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Abstract—In recent years we have witnessed an increase on
the development of methods for submodular optimization, which
have been motivated by the wide applicability of submodular
functions in real-world data-science problems. In this paper,
we contribute to this line of work by considering the problem
of robust submodular maximization against unexpected deletions,
which may occur due to privacy issues or user preferences.
Specifically, we consider the minimum number of items an
algorithm has to remember, in order to achieve a non-trivial
approximation guarantee against adversarial deletion of up to d
items. We refer to the set of items that an algorithm has to keep
before adversarial deletions as a deletion-robust coreset.

Our theoretical contributions are two-fold. First, we propose
a single-pass streaming algorithm that yields a (1 − 2ε)/(4p)-
approximation for maximizing a non-decreasing submodular
function under a general p-matroid constraint and requires a
coreset of size k+d/ε, where k is the maximum size of a feasible
solution. To the best of our knowledge, this is the first work to
achieve an (asymptotically) optimal coreset, as no constant-factor
approximation is possible with a coreset of size sublinear in d.
Second, we devise an effective offline algorithm that guarantees
stronger approximation ratios with a coreset of sizeO(d log(k)/ε).
We also demonstrate the superior empirical performance of the
proposed algorithms in real-life applications.

Index Terms—robust optimization, submodular maximization,
streaming algorithms, approximation algorithms

I. INTRODUCTION

Submodular maximization has attracted much attention in
the data-science community in recent years. Its popularity
is due to the ubiquity of the “diminishing-returns” property
in different problem settings and the rich toolbox that has
been developed during the past decades [1]. The problem of
maximizing a non-decreasing submodular function can be used
to cast a wide range of applications, including viral marketing
in social networks [2], data subset selection [3], and document
summarization [4].

However, in a world full of uncertainty, a pre-computed high-
quality solution may cease to be feasible due to unexpected
deletions.

As an example, consider an application in movie recom-
mendation, where we ask to select a subset of movies to
recommend to a user so as to maximize a certain non-decreasing
submodular utility function. It is possible that the user has
already seen some or all movies in the recommended set,
and the rest are insufficient for providing a good-quality

recommendation. Such unexpected deletions may happen in
other scenarios, for example, a user may exercise their “right
to be forgotten”, specified by EU’s General Data Protection
Regulation (GDPR) [5], and request at any point certain data
to be removed.

Instead of re-running the recommendation algorithm over
the dataset excluding the deleted items, which typically is time-
consuming, a better way to handle unexpected deletions is to
extract a small and robust coreset of the dataset, from which we
can quickly select a new solution set. To quantify robustness,
we require the coreset to be robust against adversarial deletions
up to d items. Naturally, the coreset size has to depend on the
number of deletions d.

Different adversarial models have been studied in the
literature. For the most powerful adversary, called an adaptive
adversary, we assume that the coreset is known to the adversary
and deletions occur in a worst-case manner. Such malicious
deletions lead to weak quality guarantees [6], or require a
larger coreset and longer running time [7].

In many applications, though, deletions are typically more
benign and may only mildly corrupt the coreset. For example,
in the movie-recommendation scenario, the probability that
a user has watched a movie may depend on the popularity
of the movie, and be independent on whether the movie has
been added in a coreset. An adversary who is oblivious to the
contents of the coreset is called a static adversary.

In this paper, we derive bounds for the smallest possible
coreset size that suffices to provide a non-trivial quality
guarantee against item deletions by a static adversary. It is
known that no constant-factor approximation is possible with
a coreset whose size is sublinear in d [8]. We assume that
the adversary has unlimited computational power, and knows
everything about the algorithm except for its random bits.

More concretely, given a non-decreasing submodular func-
tion, we study the problem Robust Coreset for submodular
maximization under Cardinality constraint (RCC) against a
static adversary. In addition, we study the generalization of
RCC over a more general p-matroid constraint (RCpM), or a
p-system constraint (RCp). Recall that a cardinality constraint
is known as a uniform matroid. Throughout the paper, we are
mostly interested in the more challenging case where k = O(d)
and k is the maximum size of a feasible solution.
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TABLE I: A summary of existing results on robust coresets. For simplicity, it is assumed that k = O(d).

Adversarial
model

Constraint
type

Approximation
factor

Coreset
size

Streaming/
Offline

Mitrović et al. [6] adaptive cardinality ≈ 0.149 O(d log3(k)/ε) S
Mirzasoleiman et al. [7]; Badanidiyuru et al. [9] adaptive cardinality (1− ε)/2 O(dk/ε) S
Mirzasoleiman et al. [7]; Chakrabarti and Kale [10] adaptive p-matroids 1/(4p) O(dk) S
Kazemi et al. [11] static cardinality (1− ε)/2 O(d log2(k)/ε3) S
This paper static cardinality (1− ε)/2 O(d log(k)/ε2) S
Dütting et al. [8] static matroid 1−ε

e/(e−1)+4+O(ε)
O(d log(k/ε)/ε2) S

This paper static p-matroids (1− 2ε)/(4p) k+ d/ε S

Feldman et al. [12] adaptive cardinality 0.514 O(dk) O
Kazemi et al. [11] static cardinality (1− ε)/2 O(d log(k)/ε2) O
This paper static cardinality (1− ε)/2 O(d log(k)/ε) O
Dütting et al. [8] static matroid 1−ε

e/(e−1)+2+O(ε)
O(d log(k/ε)/ε2) O

This paper static matroid 1
e/(e−1)+2+O(ε)

O(d log(k)/ε) O
This paper static p-system 1

2(p+1)+O(ε)
O(d log(k)/ε) O

Our contributions are summarized as follows.

• We offer a randomized 1−2ε
4p -approximation, single-pass

streaming algorithm for the RCpM problem, with a
coreset of size k+ d/ε. The coreset size is asymptotically
optimal. Prior to our work, the best-known coreset size
is O(d log(k)/ε2) (more details about related work are
shown in Table I and discussed in Section III).

• In addition, we introduce and analyze a natural greedy
algorithm, which keeps multiple backups for each se-
lected item. We show that this algorithm offers stronger
approximation ratios at the expense of a larger coreset
size. Specifically, we devise an offline algorithm that
requires a coreset of size O(d log(k)/ε) and yields
1−ε

2 and 1
2(p+1)+O(ε) approximation for RCC and RCp,

respectively. Besides, the greedy algorithm is empirically
effective even against an adaptive adversary.

• The proposed algorithms are evaluated empirically and
are shown to achieve superior performance in many
application scenarios.

Our techniques can be extended to obtain a (1 − ε)/2-
approximation one-pass streaming algorithm for the RCC
problem with a coreset of size O(d log(k)/ε2), an improvement
over O(d log(k)2/ε3) in Kazemi et al. [11]. Our approximation
ratio for the RCpM problem can be further strengthened to

1
e/(e−1)+2+O(ε) when the constraint is a single matroid. A
summary of the existing results is displayed in Table I. Our
implementation can be found at a Github repository1.

The rest of the paper is organized as follows. We formally
define the robust coreset problem in Section II. Related work
is discussed in Section III. The proposed streaming and
offline algorithms are presented and analyzed in Sections IV
and V, respectively. Our empirical evaluation is conducted in
Section VI, followed by a short conclusion in Section VII.

1https://github.com/Guangyi-Zhang/robust-subm-coreset

II. PROBLEM DEFINITION

In this section we define the concept of robust coreset that we
consider in this paper. Before discussing the concept of coreset
and formally define the problem we study, we briefly review
the definitions of submodularity, p-matroid, and p-system.
Submodularity. Given a set V , a function f : 2V → R+ is
called submodular if for any X ⊆ Y ⊆ V and v ∈ V \ Y , it
holds f(v | Y ) ≤ f(v | X), where f(v | Y ) = f(Y +v)−f(Y )
is the marginal gain of v with respect to set Y . Function f
is called non-decreasing if for any X ⊆ Y ⊆ V , it holds
f(Y ) ≥ f(X). Without loss of generality, we can assume that
the function f is normalized, i.e., f(∅) = 0.
p-matroid. For a set V , a family of subsets M ⊆ 2V is
called matroid if it satisfies the following two conditions:
(1) downward closeness: if X ⊆ Y and Y ∈ M, then
X ∈M; (2) augmentation: if X,Y ∈M and |X| < |Y |, then
X+v ∈M for some v ∈ Y \X . For a constant p, a p-matroid
M⊆ 2V is defined as the intersection of p matroids {Mj}j∈[p].
The rank of a p-matroid M is defined as k = maxS∈M |S|.
p-system. For a set V and a constant p, a p-system M⊆ 2V

is defined as follows. Given a set Y ⊆ V , a set X is called
a base of Y if X is a maximal subset of Y , i.e., X ∈ M,
X ⊆ Y and X + v /∈ M for any v ∈ Y \X . We denote the
set of bases of Y by B(Y ). A tuple (V,M) forms a p-system
if for any Y ⊆ V , it is maxX∈B(Y ) |X|

minX∈B(Y ) |X|
≤ p. A p-matroid is a

special case of a p-system.
Robust coreset. We consider a set V , a non-decreasing
submodular function f : 2V → R+, an integer d, and a
p-matroid M ⊆ 2V of rank k. A procedure for selecting
a solution subset for f , which is robust under deletions, is
specified by the following three stages.

1) Upon receiving all items in V , an algorithm A1 returns a
small subset R ⊆ V as the coreset.

2) A static adversary deletes a subset D ⊆ V of size at
most d.

3) An algorithm A2 extracts a feasible solution I ⊆ R \D
and I ∈M.

https://github.com/Guangyi-Zhang/robust-subm-coreset


The algorithms A1 and A2 can be randomized. We call an
adversary static if the adversary is unaware of the random
bits used by the algorithm. Thus, one can assume the set
of deletions D are fixed before the algorithm is run. The
quality of the solution ALG = I is measured by evaluating the
function f on the solution set ALG. We aim that the quality
f(ALG) is close to the optimum after deletion, f(OPT(D)),
where OPT(D) = arg maxS⊆V \D,S∈M f(S). We omit D in
OPT(D) when it is clear from the context. We say that a pair
of randomized algorithms (A1,A2) yield a (α,m)-coreset if

E[f(A2(ret(A1), D))] ≥ αf(OPT) and |R(A1)| ≤ m, (1)

where algorithm A1 returns a tuple of sets ret(A1) = {Si},
and R(A1) = ∪iSi is the coreset.

Problem 1 (Robust coreset for submodular maximization
under p-matroid constraint (RCpM)). Given a set V , a non-
decreasing submodular function f : 2V → R+, a p-matroidM
of rank k, and an unknown set D, find an (α,m)-coreset R.

Notice that there is a trade-off between the approximation
ratio α and the coreset size m. We typically aim for m to
be independent of |V | and grow slowly in d. Note that even
in the case D = ∅, i.e., no deletions, extracting an optimal
solution from the items of V for the RCpM problem is an
intractable problem. In fact, no polynomial-time algorithms can
approximate f(OPT) with a factor better than 1−1/e in offline
computation [13], or better than 1/2 in a single pass [12].

We refer to Problem 1 with cardinality constraint, single
matroid constraint, and p-system constraint, as RCC, RCM,
and RCp, respectively.

III. RELATED WORK

Deletion-robust submodular maximization. For simplicity,
we assume k = O(d). Mitrović et al. [6] study robust
submodular maximization against an adaptive adversary who
can inspect the coreset before deletion. They give a one-pass
constant-approximation algorithm for the RCC problem with a
coreset of sizeO(d log3(k)/ε). Mirzasoleiman et al. [7] provide
another simple and flexible algorithm, which sequentially
constructs d+ 1 solutions by running any existing streaming
algorithm. This gives an 1/(4p)-approximation algorithm for
the RCpM problem in a single pass at the expense of a coreset
of larger size O(dk). When an offline coreset procedure is
allowed, Feldman et al. [12] propose a 0.514-approximation
algorithm for the RCC problem with a coreset of size O(dk)
by using a two-player protocol.

For a static adversary, Kazemi et al. [11] achieve (1 −
ε)/2 approximation for the RCC problem with coreset size
O(d log(k)/ε2) and O(d log2(k)/ε3) for offline and one-pass
streaming settings, respectively. Very recently, Dütting et al.
[8] generalize the work of Kazemi et al. [11] into a matroid
constraint, requiring a coreset size of O(d log(k/ε)/ε2).

Compared to prior work, our algorithm achieves the best-
known coreset size against a static adversary.
Max-min robust submodular maximization. Another line of
work on robust submodular maximization studies a different

notion of robustness, where adversarial deletions are performed
directly on the solution and no further updates to the solution
are allowed [14, 15, 16]

Dynamic submodular maximization. The input in the dy-
namic model consists of a stream of updates, which could be
either an insertion or a deletion of an item. It is similar to the
RCC setting if all deletions arrive at the end of the stream.
However, the focus in the dynamic model is time complexity
instead of space complexity. Methods aim to maintain a good-
quality solution at any time with a small amortized update
time [17, 18, 19].

Submodular maximization. The first single-pass streaming
algorithm for a cardinality constraint proposed by Badanidiyuru
et al. [9] relies on a thresholding technique. This simple
technique turns out to yield tight 1/2-approximation unless
the memory depends on n [12, 20]. The memory requirement
is later improved from O(k log(k)/ε) to O(k/ε) [21]. For a
general p-matroid constraint, 1/4p-approximation has been
known [22, 10].

In the offline setting, it is well-known that a simple greedy
algorithm achieves optimal 1 − 1/e approximation for a
cardinality constraint [13, 23]. A modified greedy algorithm
obtains 1/(p + 1)-approximation for a general p-system
constraint [24, 25]. More sophisticated algorithms with tight
(1− 1/e)-approximation for a matroid appeared later [25, 26].

IV. THE PROPOSED STREAMING ALGORITHM

In this section, we first describe a non-robust streaming
algorithm Exc, and then introduce a novel method that enhances
it for the RCpM problem. We also discuss an improved
streaming algorithm for the simpler RCC problem.

Chakrabarti and Kale [10] provide a simple 1/(4p)-
approximation streaming algorithm for non-decreasing sub-
modular maximization under a p-matroid constraint. We call
their algorithm Exc because it maintains one feasible solution at
all time by exchanging cheap items W in the current solution I ,
for any new valuable item v that cannot be added in I without
making the solution infeasible. The Exc algorithm measures
the value of an item by a weight function w : V → R+,
which is defined as w(v) = f(v | Iv), where Iv is the
feasible solution before processing item v. Furthermore, the
algorithm measures the value of a subset by extending w with
w(S) =

∑
u∈S w(u). The algorithm replaces W with v in I

when w(v) ≥ (1 + γ)w(W ), for a parameter γ. We restate the
Exc algorithm of Chakrabarti and Kale [10] in Algorithm 1
and their main result in Theorem 1. We stress that the Exc
algorithm is non-robust and Theorem 1 holds only in the
absence of deletions D.

Theorem 1 (Chakrabarti and Kale [10]). Suppose Algorithm 1
is run over items V . For any γ > 0 and any feasible solution
S ⊆ V under a p-matroid constraint, Algorithm 1 returns a
feasible solution I that satisfies

f(S) ≤ Cγw(I) ≤ Cγf(I),



Algorithm 1: Exc streaming algorithm in Chakrabarti
and Kale (2015)

Input: parameter γ
1 I ← ∅
2 for v ∈ V do
3 w(v)← f(v | I)
4 W ← Exchange(v, I)
5 if w(v) ≥ (1 + γ)w(W ) then
6 I ← I + v −W
7 return I
8

9 Function Exchange (v, I):
10 for j ∈ [p] do
11 if I + v 6∈ Mj then
12 uj ← arg minu∈I:I+v−u∈Mj

w(u)
13 return {uj}j∈[p]

Algorithm 2: Robust Exc streaming algorithm (RExc)
Input: parameter ε, γ

1 I ← ∅, C ← ∅
2 for v′ ∈ V do
3 C ← C + v′

4 if |C| ≥ d/ε then
5 Sample and remove an item v from C with

probability proportional to 1/f(v | I)
6 w(v)← f(v | I)
7 W ← Exchange(v, I)
8 if w(v) ≥ (1 + γ)w(W ) then
9 I ← I + v −W

10 return I and C

where Cγ = (p(γ + 1)− 1)(γ + 1)/γ + 1 + 1/γ. In particular,
when γ = 1, we have f(S) ≤ 4pw(I) ≤ 4p f(I).

In this paper, we develop a robust extension of the Exc
algorithm (RExc), displayed in Algorithms 2 and 3. Algorithm 2
simply inserts a randomized buffer C between the data stream
and the Exc algorithm, and Algorithm 3 continues to process
items in C \D after deletions and returns a final solution. Note
that Algorithms 2 and 3 can be seen as two stages of the Exc
algorithm. A parameter ε is used to set the size of the buffer
C to d/ε. A smaller value of ε and a larger buffer lead to a
stronger robust guarantee.

It is easy to see that Algorithm 2 requires a coreset of size
at most k + d/ε and at most O(nd/ε) queries to function f ,
where n = |V |. Besides, it successfully preserves almost the
same approximation guarantee as the non-robust Exc algorithm
in the presence of adversarial deletions.

Theorem 2. For any γ > 0, Algorithms 2 and 3 yield an
approximation guarantee (1− (1 + 1/γ)ε)/Cγ for the RCpM
problem using a coreset of size k + d/ε, where Cγ = (p(γ +
1) − 1)(γ + 1)/γ + 1 + 1/γ. In particular, when γ = 1, we
obtain a 1−2ε

4p -approximation guarantee.

Algorithm 3: Construction of RExc solution after
deletions
Input: I , C, D, and parameter γ

1 for v ∈ C \D do
2 w(v)← f(v | I)
3 W ← Exchange(v, I)
4 if w(v) ≥ (1 + γ)w(W ) then
5 I ← I + v −W
6 return I \D

For the simpler cardinality constraint, we can obtain a tighter
approximation ratio at the expense of a larger coreset size
O(d log(k)/ε2). This is an improvement over the state-of-the-
art O(d log2(k)/ε3) in Kazemi et al. [11]. The main idea is
the utilization of importance sampling (Lemma 5) on top of
the robust Sieve algorithm in Kazemi et al. [11]. We defer the
details to Section B in Appendix [27].

Theorem 3. There exists a one-pass streaming algorithm that
yields (1−2ε)/2 approximation guarantee for the RCC problem,
with a coreset size O((d/ε+ k) log(k)/ε).

In the rest of this section, we prove Theorem 2.

A. Proof of Theorem 2

As we mentioned before, Algorithms 2 and 3 can be seen
as two stages of the non-robust Exc algorithm with input
(V \C)+(C \D). To be more specific, first, Algorithm 2 finds
a solution S1 by running the Exc algorithm with input V \ C.
Then, Algorithm 2 returns solution S1 and buffer C. Then,
Algorithm 3 finds a solution S2 by processing the items that
are preserved in C \D, while starting from feasible solution S1.
Finally, Algorithm 3 returns solution ALG = S2 \D.

By Theorem 1 we know that the solution S2 returned by
Algorithm 3 before deletions occur is provably good. This
observation is formally stated in the following corollary.

Corollary 4. For any γ > 0, the feasible solution S2 returned
by Algorithm 3, before the deletion of items in S2∩D, satisfies

f(O) ≤ Cγw(S2),

where O ∈ M is the optimal solution over data (V \ C) +
(C \D).

To complete the proof of Theorem 2, we need to show that
the solution S2 is robust against deletions, in expectation. We
first derive the expected loss in marginal gain of a sampled
item by importance sampling due to the adversarial deletions.
Intuitively, among a candidate set of items with varied marginal
gain, we need to downsample items with larger gain. Otherwise,
the adversary could target those items and we are likely to
suffer a great loss.

Lemma 5. Consider sets C, S,D ⊆ V . Define d = |D|.
Let v ∈ C be an item sampled with probability proportional



to 1/f(v | S). Then the expected loss in marginal gain of the
item v after deleting D is

E [f(v | S)1[v ∈ D]] ≤ d

|C|
E[f(v | S)].

Proof. We know

E[f(v | S)] =
∑
v∈C

f(v | S)pv = |C|/z,

where pv = 1/f(v|S)
z and z =

∑
v∈C 1/f(v | S). If the

sampled item v is in D, we suffer a loss of f(v | S), and
this happens with probability pv. Thus, the expected loss is
f(v | S)pv = 1/z. That is to say, every item leads to the same
amount of expected loss. The expected loss after any deletion
set is

E[f(v | S)1[v ∈ D]] =
∑
v∈C

f(v | S)pv1[v ∈ D]

=
∑
v∈C

1[v ∈ D]/z ≤ d/z =
d

|C|
E[f(v | S)]

proving the claim.

We proceed to show that solution S2 is robust.

Lemma 6. For any γ > 0, given the feasible solution S2 found
by Algorithm 3 before removing items in S2 ∩D, we have

E[w(S′2)] ≥ (1− (1 + 1/γ)ε)E[w(S2)],

where S′2 = S2 \D.

Proof. Let U be the set of items that are ever accepted into
the tentative feasible solution in Algorithms 2 and 3, i.e.,
including S2 and those that are first accepted but later swapped.
We first show that U is robust in the sense that E[w(U ′)] ≥
(1− ε)E[w(U)], where U ′ = U \D.

Let vi be the i-th item added into U , where i ≤ n = |V |.
We know that item vi is sampled from a candidate set Ci with
a probability proportional to 1/w(vi). Besides, |Ci| ≥ d/ε ≥
|D|/ε. Thus,

E[w(U ′)] = E
[∑
v∈U

w(v)(1− 1[v ∈ D])
]

= E[w(U)]− E
[∑
v∈U

w(v)1[v ∈ D]
]

= E[w(U)]−
∑
i≤n

E
[
w(vi)1[vi ∈ D]

]
≥ E[w(U)]−

∑
i≤n

E
[ |D|
|Ci|

w(vi)
]

≥ E[w(U)]−
∑
i≤n

E
[
εw(vi)

]
= E[w(U)]− εE[w(U)],

where the first inequality is due to Lemma 5.
Next, we show that S2 is robust, too. Let K = U \ S2, and

K ′ = K \ D. A useful property about K that is shown in

Algorithm 4: Offline robust coreset for RCp
Input: parameter ε

1 R← the set of top-d items in V according to f({v})
2 V ← V \R, j ← 1, Ij ← ∅
3 do
4 Cj ← top-(max

{
d
jε , 1

}
) items in V w.r.t. f(v | Ij)

5 R← R ∪ Cj
6 if |Cj | ≥ d

jε then
7 Sample an item vj from Cj with a probability

proportional to 1/f(vj | Ij)
8 Ij+1 ← Ij + vj
9 V ← {v ∈ V \ Cj : Ij+1 + v ∈M}, j ← j + 1

10 while |V | > 0
11 return (R, {Ij}j)

Chakrabarti and Kale [10, Lemma 2] is that w(S2)/γ ≥ w(K).
Therefore,

E[w(K ′) + w(S′2)] = E[w(U ′)]

≥ (1− ε)E[w(U)] = (1− ε)E[w(K) + w(S2)].

By linearity of expectation and rearranging, we have

E[w(S′2)] ≥ (1− ε)(E[w(K)] + E[w(S2)])− E[w(K ′)]

≥ (1− ε)(E[w(K)] + E[w(S2)])− E[w(K)]

= (1− ε)E[w(S2)]− εE[w(K)]

≥ (1− ε)E[w(S2)]− εE[w(S2)]/γ

= (1− (1 + 1/γ)ε)E[w(S2)],

completing the proof.

Finally, we complete the proof of Theorem 2.

Proof of Theorem 2. We know that OPT is the optimal so-
lution over data V \ D, which is worse than the optimum
solution O over (V \C) + (C \D), that is, f(O) ≥ f(OPT).
Therefore,

E[f(ALG)] ≥ E[w(ALG)]

= E[w(S2 \D)]

≥ (1− (1 + 1/γ)ε)E[w(S2)] . Lemma 6
≥ (1− (1 + 1/γ)ε)f(O)/Cγ . Corollary 4
≥ (1− (1 + 1/γ)ε)f(OPT)/Cγ ,

completing the proof.

V. THE PROPOSED OFFLINE ALGORITHM

We start our exposition by presenting a unified Algorithm 4
to construct a robust coreset for both p-system and cardinal-
ity constraints. However, different algorithms (Algorithms 5
and 7 [27], respectively) are needed to extract the final solution
after the deletion of items by the adversary.

Algorithm 4 constructs a robust coreset by iteratively
collecting the items with the largest marginal gains with respect
to a tentative solution I , and in each iteration, sampling an item



Algorithm 5: Construction of RCp solution after
deletion

Input: Coreset and auxiliary information (R, {Ij}j)
returned by Algorithm 4, set of deleted items D

1 I ← Ii where i = maxj j
2 H ← a greedy solution using items in R \D
3 return the best solution among {I \D,H}

from the collected set and adding it into I . Algorithm 5 or 7 ex-
tracts the final solution after deletion. The running time in terms
of query complexity, i.e., the number of calls to function f , of
Algorithms 4, 5 and 7 is O(nk), O((d log(k)/ε+ k)k), and
O((d log(k)/ε+ k) log(k)/ε), respectively. Our main results
are stated below.

Theorem 7. Algorithms 4 and 5 yield a 1
p+1+(p+1)/(1−ε)

approximation guarantee for the RCp problem, using a coreset
of size O(d log(k)/ε+ k).

Using a proof similar to the one of Theorem 7, we can obtain
a stronger approximation ratio for a single matroid constraint,
by replacing the greedy algorithm (Step 2) in Algorithm 5 by
a more advanced continuous greedy algorithm [25].

Theorem 8. Algorithms 4 and a modified Algorithm 5 yield a
1

e/(e−1)+2/(1−ε) approximation for the RCM problem, using a
coreset of size O(d log(k)/ε+ k).

In the simpler case of a cardinality constraint, we can achieve
a better approximation ratio by a Sieve-like algorithm [9] to
extract the final solution.

Theorem 9. Algorithms 4 and 7 yield a (1− 2ε)/2 approxi-
mation guarantee for the RCC problem, using a coreset of size
O(d log(k)/ε+ k).

We will devote the rest of this section for proving Theorem 7.
Proof for Theorem 9 is deferred to Appendix [27].

A. Proof of Theorem 7

The strategy in Algorithms 4 is to sample-and-keep disjoint
candidate sets, which forces the adversary to invest its deletions
among these disjoint sets. To ensure a bounded expected loss
due to the deletions, we perform importance sampling (also
known as “uselessness” sampling) in Lemma 5 among each
candidate set. We further show that it is safe to reduce the size
of candidate sets harmonically, as the expected marginal gain
of the sampled items is non-increasing.

For the remainder of the section, we will adopt the following
notation. Let {Ii} be the partial solutions discovered by
Algorithm 4, and let vi be the item added to Ii, that is,
Ii+1 = Ii + vi. Let Ci be the sets from which Algorithm 4
samples vi. In addition, let D be the set of deleted items by
the adversary. Finally, we write I ′i = Ii \D.

Next we show that the gain of item vj is non-increasing
in j.

Lemma 10. For any j < i, we have f(vj | Ij) ≥ f(vi | Ii).

Proof. Deferred to Section A due to space limitation [27].

The following lemma shows the robustness of the tentative
partial solution I built in Algorithm 4, in the sense that
E[f(I ′i)] is close to E[f(Ii)]. Intuitively, the expected loss
of the first item in I is small as its candidate set C1 has a
large size d/ε. A subsequent item in I can be sampled with
a decreasing candidate size, because previously added items
can help compensate if its candidate set is attacked by the
adversary.

Lemma 11. E[f(I ′i)] ≥ (1− ε)E[f(Ii)].

Proof. We start by bounding E[f(I ′i)],

E[f(I ′i)] = E[
∑
j<i

f(vj | Ij \D)1[vj /∈ D]]

≥ E[
∑
j<i

f(vj | Ij)1[vj /∈ D]]

= E[f(Ii)]− E[
∑
j<i

f(vj | Ij)1[vj ∈ D]],

where the inequality is due to submodularity.
Now we bound further the second term. For simplicity let

us write gj = f(vj | Ij). Recall that Cj is the set from which
Algorithm 4 samples vj . Note that |Cj | ≥ d

jε , and that the sets
{Cj} do not overlap. Define Dj = Cj ∩D. Note that Dj is
also a random variable like Cj , which depends on previously
sampled items Ij . Then

E
[∑
j<i

gj1[vj ∈ D]
]

=
∑
j<i

E
[
E [gj1[vj ∈ Dj ] | Ij ]

]
≤
∑
j<i

E

[
|Dj |
d/jε

E[gj | Ij ]
]

=
ε

d
E
[∑
j<i

|Dj |jgj
]
,

where for each j, the outer expectation is taken over Ij and
the inner expectation is over vj . The inequality follows from
Lemma 5.

Let η = arg maxj jgj be the index yielding the highest
summand. Since gj is non-increasing in j by Lemma 10, we
have∑
j<i

|Dj |jgj ≤
∑
j<i

|Dj |ηgη ≤ dηgη ≤ d
∑
j≤η

gj ≤ d
∑
j<i

gj .

Therefore, we have
ε

d
E
[∑
j<i

|Dj |jgj
]
≤ ε

d
E
[
d
∑
j<i

gj

]
= εE[f(Ii)].

Combining the three inequalities proves that E[f(I ′i)] ≥
E[f(Ii)]− εE[f(Ii)], completing the proof.

The next lemma follows immediately.

Lemma 12. Let S be a set of items. Then for any i,

E[f(I ′i ∪ S)] ≥ (1− ε)E[f(Ii ∪ S)].

Proof. Deferred to Section A due to space limitation [27].

Finally, we are ready to prove Theorem 7.



Proof of Theorem 7. Let i be the largest index used by Algo-
rithm 4, and write let I = Ii+1 be the maximal partial solution
in Algorithm 4. Write also I ′ = I \ D. Similarly, R is our
coreset and R′ = R \D. To prove the claim, we compare I
with OPT.

f(OPT) ≤ f(I ∪OPT) ≤ f(I) + f(OPT \ I | I)

≤ f(I) + f((OPT \ I) ∩R′ | I) + f((OPT \ I) \R′ | I)

≤ f(I) + (p+ 1)f(H) + f(OPT \R′ | I).

The last step is because any feasible solution in R′, including
(OPT \ I) ∩R′, is within p+ 1 approximation of the greedy
solution H of Algorithm 5 [24, 25]. Now we deal with the
last term. Note that OPT \R′ = OPT \R. Then

f(OPT \R | I) ≤
∑

u∈OPT\R

f(u | I) =
∑
u∈O

f(u | I),

where O = {u ∈ OPT \R : I + u 6∈ I}. Here the last step is
due to the fact that the chosen I is maximal, and an item will
be discarded only when it is infeasible to I .

Let O = u1, . . . , u|O| be the order in which Algorithm 4
discards the items in O. Define a function π with π(u`) =
d`/pe. Let

Oj = {u ∈ O : Ij+1 + u /∈ I}.

Note that Oj , Ij+1 ∈ I and Ij+1 + u /∈ I for every u ∈ Oj .
Thus Ij+1 is a maximal independent set in Y = Ij+1 ∪ Oj ,
and, by definition of p-system, |Oj | ≤ p|Ij+1| = pj for all j.

Let u = u` ∈ Oj \ Oj−1. Then, ` ≤ pj and π(u`) ≤ j.
Since u is discarded after vj is added,

f(u | I) ≤ f(u | Ij) ≤ f(vj | Ij) ≤ f(vπ(u) | Iπ(u)).

Lastly, we have∑
u∈O

f(u | I) ≤
∑
u∈O

f(vπ(u) | Iπ(u)) ≤ p
∑
j

f(vj | Ij) = pf(I).

Putting everything together, we have

f(OPT) ≤ f(I) + (p+ 1)f(H) + pf(I)

≤ (p+ 1 +
p+ 1

1− ε
)E[f(ALG)],

where the last step is due to Lemma 11.
To bound the coreset size, note that |R| is bounded by

d+

k∑
j=1

|Cj | ≤ d+

k∑
j=1

max

{
1,
d

εj

}
≤ d+k+d(ln(k)+1)/ε,

completing the proof.

VI. EXPERIMENTS

In this section, we evaluate the proposed algorithms against
state-of-the-art baselines. All methods are tasked with various
subset-selection applications over real-life data. Statistics of
the datasets used are summarized in Table II. The applications
are described below (Sections VI-A–VI-E) followed by a
discussion of experimental results (Section VI-F) and an
evaluation of running time (Section VI-G). Further details of
the experiments are deferred to Section D [27]. We introduce
the competing algorithms and adversaries below.

TABLE II: Datasets statistics

Dataset n = |V | k M

Movielens [28] 22 046 20 2-matroid
Facial images [29] 23 705 25 1-matroid
Github social network [30] 37 700 20 cardinality
Uber pickups [31] 50 000 25 1-matroid
Songs [32] 137 543 20 cardinality

a) Algorithms: Competing algorithms include:
• RExc, the robust Exc algorithm presented in Algorithm 2,

Section IV;
• RExc-2, two cascading instances of the RExc algorithm;
• RGrd, the offline robust greedy algorithm presented in

Algorithm 4, Section V;
• Exc-dk, a flexible reduction proposed by Mirzasoleiman

et al. [7] that constructs d+ 1 cascading Exc instances;
• Exc-M, the previous state-of-the-art robust Exc algorithm

by Dütting et al. [8] that performs uniform sampling on
top of multiple candidate sets, each associated with an
increasing threshold on marginal gain.

Their objective values of all methods are normalized by that of
an omniscient greedy algorithm, which is aware of deleted items
in advance. Algorithms RGrd and Exc-dk are also challenged
to an adaptive adversary. A fixed parameter ε = 0.5 is used to
avoid large coresets.

b) Adversary: We consider two types of adversaries, static
and adaptive, which make deletions over the whole universe
of items V or only over the coreset, respectively. To introduce
randomness in a principled way, given an integer d, we simulate
an adversary by running the Stochastic Greedy algorithm [33]
and obtain a deletion set D of size d. Concretely, in each
iteration, we add into D the greedy item among a multiple of
z/d random items, where z = n for a static adversary and z
is the coreset size for an adaptive one.

As a general strategy, we let the adversary delete 100 items,
and we gradually increase the parameter d in each algorithm
until it reaches 100.

A. Personalized movie recommendation

Robust recommendation is favorable in practice due to
uncertain deletions caused by user preference. A popular
approach to personalized recommendation [6] is to optimize
the following submodular function,

fu(S) = (1− λ)
∑
v∈S

sim(u, v) +
λk

|V |
∑
w∈V

max
v∈S

sim(w, v),

such that |S| ≤ k. Here sim(u, v) measures the relevance of
an item v to the target user u, and sim(w, v) the similarity
between two items w, v. The second term represents a notion
of representativeness, i.e., for every non-selected item w ∈ V ,
there exists some item v ∈ S that is similar enough to w.

We choose the Movielens dataset [28], which consists of
9 724 movies and hundreds of users. We obtain feature vectors
for users and movies by applying SVD on the user-movie
rating matrix, and let sim(·, ·) be the natural dot product. A
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(b) Facial image selection (x-axis: coreset size)
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(c) Uber pickups summarization (x-axis: coreset size)
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(d) Network influence maximization in Github (x-axis: coreset size)
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(e) Popular song selection

Fig. 1: Experiment results. The adversary (left: adaptive, right:
static) deletes items of a fixed size 100. Parameter d (and
coreset size) in each algorithm is gradually increased to 100.

random user is chosen for the recommendation task. A movie
may belong to more than one of 20 genres, and we further
impose a 2-matroid on a feasible solution S, i.e., every movie
can be selected at most once and at most one movie can be
selected for each genre. Tradeoff parameter λ is fixed to 0.5.
The results are reported in Figure 1(a).

B. Facial image selection

Exemplar-based applications, such as nearest-neighbor mod-
els and recommender systems, are ubiquitous in data science.
However, the “right to be forgotten” can lead to the case where
some items must be be deleted [5]. In such cases, a robust
coreset is desirable, so as to maintain a representative summary
for applications after data-item deletions.

A dataset V can be summarized by a representative subset
of data S via minimizing the classic k-medoid function,

g(S) =
∑
v∈V

min
u∈S

d(u, v),

where d(u, v) measures the distance between u and v. Intu-
itively, for each item v in the data, there should exist some
item u in the summary S that is close to v. The above function
can be turned into a submodular maximization problem by
measuring the total reduction of distance with respect to some
item w ∈ V instead, i.e., f(S) = g({w})− g(S + {w}) [34].
We let w be the an arbitrary random item.

We experiment with a dataset of facial images [29], under
a partition matroid according to races (5 images per race and
k = 25), with the distance function being the `1 metric. The
results are reported in Figure 1(b).

C. Geolocation data summarization

We experiment with a similar task as in Section VI-B, except
for a different dataset, Uber pickups [31]. Every data point
indicates a location of Uber pickups in New York City in
April, 2014. We measure the distance by a natural `1 metric. A
partition matroid is imposed according to the base companies
(at most 5 pickups for each company and k = 25). The results
are reported in Figure 1(c).

D. Network influence maximization

For viral-marketing applications in social networks, the goal
is to identify a small set of seed nodes who can influence
many other users. For popular diffusion models, the number of
influenced nodes is a submodular function of the seed set [2].
Here, we consider deletion-robust viral marketing for a simple
diffusion model, where a seed node always influences all its
neighbors, i.e., f(S) = | ∪v∈S N(v)| returns a dominating set,
where N(v) represents neighbors of v. We choose the dataset
of Github social network [30], and specify a cardinality limit
of k = 20. The results are reported in Figure 1(d).

E. Popular song selection

Given song-by-song listening history of users, one wishes
to select a set of popular songs S that can “cover” the most
users. A user is covered if she likes at least one song in S.
That is, f(S) = | ∪v∈S L(v)|, where L(v) represents the set
of users who like song v. We aim for a deletion-robust coreset
for such popular songs. Concretely, we use the million song
dataset [32], consisting of triples representing a user, song, and
play count. We assume that a user likes a song if the song
is played more than once. We impose a cardinality limit of
k = 20. The results are reported in Figure 1(e).
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F. Discussion of results

Overall, against a static adversary, the proposed RGrd
algorithm performs the best and converges with the smallest
coreset, while the proposed RExc algorithm achieves relatively
good performance while requiring the most parsimonious
coreset. Note that the size difference in the coreset will become
more extreme as k increases. For an adaptive adversary, the
RGrd algorithm remains the most robust.

The Exc-M algorithm has the worst performance most of
the time, except for tasks with a simple cardinality constraint
and a relatively large coreset size. This behavior illustrates the
insufficient efficacy of uniform sampling. Uniform sampling
on top of thresholded candidate sets, which is adopted by many
previous robust algorithms [11, 8], faces a dilemma between
a large coreset or a crude distinction of item importance (i.e.,
few crude thresholds due to large ε). This issue is properly
addressed by the non-uniform sampling technique in this paper.

On the other hand, cascading instances in the Exc-dk
algorithm appears to be another promising way for preserving
valuable items in stream computation. However, this approach
comes with a cost of expensive computation (see Section VI-G).
Besides, its coreset size explodes even with a moderate value
of d, Staying with a small d parameter, however, fails to secure
a theoretical guarantee when more items are deleted.

Algorithms RExc an Exc-dk preserve valuable and com-
patible items in two different ways. This naturally suggests
that one can combine the best of both worlds by constructing
a small number of cascading RExc instances. Then one is
expected to further enhance the performance while maintaining
a parsimonious coreset and a strong guarantee. This is indeed
the case as reflected by the remarkable performance of the
RExc-2 algorithm, which uses merely two instances of RExc.

In summary, we conclude that the RGrd algorithm is
a reliable choice if an offline algorithm is allowed. In a
streaming setting, a small number of cascading RExc instances
is recommended.

G. Running time analysis

The running time of all algorithms over the song dataset is
shown in Figure 2. The most significant message of Figure 2
is that the Exc-dk algorithm is computationally costly when
the value of parameter d grows.

VII. CONCLUSION

In the presence of adversarial deletions up to d items,
we propose a single-pass streaming algorithm that yields
(1− 2ε)/(4p)-approximation for maximizing a non-decreasing
submodular function under a general p-matroid constraint and
requires an (asymptotically) optimal coreset size k+d/ε, where
k is the maximum size of a feasible solution. Besides, we
develop an offline greedy algorithm that guarantees stronger
approximation ratios, and performs effectively even against an
adaptive adversary.

One vital tool for robustness in the proposed algorithms is
“uselessness” sampling that preserves valuable items within
the candidate set and avoids great loss caused by adversarial
deletions in expectation. Another insight is a close connection
between robustness and streaming algorithms. The latter ensures
a quality guarantee given an arbitrary arrival order of items,
including the specific random order introduced by the sampling.

Potential directions for future work include a potentially
stronger approximation ratio in the offline setting, extensions
to non-monotone submodular maximization, and a stronger
adaptive adversary.
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[6] S. Mitrović, I. Bogunovic, A. Norouzi-Fard, J. Tarnawski,
and V. Cevher, “Streaming robust submodular maximiza-
tion: A partitioned thresholding approach,” arXiv preprint
arXiv:1711.02598, 2017.

[7] B. Mirzasoleiman, A. Karbasi, and A. Krause, “Deletion-
robust submodular maximization: Data summarization



with “the right to be forgotten”,” in International Confer-
ence on Machine Learning. PMLR, 2017, pp. 2449–2458.

[8] P. Dütting, F. Fusco, S. Lattanzi, A. Norouzi-Fard, and
M. Zadimoghaddam, “Deletion robust submodular maxi-
mization over matroids,” arXiv preprint arXiv:2201.13128,
2022.

[9] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and
A. Krause, “Streaming submodular maximization: Mas-
sive data summarization on the fly,” in Proceedings of
the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 671–
680.

[10] A. Chakrabarti and S. Kale, “Submodular maximization
meets streaming: Matchings, matroids, and more,” Math-
ematical Programming, vol. 154, no. 1, pp. 225–247,
2015.

[11] E. Kazemi, M. Zadimoghaddam, and A. Karbasi, “Scal-
able deletion-robust submodular maximization: Data
summarization with privacy and fairness constraints,” in
International conference on machine learning. PMLR,
2018, pp. 2544–2553.

[12] M. Feldman, A. Norouzi-Fard, O. Svensson, and R. Zen-
klusen, “The one-way communication complexity of
submodular maximization with applications to streaming
and robustness,” in Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, 2020, pp.
1363–1374.

[13] G. L. Nemhauser and L. A. Wolsey, “Best algorithms
for approximating the maximum of a submodular set
function,” Mathematics of operations research, vol. 3,
no. 3, pp. 177–188, 1978.

[14] A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta,
“Robust submodular observation selection.” Journal of
Machine Learning Research, vol. 9, no. 12, 2008.

[15] J. B. Orlin, A. S. Schulz, and R. Udwani, “Robust mono-
tone submodular function maximization,” Mathematical
Programming, vol. 172, no. 1, pp. 505–537, 2018.
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Algorithm 6: Streaming robust coreset for RCC
Input: parameter ε

1 P ← the set of top-d singletons seen so far
2 ∆d ← the value of the top (d+ 1)-th singleton
3 for each new item v in the stream do
4 Update ∆d and P
5 if P is changed then
6 v ← the swapped-out item in P
7 T ← {(1 + ε)i : ∆d

2k(1+ε) ≤ (1 + ε)i ≤ ∆d, i ∈ N}
8 for each τ ∈ T in parallel do
9 if f(v | Iτ ) ≥ τ and |Iτ | < k then

10 Cτ ← Cτ + v
11 if |Cτ | ≥ d/ε then
12 Sample an item v from Cτ with a

probability proportional to 1/f(v | Iτ )
13 Iτ ← Iτ + v
14 Cτ ← {v ∈ Cτ : f(v | Iτ ) ≥ τ}
15 R← P ∪

(⋃
τ∈T Cτ

)
∪
(⋃

τ∈T Iτ
)

16 return R, {Iτ}τ∈T

APPENDIX

A. Omitted proofs

Proof of Lemma 10. Note that vj is sampled from Cj and vi
is sampled from Ci, and Cj ∩ Ci = ∅. Since Cj includes top
items sorted by f(· | Ij) and vi 6∈ Cj , we have f(vj | Ij) ≥
f(vi | Ij) ≥ f(vi | Ii), where the second inequality is due to
submodularity.

Proof of Lemma 12. Since I ′i ⊆ Ii, submodularity and Lemma
11 imply that

E[f(Ii ∪ S)]− E[f(I ′i ∪ S)] ≤ E[f(Ii)]− E[f(I ′i)]

≤ εE[f(Ii)] ≤ εE[f(Ii ∪ S)],

proving the claim.

B. Streaming algorithm for the RCC problem

A well-known technique developed by Badanidiyuru et al.
[9] enables a one-pass streaming algorithm for non-robust
submodular maximization. That is, the algorithm is restricted
to read items in V only once with very limited memory. The
key is to make multiple guesses at the threshold τ∗ such that
τ∗ ≤ f(OPT)

2k ≤ (1 + ε)τ∗, and then build a candidate solution
for each guessed threshold in parallel. The guesses depend
on the top singleton encountered so far, and are dynamically
updated along the process.

As pointed out in Kazemi et al. [11], a natural extension for
the robust setting is to make guesses according to the set of
top d+ 1 singletons we have seen so far. To be more specific,
we dynamically maintain a set of geometrically-increasing
thresholds within range [∆d/2k,∆d], where ∆d is the value
of the current (d+ 1)-th top singleton. Besides, to cope with a
static adversary, every item in a candidate solution is randomly
sampled from a candidate set of large size.

We adopt the same approach as Kazemi et al. [11], but
significantly simplify their algorithm and improve the coreset
size, thanks to the importance sampling technique in Lemma 5.

We prove Theorem 3 in the rest of this section, that is,
Algorithm 6 and 7 yield (1 − 2ε)/2 approximation guar-
antee for the RCC problem, with a coreset size O((d/ε +
k) log(k)/ε). Algorithm 6 constructs the coreset in one-pass
using O

(
log(k)
ε

(
n+ k dε

))
queries. Algorithm 7 needs to be

slightly modified when receiving the coreset from Algorithm 6.
Specifically, at Step 5, Iτ is given directly.

The proof is very similar to that of Theorem 9, except that
we replace Lemma 15 and 11 with the following two new
lemmas.

Lemma 13. Let τ ∈ T be a threshold, Iτ its associated partial
solution, and Cτ candidate set. If |Iτ | < k, then for every item
v ∈ V \ (Cτ ∪ P ), we have f(v | Iτ ) < τ .

Proof. Select τ ∈ T and v ∈ V \ (Cτ ∪ P ). Since v /∈ P ,
consider the iteration when v is properly processed either due
to being a new item or being an item leaving P . Let ∆′d, C ′τ ,
I ′τ , and T ′ be the variables of Algorithm 6 right before the
inner for-loop (Step 8).

Assume that τ ∈ T ′. If f(v | Iτ ) ≥ τ , then f(v | I ′τ ) ≥ τ
and v is added to C ′τ and never filtered out, that is, v ∈ Cτ
which is a contradiction. Thus, f(v | Iτ ) < τ .

If τ /∈ T ′, then τ > ∆′d since ∆d can only increase.
Consequently, f(v | Iτ ) ≤ f(v) ≤ ∆′d < τ .

Lemma 14. For each threshold τ and its associated partial
solution Iτ kept by Algorithm 6, we have E[f(I ′τ )] ≥ (1 −
ε)E[f(Iτ )], where I ′τ = Iτ \D.

Proof. We fix an arbitrary threshold τ , and write I = Iτ =
{v1, . . . , vi}. Let us write Ij = {v1, . . . , vj−1}, and define Cj
to the candidate set Cτ from which we sample vj . Then

E[f(I ′)] = E
[∑
j≤i

f(vj | Ij \D)1[vj /∈ D]
]

≥ E
[∑
j≤i

f(vj | Ij)1[vj /∈ D]
]

= E[f(I)]−
∑
j≤i

E
[
f(vj | Ij)1[vj ∈ D]

]
≥ E[f(I)]−

∑
j≤i

|D|
|Cj |

E[f(vj | Ij)] . Lemma 5

≥ E[f(I)]− ε
∑
j≤i

E[f(vj | Ij)] . |Cj | ≥ d/ε

= (1− ε)E[f(I)],

completing the proof.

Proof of Theorem 3. The proof for approximation is essen-
tially the same as in the proof of Theorem 9, except that
Lemma 15 is replaced with Lemma 13 and Lemma 11 is
replaced with Lemma 14. We omit the details to avoid
repetition.



Algorithm 7: Construction of RCC solution after
deletion

Input: Coreset and auxiliary information (R, {Ij}j)
returned by Algorithm 4, set of deleted items D,
parameter ε

1 R′ ← R \D
2 ∆← value of the top singleton in R′ according to

f({v})
3 T ←

{
(1 + ε)i : ∆

2k(1+ε) ≤ (1 + ε)i ≤ ∆, i ∈ N
}

4 for τ ∈ T do
5 Iτ ← Ij+1, where

j ← max {j : f(Ij+1 \ Ij | Ij) ≥ τ}
6 I ′τ ← Iτ \D
7 for v ∈ R′ do
8 if f(v | I ′τ ) ≥ τ and |I ′τ | < k then
9 I ′τ ← I ′τ + v

10 return the best solution among {I ′τ}τ∈T

We complete the proof by calculating the coreset size. Note
that during each iteration |Cτ | can increase only by 1. If
after addition |Cτ | > d/ε, then v is sampled from Cτ and
will be filtered out since f(v | Iτ ) = 0. Thus, in the end
|Cτ | ≤ d/ε. There are O(log(k)/ε) different thresholds, and
for each threshold τ we keep at most d/ε items in Cτ and a
partial solution Iτ of at most size k. Hence, the total coreset
size is O((d/ε+ k) log(k)/ε).

C. Offline algorithm for the RCC problem

In the case of cardinality constraint, we can obtain a stronger
bound than in the general case, by executing a different
Algorithm 7 after receiving a coreset from Algorithms 4.
Algorithm 7 is inspired by the Sieve algorithm in Badanidiyuru
et al. [9], which makes multiple guesses at the threshold τ∗

such that τ∗ ≤ f(OPT)
2k ≤ (1+ε)τ∗, and then builds a candidate

solution for each guessed threshold in parallel.
Let us write Iτ = Ii+1 and I ′τ = I ′i+1, where i = max{j :

f(vj | Ij) ≥ τ} is the subset of the tentative solutions built in
Algorithms 4 and 7 filtered by a threshold τ . The next step is
to show that we do not miss in our coreset any feasible item v
with marginal gain f(v | Iτ ) ≥ τ among items in V .

Lemma 15. Assume τ > 0 and let i = max{j : f(vj | Ij) ≥
τ}. Shorten I = Ii+1. Let v be an item that can be added to I
with a gain of at least τ , that is, f(v | I) ≥ τ and I + v ∈M.
Let R be the coreset returned by Algorithm 4. Then v is a
member of R.

Proof. If I is the last set in the loop of Algorithm 4, then
there is nothing to prove, as by definition there are no items
that can be added to I without violating M. Thus, we assume
I is not the last set and vi+1 and Ci+1 exist.

By definition of i, we have f(vi+1 | I) < τ . Since f(v |
I) ≥ τ either v ∈ Ci+1 or v has been removed earlier, that is
v ∈ Cj for j ≤ i. In either case, v is in R.

The solutions I ′τ constructed by Algorithm 7 are of form
I ′i ∪S. By Lemma 12, we already know that f(I ′i ∪S) is close
to f(Ii ∪ S) in expectation, so we are free to study Ii ∪ S
instead of I ′i ∪ S. Next we will bound the former using a
thresholding argument. Similar arguments have been used by
Badanidiyuru et al. [9] and Kazemi et al. [11].

Lemma 16. For any τ , write Sτ the additional items added
to I ′τ by Algorithm 7. Define Gτ = Iτ ∪ Sτ . Then

f(Gτ ) ≥ min {f(OPT)− kτ, kτ} .

Proof. For simplicity, let us shorten Gτ , G′τ , Iτ , I ′τ , and Sτ
with G, G′, I , I ′, and S, respectively. We will prove the lemma
by considering three cases.

Case 1: Assume |I| = k. Then f(G) ≥ f(I) ≥ kτ .
Case 2: Assume |G′| = k. Then f(G) ≥ f(G′) ≥ kτ .
Case 3: Assume that |I| < k and |G′| < k. The main idea

is to show that every item in OPT has a marginal gain less
than τ with respect to G. Write

f(OPT) ≤ f(OPT ∪G) ≤ f(G) +
∑

v∈OPT\G

f(v | G)

= f(G) +
∑

v∈(OPT\G)∩R

f(v | G) +
∑

v∈(OPT\G)\R

f(v | G).

We discuss the last two terms separately.
To bound the first term, let v ∈ (OPT \ G) ∩ R. Since

OPT ⊆ V \ D, we have v ∈ R \ D. If f(v | G) ≥ τ ,
then v ∈ I ′ or, since |G′| < k, the item v is added to S by
Algorithm 7. Thus, f(v | G) < τ .

To bound the second term, let v ∈ (OPT \ G) \ R. Since
|I| < k, Lemma 15 implies that τ > f(v | I) ≥ f(v | G).

Since |OPT| ≤ k, we have f(OPT) ≤ f(G) + kτ , proving
the lemma.

The next step is to show that there exists τ∗ ∈ T in thresholds
T enumerated by Algorithm 7 such that τ∗ ≤ f(OPT)

2k ≤
(1 + ε)τ∗.

Lemma 17. Let T be the set of thresholds enumerated by
Algorithm 7. There exists τ∗ ∈ T such that τ∗ ≤ f(OPT)

2|OPT| ≤
(1 + ε)τ∗.

Proof. Let ∆ = maxv∈R′ f(v) be the value of the top singleton
in R′. Note that R contains the top d + 1 singletons as it
contains d top singletons and C1. Thus ∆ = maxv∈V \D f(v).
Consequently, ∆ ≤ f(OPT) ≤ |OPT|∆.

Since |OPT| ≤ k, OPT
2|OPT| lies within the range [ ∆

2k ,∆]. An
approximately close threshold τ∗ can be found by enumeration
in an exponential scale with a base 1 + ε.

Finally, we are ready to prove Theorem 9.

Proof of Theorem 9. Let τ∗ be as given by Lemma 17.
Write G and G′ to be Gτ∗ and G′τ∗ as given in Lemma 16.

Lemmas 17 and 16 state that

E[f(G)] ≥ min {f(OPT)− kτ∗, kτ∗}
≥ min {f(OPT)− f(OPT)/2, (1− ε)f(OPT)/2}



≥ (1− ε)f(OPT)/2.

Lemma 12 states that

E[f(ALG)] ≥ E[f(G′)] ≥ (1− ε)E[f(G)]

≥ (1− ε)2

2
f(OPT) ≥ 1− 2ε

2
f(OPT),

proving the approximation.
The bound on the coreset size is proved in the same way as

in Theorem 7.

D. Further details of experiments

Every algorithm returns the best between its solution and
an additional greedy selection over the coreset after deletions.
The greedy selection possesses better quality most of the time.

In Figure 1, the error bar at each point is by three random
runs.

In Section VI-A, A universe set of 9 724 movies is expanded
into a larger set of size 22 046, by considering all movie-genre
tuples.
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