86)
SMA 1.145 (2.15) 1.179 (4.60) 1.396 (4.69) 1.180 (1.92) 1.413 (2.75) 1.843 (2.48)

Global

DeepAR 0.932 (2.21) 0.935 (4.04) 1.248 (4.18) 0.992 (1.94) 1.147 (2.45) 1.643 (2.15)
MQCNN 0.912 (2.07) 0.916 (3.99) 1.222 (4.12) 0.966 (1.90) 1.113 (2.41) 1.553 (2.16)
MLP 0.945 (2.23) 1.025 (4.58) 1.356 (4.65) 0.953 (1.87) 1.069 (2.15) 1.521 (1.85)
LSTM 0.920 (2.11) 0.953 (4.16) 1.270 (4.26) 0.948 (1.87) 1.065 (2.18) 1.510 (1.90)
Transformer 1.001 (2.23) 1.110 (4.47) 1.460 (4.54) 0.952 (1.88) 1.072 (2.20) 1.526 (1.91)
TS2Vec 1.106 (1.86) 1.101 (4.61) 1.302 (4.70) 1.088 (1.60) 1.091 (1.84) 1.392 (1.63)

Ensemble
Ensemble (Best) 0.908 (2.07) 0.929 (4.14) 1.246 (4.25) 0.969 (1.72) 1.021 (1.91) 1.399 (1.66)
Deep Ensembles 0.930 (2.09) 0.957 (4.19) 1.279 (4.30) 1.101 (1.76) 1.152 (2.24) 1.580 (1.96)
N-BEATS 0.889 (2.03) 0.879 (3.89) 1.197 (4.03) 0.945 (1.90) 1.062 (2.24) 1.525 (1.96)

ze
ro

-s
ho

t
in

fe
re

nc
e



Global

DeepAR 0.931 (2.23) 0.943 (4.13) 1.267 (4.25) 0.990 (1.95) 1.139 (2.37) 1.636 (2.06)
MQCNN 0.913 (2.08) 0.914 (4.03) 1.214 (4.17) 0.957 (1.86) 1.077 (2.23) 1.511 (1.96)
MLP 0.910 (2.03) 0.943 (4.14) 1.260 (4.24) 0.954 (1.90) 1.069 (2.21) 1.537 (1.91)
LSTM 0.921 (2.02) 0.950 (4.21) 1.245 (4.32) 0.946 (1.92) 1.063 (2.22) 1.537 (1.93)
Transformer 1.021 (2.14) 1.117 (4.45) 1.422 (4.53) 0.958 (1.93) 1.079 (2.20) 1.559 (1.89)
TS2Vec 1.116 (1.89) 1.110 (4.48) 1.321 (4.57) 1.082 (1.60) 1.090 (1.86) 1.394 (1.65)

Ensemble
Ensemble (Best) 0.900 (2.02) 0.904 (3.97) 1.210 (4.11) 0.906 (1.86) 0.983 (1.96) 1.444 (1.66)
Deep Ensembles 0.946 (1.95) 0.928 (4.02) 1.208 (4.16) 0.945 (1.89) 1.061 (2.20) 1.511 (1.92)
N-BEATS 0.892 (2.02) 0.886 (3.89) 1.197 (4.04) 0.946 (1.90) 1.063 (2.23) 1.521 (1.94)

Ours Forchestra 0.882 (1.96) 0.875 (3.85) 1.183 (4.00) 0.893 (1.84) 0.965 (1.89) 1.408 (1.59)

TABLE III
ABLATION STUDIES ON FORCHESTRA: EFFECTIVENESS OF INITIALIZATION.

Model E-Commerce M5
MASE MAE RMSE MASE MAE RMSE

Forchestra 0.880 (2.87) 0.920 (5.69) 1.233 (5.44) 0.880 (1.78) 0.947 (1.96) 1.400 (1.67)

Freezing rep. module of NC 0.882 (2.88) 0.922 (5.72) 1.238 (5.46) 0.882 (1.78) 0.949 (1.97) 1.405 (1.68)
Freezing rep. module of NC
+ w/o Pre-training BPs 0.882 (2.88) 0.927 (5.72) 1.244 (5.47) 0.886 (1.78) 0.957 (2.00) 1.411 (1.71)

w/o Pre-training BPs & NC
(∼ Mixture-of-Experts) 0.882 (2.89) 0.925 (5.80) 1.246 (5.54) 0.889 (1.79) 0.960 (2.01) 1.426 (1.71)

w/o Pre-training NC 0.883 (2.88) 0.924 (5.71) 1.238 (5.46) 0.886 (1.78) 0.957 (1.99) 1.415 (1.70)
w/o Pre-training BPs 0.884 (2.90) 0.930 (5.82) 1.256 (5.56) 0.895 (1.79) 0.973 (2.03) 1.435 (1.74)
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Fig. 5. MASE of fine-tuned base predictors on (a) E-Commerce and (b) M5 datasets.



TABLE IV
COMPARISON OF FORECAST ACCURACY BETWEEN FORCHESTRA AND ENSEMBLE APPROACHES.

THE HIGHEST SCORES AMONG ENSEMBLE METHODS ARE UNDERLINED.

Approach Model E-Commerce M5
MASE MAE RMSE MASE MAE RMSE

Orchestra Forchestra 0.880 (2.87) 0.920 (5.69) 1.233 (5.44) 0.880 (1.78) 0.947 (1.96) 1.400 (1.67)

Divide-and-
Conquer

DnC 0.899 (2.93) 0.953 (5.94) 1.274 (5.67) 0.889 (1.78) 0.962 (2.00) 1.420 (1.71)
Forch-DnC 0.887 (2.88) 0.938 (5.75) 1.245 (5.50) 0.886 (1.78) 0.955 (1.99) 1.409 (1.70)
Forch-DnC+ 0.880 (2.88) 0.920 (5.71) 1.236 (5.46) 0.881 (1.78) 0.947 (1.97) 1.403 (1.67)

Ensemble
(global)

Average 0.905 (2.92) 0.980 (5.96) 1.313 (5.69) 0.890 (1.79) 0.962 (2.03) 1.432 (1.73))
Top-50 0.922 (2.95) 0.995 (5.98) 1.333 (5.70) 0.886 (1.79) 0.955 (1.99) 1.415 (1.70)
Top-10 0.906 (2.92) 0.982 (6.00) 1.311 (5.73) 0.889 (1.79) 0.959 (1.98) 1.413 (1.68)
Top-5 0.905 (2.92) 0.974 (5.92) 1.303 (5.65) 0.890 (1.80) 0.961 (2.00) 1.417 (1.70)
Top-2 0.904 (2.92) 0.964 (5.82) 1.293 (5.56) 0.893 (1.79) 0.965 (1.99) 1.414 (1.70)
Top-1 0.908 (2.92) 1.004 (6.08) 1.334 (5.81) 0.894 (1.79) 0.971 (2.04) 1.429 (1.75)
W-inv 0.914 (2.93) 0.992 (5.98) 1.327 (5.71) 0.890 (1.79) 0.962 (2.03) 1.431 (1.73)
W-sqr 0.920 (2.94) 1.000 (5.99) 1.337 (5.72) 0.889 (1.79) 0.961 (2.02) 1.430 (1.72)
W-exp 0.914 (2.93) 0.991 (5.98) 1.327 (5.71) 0.890 (1.79) 0.962 (2.03) 1.431 (1.73)

Ensemble
(instance-wise)

Top-50 0.916 (2.93) 0.977 (5.89) 1.318 (5.62) 0.894 (1.79) 0.964 (1.99) 1.421 (1.70)
Top-10 0.916 (2.93) 0.973 (5.82) 1.302 (5.55) 0.902 (1.78) 0.980 (2.02) 1.436 (1.73)
Top-5 0.924 (2.95) 0.986 (5.87) 1.314 (5.61) 0.910 (1.79) 0.993 (2.04) 1.449 (1.75)
Top-2 0.944 (2.98) 1.014 (5.95) 1.344 (5.68) 0.929 (1.81) 1.019 (2.09) 1.480 (1.79)
Top-1 0.969 (3.05) 1.057 (6.16) 1.390 (5.88) 0.949 (1.84) 1.049 (2.16) 1.521 (1.86)
W-inv 0.937 (3.47) 1.120 (22.25) 1.449 (21.32) 0.889 (1.79) 0.959 (2.01) 1.426 (1.71)
W-sqr 0.939 (3.48) 1.118 (22.24) 1.449 (21.31) 0.889 (1.79) 0.958 (2.01) 1.424 (1.71)
W-exp 0.932 (3.47) 1.116 (22.25) 1.444 (21.32) 0.889 (1.79) 0.959 (2.01) 1.427 (1.72)

TABLE V
RANK-BIASED OVERLAP (RBO) SCORE BETWEEN FORCHESTRA AND ENSEMBLE APPROACHES.

Model E-Commerce M5
RBO@5 RBO@10 RBO@50 RBO@5 RBO@10 RBO@50

Forchestra 0.0093 0.0294 0.0931 0.0183 0.0390 0.1058

Ranked by val. score (global) 0.0148 0.0363 0.1013 0.0112 0.0352 0.1121

Ranked by val. score (instance-wise) 0.1770 0.3085 0.5317 0.0511 0.1030 0.2249

B. How does the conductor guide predictors?

What makes the proposed orchestra approach different from
classical ensemble approaches that boost performance? Does
the neural conductor classify time series with the represen-
tation module and appropriately delegate tasks to the base
predictors (H1)? Or is the neural conductor of Forchestra
simply better at selecting the base predictor that is likely to
perform well in the future (H2)?

To explore H1, we implement the divide-and-conquer (DnC)
method as follows. We first use K-means clustering on the self-
supervised representation by the pre-trained TS2Vec to divide
the time series instances into K = 100 groups. Then, for each
cluster, we assign a base predictor (which is initialized using
the same method as in Forchestra) so that each predictor can
be fine-tuned and predict the future (i.e., each one acts as an
expert in their respective cluster). In addition, by using the
same K = 100 base predictors trained from the Forchestra
framework, we compare our model with classical ensemble
approaches including Top-K and weighted ensemble methods

(see Section A-D for details). If H1 is correct, then a divide-
and-conquer strategy should be able to match Forchestra’s
performance and perform better than other ensemble methods.

As shown in Table IV, however, we discover that neither
a divide-and-conquer strategy nor ensemble methods were
successful in forecasting as accurate as Forchestra. Despite the
fact that the DnC method outperforms other baselines, no clear
superiority or inferiority between DnC and the best ensemble
method could be demonstrated. We also report the scores of
two different Forchestras, in which the base predictors are
initialized to those of DnC and then frozen (Forch-DnC) or
fine-tuned (Forch-DnC+); but performance is nearly identical
or worse than the original Forchestra. This implies once again
that the divide-and-conquer strategy is not how Forchestra
operates. Hence, we reject H1.

To investigate H2, we design an experiment as follows. First,
we evaluate each base predictor for each time series instance
on the test period to find the ground truth rank among them.
Similarly, we instance-wisely (i.e., locally) and globally rank



base predictors on validation period as conventional ensemble
methods do. Then we analyze the weight vectors wt in
Equation 4 inferred by the neural conductor of Forchestra and
calculate the estimated rank by comparing the assigned weight
value of each base predictor. Finally, we measure the similarity
among those ranks by rank-biased overlap (RBO) [39]. The
higher the RBO is, the more similar the two rankings are.
If H2 is correct, Forchestra should show a higher RBO than
conventional ensembling methods, implying that Forchestra is
able to make a choice among the BPs that performs better
during the test period than simply taking the best ones from the
validation period. Surprisingly, the RBO score of Forchestra is
the lowest, as shown in Table V. Furthermore, instance-wise
ensemble methods have the highest RBO, but they perform
worse than Forchestra or global ensemble methods. As such,
identifying the best predictors does not guarantee the best
results. Therefore, we reject H2 as well, concluding with:
”Unity is strength; Forchestra learns to harmonize.”

VI. CONCLUSION AND FUTURE WORK

In this paper, a simple but powerful time series predic-
tion framework for demand forecasting was presented. The
proposed framework consists of a number of base predictors
operated by the neural conductor that adaptively adjusts the
importance weights of base predictors based on the target
item’s representation. Experiments showed that the proposed
method not only outperformed single-model approaches and
prominent ensemble methods, but also was transferable to
smaller downstream datasets of unseen products in a zero-
shot fashion. The model size was scalable up to K = 100
predictors (0.8 billion parameters). The paper also investigated
the difference between conventional ensemble approaches and
the proposed framework in terms of base model selection
strategy.

In future research, larger scale frameworks with thousands
of base predictors can be further explored. The authors also
think that an enhancement to the representation module could
turn out to be an interesting avenue for future work: One idea
is to add an auxiliary loss (e.g., self-supervised contrastive
loss) to the representation module. Another idea is based on
the observation that the currently trained representations are
unable to cluster categories (see Figure 2), which classically
are thought to be important features in time series forecasting.
Therefore approaches that build a representation on top of
multimodal data (time series, categories, product name text
embeddings, etc.) could potentially result in an even more
capable neural conductor.
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APPENDIX A
EXPERIMENT DETAILS

All deep learning models take an input of
context length(C) = 28 × 3 = 84. For models with
multiple hyperparameters, the one with best validation score
is selected and evaluated on the test dataset.

A. Classical Models

• Auto ARIMA [34]: m = 7 is applied following the rec-
ommendations from the reference. For others, we followed
the package’s default options.

• Prophet [16]: We followed the package’s default options.
• Simple Moving Average: We tested with look back period
= {7, 14, . . . , 70}.

B. Deep Learning Models

The paper trained and evaluated deep learning models
implemented by GluonTS [40] or PyTorch [41] as baselines.
• DeepAR [17]: In the same manner as in Forches-

tra, cell type = lstm, and num cells = 512. We
tested with num layers = {1, 4, 16} and distr output =
{StudentTOutput(), NegativeBinomialOutput()}. For oth-
ers, we followed the GluonTS’s default options.

• MQCNN [35]: We followed the GluonTS’s default options.
• N-BEATS [19]: We evaluated N-BEATS with

meta bagging size = 10, meta context length
= {21, 28, . . . , 84}, meta loss function = MASE so
that the total number of models for its ensemble is
10 × 10 × 1 = 100 as in Forchestra. For others, we
followed the GluonTS’s default options.

• MLP: The first layer of MLP model takes a xt−C−1:t as in-
put and outputs 512 dimensional hidden states. The hidden
states then pass through additional num layers = {1, 4, 16}
layers with ReLU activations. The final output size is P .

• LSTM [36]: We evaluated LSTM with hidden size = 512
and num layers = {1, 4, 16}. The output features from
the last layer of the LSTM are then transformed into P
dimensional output by a fully-connected layer.

• Transformer [37]: We evaluated Transformer with d model
= 512, dim feedforward = 512 × 4, nhead = 4 and
num layers = {1, 4, 16}. The output features from the last
layer of the model is then transformed into P dimensional
output by a fully-connected layer.

• TS2Vec [18]: The first linear projection layer takes
xt−W−1:t as input and maps each timestamp xi to a
high-dimensional latent vector zi with projection dim =
64, where W = 200. Then dilated CNN modules with
num residual blocks = 5, kernel size = 3, output dims
= 32 takes a latent vector and extract a representation ri
at each timestamp. The additional linear regression model
takes last timestamp representation ri,t and transform it into
P dimensional output. We used the official implementa-
tion 2.

2https://github.com/yuezhihan/ts2vec

C. Forchestra

• Base Predictors: We used 4-layer LSTMs with
hidden size = 512 of Section A-B as the base predictors.
We tested with K = {2, 5, 10, 50, 100}.

• Neural Conductor: We used the same dilated CNN of
TS2Vec for the representation module and a fully connected
layer for the meta learner.

D. Ensemble Methods

• Top-K: The ensemble approach takes the K best performing
models based on the validation score (i.e., MASE). Then it
averages K predictions from those for the test period. We
tested with K = {1, 2, 5, 10,min(50, all)}.

• Weighted Ensemble [14]: The ensemble approach evaluates
the validation score (S) for all base models. Then it aver-
ages K predictions with weights calculated by following
functions introduced in [23]:

1) W-inv: ginv(S) = 1/(S + ϵ)
2) W-sqr: gsqr(S) = ginv(S)

2

3) W-exp: gexp(S) = exp(ginv(S))

where a small epsilon (= 1e−10) is added to the denomi-
nator to avoid division by zero.

• Deep Ensembles [15]: We trained same 100 LSTMs as
of Forchestra. Each model is randomly initialized. After
training, it averages all predictions for the test period.
For Top-K and weighted ensemble methods, we applied

ensemble both globally and locally (i.e., instance-wisely).
Global method: scores each base predictor based on its aver-
age performance across all time-series instances, and aggregate
them with the same weight for each instance.
Local method: scores each predictor based on its performance
for each instance.

APPENDIX B
EVALUATION

We evaluate models based on three metrics: mean absolute
scale error (MASE), mean absolute error (MAE), and root
mean square error (RMSE). In real-world demand forecasting
platforms, evaluating performance on non-sale days is mean-
ingless, so we revised the evaluation metrics as follows:

MAE(yt, ŷt) =
∑
t∈Tp

|yt − ŷt| / |Tp| (10)

RMSE(yt, ŷt) =
√∑

t∈Tp

(yt − ŷt)2 / |Tp| (11)

MASE(yt, ŷt) =
MAE(yt, ŷt)∑

t∈Th
|yt − yt−1| / |Th|

(12)

Tp = {t | at = sale, T + 1 ≤ t ≤ T + P}
Th = {t | at−1:t = sale, 2 ≤ t ≤ T}

where at ∈ {sale, non sale} is availability status at t. Sim-
ilarly, evaluating products with too few records can lead to
a bias in forecasting method performance evaluations as well
as zero-division errors in MASE calculations; thus in case of
E-Commerce, products with at least 7 days of historical sales
(i.e., |T (i)

p | ≥ 7) are evaluated for each test period.

https://github.com/yuezhihan/ts2vec
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