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Abstract—Graph contrastive learning (GCL) has recently
emerged as an effective learning paradigm to alleviate the reliance
on labelling information for graph representation learning. The
core of GCL is to maximise the mutual information between the
representation of a node and its contextual representation (i.e.,
the corresponding instance with similar semantic information)
summarised from the contextual scope (e.g., the whole graph or 1-
hop neighbourhood). This scheme distils valuable self-supervision
signals for GCL training. However, existing GCL methods still
suffer from limitations, such as the incapacity or inconvenience
in choosing a suitable contextual scope for different datasets and
building biased contrastiveness. To address aforementioned prob-
lems, we present a simple self-supervised learning method termed
Unifying Graph Contrastive Learning with Flexible Contextual
Scopes (UGCL for short). Our algorithm builds flexible contextual
representations with tunable contextual scopes by controlling the
power of an adjacency matrix. Additionally, our method ensures
contrastiveness is built within connected components to reduce
the bias of contextual representations. Based on representations
from both local and contextual scopes, UGCL optimises a very
simple contrastive loss function for graph representation learning.
Essentially, the architecture of UGCL can be considered as a
general framework to unify existing GCL methods. We have
conducted intensive experiments and achieved new state-of-the-
art performance in six out of eight benchmark datasets compared
with self-supervised graph representation learning baselines. Our
code has been open sourced1.

Index Terms—Graph Contrastive Learning, Graph Represen-
tation Learning, Self-Supervised Learning, Unsupervised learn-
ing

I. INTRODUCTION

Graph neural networks (GNNs) employ a neighbourhood
aggregation strategy via iterative message passing to learn
low-dimensional node embeddings for permutation-invariant
graphs. GNNs have achieved promising results in various
graph-based tasks such as node classification [1], [2], link
prediction [3], and graph classification [4]. They have been
further applied to address various real-world problems such as
anomaly detection [5], graph similarity computation [6], time
series forcasting [7], [8] and trustworthy systems [9], [10].

The majority of GNNs learn node representations following
(semi-)supervised paradigms where supervision signals are
provided from manual labels. However, in the real world,

∗Corresponding author.
1https://github.com/zyzisastudyreallyhardguy/UGCL

collecting labels is an expensive and labour-intensive process.
To address this problem, graph contrastive learning (GCL)
methods are produced to alleviate the reliance on labels in
graph representation learning [11]–[17]. The key idea of GCL
methods is to maximise the mutual information (MI) between
the representation of a node and its contextual representation
(i.e., the corresponding node instance with similar semantic
information) summarised from the contextual scope (e.g., 1-
hop neighbourhood). In particular, aiming to extract global
semantic information, global contrasting methods such as DGI
[11] and MVGRL [13] contrast nodes with a readout graph
embedding. Focusing on localised information, localised con-
trasting methods (e.g., GRACE [14], and GMI [12]) maximise
MI between a node and its close neighbourhood or augmented
counterpart.

Though GCL methods can reduce the reliance on labelling
information during training, they still share the following defi-
ciencies: 1) the establishment of the contextual representation
requires a contextual scope, while the size of this scope is hard
to adjust; 2) the aggregated contextual representation is biased
in existing GCL methods, as they neglect the independence of
connected components.

The first limitation arises since most GCL methods only
have contextual representations generated from a fixed scope.
However, with different properties (e.g., type of edges and
sparsity), datasets from various domains (e.g., citation net-
works and social networks) can have different suitable con-
textual scopes. For example, in social networks, a faraway
neighbour can be semantically unrelated based on the theory
of six degrees of separation [18], as all people are no more than
six-hop away from each other. However, a remote neighbour
can still be similar to a target node in citation networks since
they share the same research field. In addition, the sparsity of
graphs can affect the contextual scope since a sparse graph
may need a larger receptive field to include sufficient infor-
mative neighbours. Therefore, selecting a suitable contextual
scope for different datasets is necessary. We have provided the-
oretical justification for why different graphs require different
contextual scope in Section IV-C. However, with a fixed scope,
existing GCL methods cannot well exploit supervision signals
from the suitable scale for different datasets.

For the second limitation, some GCL methods (e.g., DGI
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Fig. 1. “T” is the target node, and the red arrow means contrastiveness. The
left part shows contrastiveness between “T” and a whole graph, while the
right part is contrastiveness built within a connected component.

[11] and MVGRL [13]) build contrastiveness between a node
and a whole graph, neglecting the fact that many graphs in
practice are composed of many independent connected com-
ponents (as shown in Figure 1). In general, node embedding
generation within a connected component will not be affected
by other components. Thus, different connected components
ought to have their own contextual representations and can be
different from each other. In this case, contrasting to a whole
graph can be biased as it neglects this independence and mixes
up representations from different components, which impairs
the model ability to explore fine-grained information within
each connected component.

To alleviate the aforementioned problems in GCL, we
propose a new method termed Unifying Graph Contrastive
Learning with Flexible Contextual Scopes (namely UGCL).
The theme of our algorithm is to establish contextual rep-
resentations by tuning the power of an adjacency matrix,
which flexibly expands the contextual scope based on node
proximity. This mechanism can be regarded as the aggregation
which summarises the information embodied in a selected
scale. Based on this idea, UGCL can generate contextual
representations from a suitable scale for different datasets.
Additionally, as graph convolution is only effective on con-
nected components when generating contextual representa-
tions, UGCL considers the independence of connected com-
ponents and reduces the bias of the generated representations
by building contrastiveness within a connected component as
shown in the right part of Figure 1.

Benefits. UGCL is conceptually simple, easy to implement,
and nicely addresses limitations of common GCL approaches.
In particular, it can tune contextual scope easily and ensure
contrastiveness is conducted within connected components to
reduce bias of contextual representations. More significantly,
the architecture of UGCL is a general framework that unifies
representative GCL approaches, including localised contrast-
ing methods and global contrasting methods.

II. PRELIMINARY

A. Problem Definition

In this paper, we focus on unsupervised node representation
learning problem. Given an attributed graph G = (X,A),
where X ∈ RN×D is feature matrix and A ∈ RN×N denotes
the adjacency matrix, we aim to learn a GNN encoder g(·) to
generate node representations without the guidance of labels.
Here, N is the number of nodes in G, D is the feature
dimension. The output representation, i.e., H = g(X,A) ∈

RN×D′
, where D′ is the hidden embeddings dimension. H

can be utilised for various downstream tasks, such as node
classification and link prediction.

B. Representations Convergence with Raising Power Theorem

Theorem 1 (Representations Convergence with Raising Power
Theorem). Given an adjacency matrix A, when n increases,
multiplying with the n-th power of A, node representations H
within a connected component will gradually converge to a
shared subspace M as shown below:

dM(AnH) ≤ λdM(An−1H), (1)

where the definition of subspaceM and the distance of graph
representation to M (i.e., dM), are defined in Appendix. λ is
the second largest eigenvalue of A. The computation of An is
formulated as An = AA · · ·A︸ ︷︷ ︸

n

.

This theorem shows that as n increases, node representa-
tions will converge to a subspace M as λ is guaranteed to
be smaller than 1 (as shown in Lemma 2 in Appendix). Thus,
with sufficiently large n-th power for A, the generated contex-
tual node representation can summarise all node embeddings
within a connected components. This is because it encodes
information of the whole graph. The detailed proof of this
theorem is presented in Appendix.

C. Contextual Homophily Rate & Graph Sparsity

Here, we define the contextual homophily rate Pn(i) to
evaluate the homophily rate (i.e., rate of neighbours sharing
the same label as the target node) in the contextual scope and
graph sparsity TG .

Definition 1 (Contextual Hompohily Rate). The contextual
homophily rate of a node i is Pn(i), where n means its
contextual scope is based on n-th power of A (i.e., n-hop
neighbourhood):

Pn(i) = |j ∈ Nn(i) ∧ yi = yj
j ∈ Nn(i)

|, (2)

where y is label for a node, and Nn(i) is the neighbourhood
for node i with n-th power of A, i.e., n-hop neighbourhood.

Definition 2 (Graph Sparsity). The sparsity TG of a given
graph G is:

TG =
E

N ×N
≈ N × d
N ×N

, (3)

where d is the average degree of nodes in G, while E and N
represent the number of edges and nodes in G respectively.

III. METHOD

In this section, we introduce the proposed UGCL which
learns node representations via the power adjustment of A
in a self-supervised fashion. The overall architecture of our
method is illustrated in Figure 2. To train our model, we
first create two views: patch- and contextual view, where the
latter view is generated with the n-th power of A. Then, we



construct a cross-view contrastiveness in a pair-wise contextual
relationship between these two views. The following sections
illustrate the details of view establishment and the cross-view
contrastiveness of UGCL.

A. View Establishment

In our method, the view establishment process generates
two views (i.e., patch view and contextual view), based on
which a cross-view contrastive learning scheme is employed
to compute contrastive loss. As shown in Figure 2, a subgraph
Ĝ = (X̂, Â) is sampled from G and fed into two GNN
encoders, the main encoder fθ(·) and the auxiliary encoder
fϕ(·), to get two variants of node representations HĜθ and
HĜϕ for Ĝ. In our experiment, we adopt a one-layer GCN as
the GNN encoder. The details of the subsampling process is
presented in the subsection below. Here, we consider HĜθ as
the patch view representation. To obtain the contextual view
representation, we first compute the n-th power of Â and
multiply the output with HĜϕ. This process can be formulated
as follows:

H̃
Ĝ

ϕ = Â
n

HĜ
ϕ , (4)

where H̃
Ĝ
ϕ is the contextual view representation, and n is a

tunable parameter. It is worth noting that the computation
of Â

n
can be easily relieved with sub-sampling and matrix

multiplication decomposition. The computation time of this
power mechanism is less than or around 1 millisecond for
five datasets of various sizes (as shown in Table VI). In
our proposed method, n is a key parameter to control the

contextual scope of contextual representation H̃
Ĝ
ϕ. As the n-th

power of A gives the number of paths of length n between
two nodes, two vertices are adjacent if the distance between
these two vertices is less than or equal to n [19]. Therefore, by
multiplying Â

n
with HĜϕ, the contextual scope of contextual

representations can be extended to n-hop neighbourhood.
Subsampling. We adopt a very simple yet effective subsam-
pling process for data augmentation. Specifically, we ran-
domly pick a preset number of nodes and their edges to form
a subgraph for training in each training epoch. The advantages
of this approach are two folds: preserving essential properties
(i.e., the sparsity TG and the contextual homophily rate of A1,
P1(i)) of the given graph G, and building diversified subgraphs
with trivial computation and sufficient randomness.

To prove the first advantage, we propose the following
proposition:

Proposition 1. Given a Graph G with d average node degree
and P1(i) homophily rate for the first power of A, its sampled
graph Ĝ still have similar sparsity TĜ and P1(i) as G.

Proof. As the sparsity of G, TG , equals to E
N×N and E ≈

N × d, we can derive that TG ≈ N×d
N×N = d

N . After sampling,
we can obtain a subgraph Ĝ, which has S nodes. For each
node, it would have S × d× S

N neighbours, i.e., edges. Thus,
the sparsity of the subgraph Ĝ, TĜ ≈

S×d× S
N

S×S = d
N . As TG

is approximately equal to TĜ , we show that the sparsity of G
and Ĝ is similar. In addition, as edges in Ĝ come from the

original graph G, they still connect approximately the same
ratio (P1(i)) of homophilic neighbours (i.e., nodes sharing the
same label as i). Here, we prove the above proposition.

The second advantage alleviates the reliance on the fixed
graph during model training. As we sample a subgraph in each
training epoch, the sampled subgraph is changing instead of
in the static state. As a result, the model has to be versatile to
handle the contrastiveness built with changing topology. This
can be regarded as an augmentation to increase the difficulty
of the self-supervised pre-text tasks, which may improve the
model performance. We have conducted an ablation study in
Section VI-C to show its effectiveness.

B. Cross-View Contrastive Learning

In UGCL, the cross-view contrastive learning scheme con-
sists of two contrastive paths, which are the patch-view con-
trastive path and the cross-view contrastive path. In the same
view, the first path distinguishes an anchor node embedding
from other node embeddings, which are considered negative
samples. The latter path simply maximises the cosine similar-
ity between a patch view representation and its corresponding
contextual representation (i.e., positive samples). By combin-
ing both paths, we can form the contrastive learning objective.

As shown in Figure 2, after processing Ĝ into the primary
GNN encoder fθ(·), we can get the patch view representation
HĜθ . Within the patch view, giving the set of nodes V in Ĝ
and an anchor node v ∈ V , we define that all nodes except
for the anchor node as negative samples to regularise the
contrastive loss via MI minimisation. In addition, we define
an anchor node representation in the patch view hv ∈ HĜθ
and contextual view h̃v ∈ H̃

Ĝ
ϕ as the positive pair (red line

in Figure 2). By discriminating representations in the positive
pair, our model can distil self-supervision signals from the
chosen contextual scope. The contrastive loss function can be
formulated as follows:

L = − 1

S

S∑
v∈V

log
ecos(hv,h̃v)∑N

u∈V ;u 6=v e
cos(hv,hu)

, (5)

where cos(·) is the cosine similarity function, S represents the
number of nodes in the sampled graph, hv and h̃v denote the
anchor node patch- and contextual representation respectively.

C. Model Training

To train our model end-to-end, we leverage the loss L
defined in Equation (5). The training objective is to minimise
L during the optimisation. To obtain the output embeddings
for downstream tasks, we first generate HGθ with the trained
GNN encoder gθ and H̃

G
θ by multiplying HGθ with An. Finally,

we aggregate these two representations: H = HGθ + H̃
G
θ to get

the final representations.

IV. UNIFYING REPRESENTATIVE GCL METHODS

To learn node representations in a self-supervised manner,
GCL methods usually inject contrastiveness between patch
view and contextual view [20]. In Figure 3, we present the
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Fig. 3. A unified framework for GCL methods. The red line indicates
contrastiveness.

general architecture of UGCL, which can be considered as a
unified framework of GCL methods. From the framework,
GCL generally follows three steps: augmentation, graph en-
coding and contrasting. Specifically, the optional first step is
applying augmentation to the original graph G = (X,A) to
create semantically similar graph instances Ĝ. In UGCL, we
regard subsampling as augmentation. Then, the graph encoder
g(·) generates node representations HĜg = g(Ĝ). To train
g(·), contrastiveness is built between node representations and
their corresponding contextual representations to acquire self-
supervision signals via MI maximisation:

g∗(·) = arg max
g

MI(HĜg ,A
nHĜg ), (6)

where g∗(·) is the trained encoder, MI(·) is a mutual in-
formation neural estimator [21] consisting of discriminative
network (i.e., bilinear transformation or cosine similarity) and
contrastive loss, HĜg and AnHĜg represent node- and contextual
representations respectively. In the following sections, we
interprets four representative GCL methods of two categories
(i.e., localised- and global contrasting methods) with the
proposed unified framework.

A. Connections to Localised Contrasting Methods

Localised contrasting methods form pretext tasks by pulling
the representation of a node closer to its augmented coun-
terpart or close neighbours to distil the localised contextual

information [12], [14], [15]. These methods can be considered
as UGCL with a tiny n for the power of A when building the
contextual view. To illustrate this point, we present GRACE
[14] and GMI [12] (i.e., two typical localised methods) with
the unified framework in Figure 4(a).

In particular, GRACE can be considered as contrasting
a node to a contextual representation with 0-th power, i.e.,
A0 = I. It employs two different graph augmentation methods
to generate two augmented views Ĝ1 and Ĝ2, where it pulls
the representations of the same node in these two views closer.
This node-to-node comparison strategy allows GRACE to
extract the most fine-grained information from the contextual
scope with only one node (i.e., a node’s augmented counter-
part). This scheme is equal to applying A0 to the generated
contextual representation, as we only care about the semantic
information embodied within a node itself:

g∗(·) = arg max
g

MI
(

HĜ1g ,A
0HĜ2g

)
. (7)

Different from GRACE, GMI extends the contextual scope
to 1-hop neighbourhood. It maximises the MI between a node
and the raw features of its 1-hop neighbours. This is similar
to contrasting the raw features X with 1-th power of A, which
aggregates a node 1-hop neighbourhood:

g∗(·) = arg max
g

MI
(
HGg ,A

1X
)
. (8)

This contextual representation can provide the very-local
information of a node for contrastiveness. However, focusing
only on the close neighbourhood, these localised methods
neglect useful information from a broader receptive field.

B. Connections to Global Contrasting Methods

Global contrasting methods place discrimination between
a node and a graph-level embedding, summarising all node
representations in a graph [11], [13]. In a special case (i.e.,
the input graph only has one connected component), these
approaches are similar to UGCL with infinite power for A. The
interpretation of DGI and MVGRL in the architecture of UGCL
is presented in Figure 4(b). DGI aims to extract global se-
mantic information from graph-level embedding. Specifically,
they create the graph-level embedding by coarsely averaging
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all node embeddings in a graph. MVGRL extends DGI with
additional augmentation, which creates two augmented views
Ĝ1 and Ĝ2.

Similarly, we can also apply the infinite power of A to
generate graph-level contextual representations. According to
Theorem 1, with the infinite power of A, node representations
within a connected component become similar and converge
to a certain point or shared subspace. This is because nodes
iteratively receive messages from all other nodes within the
same connected component, which smooths the difference
between these nodes. Thus, the oversmoothed representations
can be regarded as the graph-level embedding in the afore-
mentioned special case (i.e., the input graph only has one
connected component). These global contrasting methods can
be approximated by applying infinite power of A to the
contextual view in UGCL:

g∗(·) = arg max
g

MI(HGg ,A
∞HGg ), (9)

g∗(·) = arg max
g

MI(HĜ1g ,A
∞HĜ2g ), (10)

where Equation (9) and Equation (10) are formulas for DGI
and MVGRL in the unified framework. Though these global
contrasting methods can extract supervision signals from the
global view, with the largest contextual scope, it is inevitable
to include irrelevant noise and impede the model training.

C. Theoretical Justification for Flexible Contextual Scope

Here, we provide theoretical justification for why different
graphs require different contextual scope from the perspective
of homophily dominance [22]. Moreover, based on this theo-
retical analysis, we can guide the selection of n-th power for
A in model training.

Existing GNNs assume homophily in prior graphs to be
effective. To obtain effective representations, nodes in the
contextual scope are expected to be homophily dominant [22],
which can be achieved when Pn(i) is at least larger than any
{| j∈Nn(i)∧yj∈c

j∈Nn(i)
|; c ∈ C}, where C is number of classes for the

graph. Here we consider i as a node with the average degree
of G, d, and assume P1(i) equals to the homophily rate of
a graph, i.e., the proportion of edges connecting same class
nodes. To hold homophily dominance, Pn(i) needs to be as
large as possible. The following lemma shows the lower bound
of Pn(i) is determined by P1(i) and d:

Lemma 1. Given G with an average degree of d ≥ 1 for each
node and contextual homophily rate with 1-th power P1(i).
With n-th power of A, the lower bound of Pn(i) is:

Pn(i) >
(d− 1)P1(i)(dnPn1 (i)− 1)

(dn − 1)(dP1(i)− 1)
. (11)

Based on Lemma 1 and Definition 2, we can derive four
properties:

Property 1. Given a graph G, when n increases, the lower
bound of Pn(i) drops.

Property 2. Given a graph G, when P1(i) increases, the lower
bound of Pn(i) increases.

Property 3. Given a graph G, when d increases, the lower
bound of Pn(i) drops.

Property 4. Given a graph G, when TG increases, the lower
bound of Pn(i) drops.

Property 2, Property 3 and Property 4 indicate the choice of
n is closely related to two essential properties of graphs, i.e.,
sparsity and homophily. Specifically, when a graph is dense
(i.e., the sparsity TG is large), a large n can easily break
the homophily dominance and degrade model performance.
In addition, under the same level of sparsity, a low n is
preferable for a low P1(i), i.e., homophily rate. These findings
are consistent with our experiment results shown in Section
VI-D1. The detailed proof of Lemma 1, Properties 1-4 are
provided as follows:

Proof. Give a graph G with an average degree of d for each
node and homophily rate with 1-th power of A, P1(i). d, P1(i)
and n are all positive numbers. With d, the total number of
nodes in the neighbourhood for n-th power of A is equal to
d+ d2 + · · ·+ dn. For the number of homophilic nodes in the
neighbourhood, we know it is at least dP1(i) for the first-hop
neighbourhood, d2P1(i)2 for the second-hop neighbourhood,
and so on. Thus, the lower bound of this number is equal to
dP1(i) + d2P1(i)2 + · · ·+ dnP1(i)n. Here, we can formulate
the lower bound of Pn(i) as:

Pn(i) >

∑n
k=1 d

kP1(i)k∑n
k=1 d

k

=
(d− 1)P1 (dnP1(i)n − 1)

(dn − 1) (dP1(i)− 1)
.

(12)



From the above formula, we first prove Property 1. The
gap between denominator and numerator of the lower bound
of Pn(i) would become larger when n increases. This is
because when n increases by 1, the numerator would increase
dnP1(i)n, while the denominator would increase dn. It is easy
to observe the gap between dnP1(i)n and dn would become
larger and larger when n increases as 0 < P1(i) < 1. Thus,
we prove that when n increases, the lower bound of Pn(i)
drops.

To prove Property 2, we present the partial derivative with
respect to P1(i) for the numerator of the lower bound of Pn(i):

fPn(i)
num =

n∑
k=1

dkP1(i)k,

∂f
Pn(i)
num

∂P1(i)
= d+ 2d2P1(i) + 3d3P1(i)2 + · · ·+ ndnP1(i)n−1,

(13)
where fPn(i)

num is the numerator for Pn(i). As d ≥ 1 and P1 >

0, ∂fPn(i)
num

∂P1(i)
is a positive number. In addition, changing P1(i)

will not affect the denominator of the lower bound of Pn(i).
Thus, we can derive that increasing P1(i) will lead to the
monotonical increase for the lower bound of Pn(i) and prove
Property 2.

From Equation 12, we can also prove Property 3 as follows:

Pn(i) >

∑n
k=1 d

kP1(i)k∑n
k=1 d

k

=

n∑
k=1

(
dk∑n
k=1 d

k
)P1(i)k,

(14)

here we define dk∑n
k=1 d

k as M , then we can obtain the
derivative of M :

dM

dd
=

n∑
k=1

dk−1(
∑n
k=1 d

k)− dk(
∑n
k=1 kd

k−1)

(
∑n
k=1 d

k)2

=

∑n
k=1 d

2k−1 −
∑n
k=1 kd

2k−1

(
∑n
k=1 d

k)2

=

∑n
k−1 d

2k−1 −
∑n
k=1 kd

2k−1

(
∑n
k=1 d

k)2

=

∑n
k=1(1− k)d2k−1

(
∑n
k=1 d

k)2

=

∑n
k=2(1− k)d2k−1

(
∑n
k=1 d

k)2
< 0.

(15)

From the derivative of M , we can see the increase of d (i.e.,
increasing sparsity TG) leads to the monotonical decrease of
M , which causes the drop of the lower bound of Pn(i). Thus,
we prove Property 3 and 4.

Though different graphs require different contextual scope,
aforementioned GCL methods only have fixed contextual
scope. In contrast, UGCL can adjust the contextual scope
by changing n, which allows us to choose the most suitable
scale for datasets with different properties. Moreover, we can
select n guiding by the theoretical findings above.

D. Guidance of Selecting n

We consider the n just before the break of strong homophily
dominance (i.e., Pn(i) > 0.5) as the selected n for model
training. Homophily-dominant neighbourhoods are more ben-
eficial for GNN layers, since in such neighbourhoods the class
label of each node may be determined by the majority of
the class labels in the neighbourhood [22]. However, only
meeting the homophily-dominant requirement may not be
sufficient for generating high quality contextual representation.
This is because homophily-dominant neighbourhood can still
include too much abundant or noisy neighbouring information,
i.e., neighbouring nodes with different classes. To ensure the
neighbourhood aggregation is conducted with a majority of
homophilic neighbours, we consider the break of strong ho-
mophily dominance as the condition to select n. Surprisingly,
this approach provides a good guidance to the selection of n.
The n just before the break of strong homophily dominance
of Pn(i) is consistent with the best n for 4 out of 5 datasets.
The experiment result is presented in Section VI-D1.

V. RELATED WORK

A. Graph Neural Networks

Firstly introduced in Scarselli’s work [23], GNNs aim to
extend deep neural networks to handle graph-structured data.
GNNs consist of two domains: spectral-based methods [24]–
[27] and spatial-based methods [28]–[30]. While spectral-
based methods adopt spectral representation of graphs, spatial-
based methods conduct feature aggregation based on nodes
spatial neighbours (e.g., GAT [28]). Notably, GCN [28]
bridges the gap between these two domains by approximating
spectral-based convolution with the first order of Chebyshev
polynomial filters. Spatial-based methods are currently more
prosperous since they have advantages in efficiency and gen-
eral applicability. For example, to further improve GCN, GAT
[28] presents an attention-based approach to weightly aggre-
gate node neighbours representations. SGC [31] simplifies
GCN by removing the non-linearity and collapsing weight
matrices among graph convolution layers. However, most
GNNs rely extensively on labelling information, whereas the
collecting process is expensive. To address this issue, GCL
emerged. We proposed UGCL, which can generate effective
node representations without labelling information.

B. Contrastive Learning

Contrastive learning is a self-supervised learning paradigm
usually based on MI maximisation. It aims to maximise
MI between similar data instances (e.g., the same object in
different augmented views and representations of the same
object in different scales) [20], [32]. It has been success-
fully applied in image classification tasks with promising
results. For example, Deep Infomax [33], Moco [34], and
SimCLR [31] train image encoders by discriminating two
augmented images. Recently, some works attempted to adapt
this concept to GNNs. DGI [11] borrows the MI maximisation
idea from Deep Infomax [33] and builds contrastiveness by
contrasting node- and graph-level contextual representations.



MVGRL [13] further enriches the contrastiveness by building
contrastiveness between augmented views of graphs.

Different from DGI and MVGRL, GRACE [14] and GMI
[12] create contextual representation from the same scale,
first-order neighbourhood, respectively. Though these GCL
methods have achieved promising results, they still share
several issues, including the fixed contextual scope and biased
contextual representation. UGCL addresses these problems as it
can easily adjust the contextual scope and ensure contrastive-
ness is built within connected components.

VI. EXPERIMENT

A. Details of the Experiments

To evaluate the effectiveness of our proposed method, we
conducted extensive experiments on 8 benchmark datasets,
including 5 citation networks (i.e., Cora, CiteSeer, PubMed,
Coauthor CS, and Physics), 2 Amazon co-purchasing net-
works (i.e., Amazon Computers and Photos), and a large-
scale dataset, ogbn-arxiv. The statistic of these datasets is
summarised in Table II. For the first three networks, we adopt
the same dataset split as [35]. For Coauthor and Amazon
datasets, we randomly split these datasets, where 10%, 10%
and the remaining nodes are chosen for training, validation
and test set, respectively. For the large-scale dataset, ogbn-
arxiv, we use the default setting as described in [36].

In our experiment, we mainly tune three parameters: n-th
power of A , sample size S, and hidden size D′. Specifically, n
is selected from 1 to 20, while S is chosen from 500 to 3000,
with every increment by 500, for Cora and Citeseer, and 3000
to 10000, with every increment by 1000, for the remaining
datasets. For D′, it is chosen from {512, 1024, 2048, 4196,
8192}. After tunning these parameters, the best performance
of our model for each dataset is recorded in Table I.

B. Node Classification Results

We choose 14 baselines to be compared with UGCL on
node classification tasks. These baselines consist of MLP
and three types of GNNs: supervised-, conventional self-
supervised, and GCL approaches. For supervised GNNs, we
select three widely-adopted supervised GNNs, which are GCN
[27], GAT [28], SGC [30]. Four conventional self-supervised
methods including DeepWalk [37], Node2vec [38], GAE [39]
and VGAE [39], and six GCL methods including DGI [11],
GMI [12], MVGRL [13], GRACE [14], GCA [40], and
BGRL [41] are chosen to be compared with our model.

We run all baselines and our model on each small to
medium-sized dataset five times, and the average node classifi-
cation accuracy and associated standard deviation are reported
in Table I. The table shows that UGCL achieved the best perfor-
mance on 6 out of 7 small to medium-sized datasets. Notably,
UGCL surpasses its self-supervised counterparts by 2.1% in
Cora, 1.1% in CiteSeer, and 1.2% in Amazon Computers.

In addition, we compare UGCL with supervised methods
(i.e., MLP and Supervised GCN) and self-supervised methods,
including Node2vec, DGI, GRACE, and BGRL on ogbn-arxiv.
The other GCL methods are not selected as they encounter
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Fig. 5. Parameter analysis for hidden size D on Cora, CiteSeer, and PubMed.

out-of-memory issue during training. The experiment results
are presented in Table III, where we can observe UGCL
has achieved on-par performance with the most competitive
baselines (i.e., GRACE and BGRL). Except for UGCL, others
results in the table are sourced from [41]
UGCL generally achieves promising results on benchmark

datasets because with n-th power of A, UGCL can tune
the contextual scope while most GCL baselines can only
contrast to a fixed scope. Additionally, UGCL ensures the
contrastiveness is established within connected components to
reduce the bias of contextual representations. These advan-
tages allow UGCL to focus on the suitable scale and lead to
model performance improvement.

C. Ablation Study
In this section, we compare the performance of our original

method to its five variants: UGCLmean, UGCLsmooth, UGCLsig,
UGCLsam, and UGCLw/o p on Cora, CiteSeer, and PubMed.
The comparative results have been exhibited in Table V.

For UGCLmean, the graph-level embedding is generated
with the naive mean pooling approach, whereas UGCLsmooth

uses 100-th power of A to obtain oversmoothed embeddings
which summarise all nodes information within a connected
component. The method UGCLsmooth consistently outperforms
UGCLmean, which indicates that establishing the contrastive-
ness within connected components instead of the whole graph
is effective.
UGCLsig uses a single encoder for both local and contex-

tual view establishment, while UGCL utilizes an additional
auxiliary encoder for generating the contextual view. This
auxiliary encoder targets to embed contextual information
for better contextual representations generation. UGCLw/o sam

have no subsampling, while UGCL uses subsampling as an
augmentation to both increase the difficulty of the contrastive
learning tasks and extend the scalability. UGCLw/o p removes
the power mechanism for the contextual view, whereas UGCL
employs this mechanism to control the contextual scope of
contextual representations. To shed light on the contributions
of the auxiliary GNN encoder, subsampling, and the power
mechanism, we compare UGCL with UGCLw/o sam, UGCLsig,
and UGCLw/o p on three benchmark datasets. It is apparent
that the model performance degrades without any of the three
mechanisms mentioned above, which validates the effective-
ness of these mechanisms.

D. Parameter Study
1) n-th power of A: n is a key parameter used to choose the

n-th power of A for contextual view generation. To evaluate



TABLE I
NODE CLASSIFICATION RESULTS ON 7 SMALL TO MEDIUM-SIZED DATASETS COMPARED WITH 14 BASELINES. HERE, THE “DATA” COLUMN INDICATES

WHAT KIND OF DATA THE METHOD NEED TO USE IN TRAINING. X, A AND Y MEANS FEATURE MATRIX, ADJACENCY MATRIX, AND LABEL INFORMATION,
RESPECTIVELY. OOM REPRESENTS OUT-OF-MEMORY. THE BEST PERFORMANCE FOR EACH DATASET IS IN BOLD.

Data Method Cora CiteSeer PubMed Coauthor
Physics

Coauthor
CS

Amazon
Computers

Amazon
Photos

X, A, Y MLP 56.1±0.3 56.9±0.4 71.4±0.1 93.5±0.1 90.4±0.1 73.9±0.1 78.5±0.1
X, A, Y GCN 81.5 70.3 79.0 95.7±0.2 93.0±0.3 86.3±0.5 87.3±1.0
X, A, Y GAT 83.0±0.7 72.5±0.7 79.0±0.3 95.5±0.2 92.3±0.2 87.1±0.4 86.2±1.5
X, A, Y SGC 81.0±0.0 71.9±0.1 78.9±0.0 95.8±0.1 92.7±0.1 74.4±0.1 86.4±0.0

X, A DeepWalk 69.5±0.6 58.8±0.6 69.9±1.3 91.8±0.2 84.6±0.2 85.7±0.1 89.4±0.1
X, A Node2vec 71.2±1.0 47.6±0.8 66.5±1.0 91.2±0.1 85.1±0.1 84.4±0.1 89.7±0.1
X, A GAE 71.1±0.4 65.2±0.4 71.7±0.9 94.9±0.1 90.0±0.7 85.3±0.2 91.6±0.1
X, A VGAE 79.8±0.9 66.8±0.4 77.2±0.3 94.5±0.1 92.1±0.1 86.4±0.2 92.2±0.1

X, A DGI 81.7±0.6 71.5±0.7 77.3±0.6 94.5±0.5 92.2±0.6 84.1±0.4 91.5±0.3
X, A GMI 82.7±0.2 73.0±0.3 80.1±0.2 OOM OOM 76.8±0.1 85.1±0.1
X, A MVGRL 82.9±0.7 72.6±0.7 79.4±0.3 95.3±0.1 92.1±0.1 81.8±0.5 90.7±0.3
X, A GRACE 80.0±0.4 71.7±0.6 79.5±1.1 OOM 92.8±0.1 87.2±0.4 92.7±0.3
X, A GCA 80.4±0.4 71.2±0.2 80.4±0.8 95.9±0.2 93.3±0.1 87.8±0.3 93.2±0.3
X, A BGRL 81.1±0.2 71.6±0.4 80.0±0.4 95.8±0.4 93.3±0.4 88.9±0.3 93.2±0.3

X, A UGCL 84.7±0.3 74.1±0.2 81.6±0.3 95.6±0.3 93.4±0.3 90.1±0.5 93.8±0.7
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Fig. 6. Joint parameter analysis of sample size and n-th power of A.

TABLE II
THE STATISTICS OF BENCHMARK DATASETS.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Coauthor CS 18,333 81,894 6,805 15
Coauthor Physics 34,493 991,848 8,415 5
Amazon Computers 13,752 245,861 767 10
Amazon Photos 7,650 119,081 745 8
ogbn-arxiv 169,343 1,166,243 128 40

TABLE III
NODE CLASSIFICATION RESULT ON OGBN-ARXIV.

Method Valid Test

MLP 57.7±0.4 55.5±0.2
Supervised GCN 73.0±0.2 71.7±0.3

Node2vec 71.3±0.1 70.1±0.1
DGI 71.3±0.1 70.3±0.2
GRACE 72.6±0.2 71.5±0.1
BGRL 72.5±2.1 71.6±1.6

UGCL 72.6±0.4 71.4±0.6

the effect of n, we run UGCL with n ranging from 1 to 10.
Based on Equation 11, we can calculate the lower bound of
Pn(i) for each n with d and P1(i). Here, we assume P1(i)
equals to the homophily rate of the dataset.

The model performance and the value of Pn(i) on 5 datasets
are reported in Table IV. Here, we adopt the best parameter

settings for each dataset except for n. Specifically, the chosen
sample size S are 1000, 3000, 7000, 10000, and 5000 for
Cora, CiteSeer, PubMed, Computers and Photos, respectively.
As shown in the underlined results in Table IV, we can see the
n just before the break of strong homophily dominance (i.e.,
Pn(i) > 0.5) for the lower bound of Pn(i) is consistent with
the best n for 4 out of 5 datasets. Though for Cora, the selected
n is not optimal, it still achieves state-of-the-art performance
(84.2%) compared with baselines.

2) Hidden Size D′: Hidden size D′ controls the dimension-
ality of hidden layers in the GNN encoder, and we change D′

from 512 to 8192 to see its effect on the model performance.
The experiment results of the parameter analysis are shown
in Figure 5. The model performance on a larger dataset (i.e.,
PubMed) grows consistently when D′ increases, whereas the
other two datasets achieve the highest performance at first and
then degrade. We conjecture this is because a large D′ with
too many parameters may overfit on small datasets.

3) Joint Influence of Sample Size S and n: In this section,
we explore the joint influence of sample sizes S and n on
three datasets: Cora, CiteSeer, and PubMed. Specifically, we
choose S ranging from 500 to 2500 for Cora, 1000 to 3000
for CiteSeer with every increment by 500, and 3000 to 7000
for PubMed with every increment by 1000. The experiment
result is presented in Figure 6. For Cora and CiteSeer, we can



TABLE IV
THE EVALUATION OF n-TH POWER OF A ON FIVE BENCHMARK DATASETS. Pn(i) IS THE CONTEXTUAL HOMOPHILY RATE FOR EACH n. THE BEST
PERFORMANCE FOR EACH DATASET IS IN BOLD. THE n AND THE MODEL PERFORMANCE JUST BEFORE THE BREAK OF HOMOPHILY DOMINANCE

ACCORDING TO Pn(i) ARE UNDERLINED. “HOMO RATE” MEANS THE PROPORTION OF HOMOPHILY EDGES, WHICH CONNECT NODES WITH THE SAME
CLASS, ON TOTAL NUMBER OF EDGES IN THE GRAPH. IT EQUALS TO P1(i).

Dataset Sparsity TG Homo Rate P1(i) 1 2 3 4 5 6 7 8 9 10

Cora 0.074% 81.0% 80.1±0.2 82.0±0.1 83.2±0.2 83.9±0.3 84.2±0.2 84.3±0.4 84.4±0.3 84.6±0.4 84.7±0.3 83.8±0.4
Pn(i)cora - - 0.81 0.75 0.67 0.59 0.52 0.45 0.39 0.34 0.29 0.25

CiteSeer 0.042% 72.6% 74.0±0.2 74.1±0.2 73.9±0.3 73.7±0.3 73.8±0.4 73.7±0.2 73.7±0.3 73.7±0.2 73.6±0.3 73.5±0.2
Pn(i)citeseer - - 0.73 0.6 0.48 0.38 0.3 0.23 0.17 0.13 0.1 0.07

PubMed 0.011% 80.2% 76.6±0.4 78.6±0.3 79.4±0.4 80.1±0.4 80.4±0.2 80.4±0.4 79.8±0.3 81.3±0.2 81.3±0.1 81.4±0.2
Pn(i)pubmed - - 0.80 0.73 0.68 0.63 0.59 0.56 0.54 0.52 0.51 0.50

Amazon Computers 0.130% 77.7% 89.9±0.5 90.1±0.8 89.1±1.1 89.4±1.0 89.3±1.1 87.7±0.7 87.4±1.2 87.1±0.9 87.0±0.8 87.2±0.9
Pn(i)ac - - 0.78 0.62 0.48 0.37 0.29 0.23 0.18 0.14 0.11 0.08

Amazon Photos 0.203% 82.7% 92.5±0.6 93.4±0.4 93.8±0.4 93.4±0.3 93.0±0.9 92.9±0.5 92.9±1.3 92.0±1.5 92.3±1.2 91.6±0.6
Pn(i)ap - - 0.83 0.71 0.59 0.49 0.4 0.33 0.28 0.23 0.19 0.16

TABLE V
ABLATION STUDY OF UGCL.

Method Cora Citeseer Pubmed

UGCLmean 79.1±0.5 70.5±0.5 77.2±0.5
UGCLsmooth 81.3±0.5 71.9±0.5 80.8±0.5
UGCLsig 84.2±0.3 72.2±0.4 81.1±0.2
UGCLw/o sam 84.1±0.5 73.2±0.4 80.8±1.0
UGCLw/o p 80.8±0.6 71.4±0.2 79.5±0.4

UGCL 84.7±0.3 74.1±0.2 81.6±0.3

TABLE VI
n-TH POWER OF A COMPUTATION TIME IN SECONDS ON FIVE DATASETS.

NUMBER IN BRACKET MEANS THE NUMBER OF n USED FOR THE DATASET.

Cora(7) CiteSeer(6) PubMed(10) Computers(1) Photos(2)

2.6e-04 2.2e-04 3.7e-04 2.7e-04 1.3e-03

observe that when S increases, the model performance peaks
at lower n. For PubMed, the model performance all peaks
when n is 10.

This experiment result is consistent with our theoretical
findings in Section IV-C. We conjecture this phenomenon
is because when S increases, the average node degree d
would increase for the generated subgraph Ĝ as the average
node degree in Ĝ is S

N d. According to Property 3, when d
increases, the lower bound of Pn drops and leads to the break
of homophily dominance easily when n increases. Thus, the
optimal n decreases with the growth of S. For PubMed, from
Table IV, we can see even with 7000 for S, the homophily
dominance still holds when n is 10. Thus, it is reasonable that
the model performance all peaks at n = 10.

E. Computation for n-th Power of A
To show the easiness of the computation for n-th Power of

A in UGCL, we run experiments on five datasets (i.e., Cora,
CiteSeer, PubMed, Amazon Computers, and Amazon Photos)
and report the average computation time per epoch in seconds
for this operation in Table VI. From the table, we can observe
that the computation is trivial in the training process.

VII. CONCLUSION

In this paper, we propose a novel GCL approach, namely
UGCL. We design a cross-scale contrastiveness to fuel the
GNN encoder learning process by discriminating node rep-
resentations in the patch- and contextual view. The proposed

power mechanism allows our method to adjust the contex-
tual scope when building contrastiveness and ensures the
contrastiveness is established within connected components.
These advantages allow UGCL to conduct a more fine-grained
contrastiveness than the naive pooling approach and reduce
the bias of generated contextual representations. Moreover,
the architecture of UGCL can be considered as a unified
framework to interpret existing GCL methods. Extensive ex-
periments validate the effectiveness of our proposed approach
in node classification tasks.
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APPENDIX

We first provide the Lemma 2, the definition of subspace,
and Lemma 3:

Lemma 2. Given an adjacency matrix A, its normalized aug-
mented adjacency is Â = D̂

− 1
2 (A + I)D̂

− 1
2 , where D̂ = D + I,

and I is the identity matrix. Â is symmetric with real eigen-
values λ1 ≤ λ2 ≤ ...λN , which have been sorted ascendingly.
If the algebraic multiplicity of the largest eigenvalue λN is
K ≤ N , which means the top K eigenvalue are the same, we
have the following properties:
• λN−K+1, λN−K+2 · · ·λN = 1, i.e., the K largest eigen-

value equals to 1;
• λN−K < 1;λ1 > −1, i.e., the second largest eigenvalue

is smaller than 1, while the smallest eigenvalue is larger
than -1;

• The multiplicity K is the number of connected com-
ponents in the Graph G with the adjacency matrix A.
For each connected component, we have the eigenvector
v̂k := D̂

1
2uk corresponding to the eigenvalue λN−K ,

where uk ∈ RN indicates whether a node is belong to
the K-th component.

Definition 3 (Subspace). We define the subspace M ∈
RN×D byM := {H ∈ RN×D|H = V̂M,M ∈ RK×D}, where
V̂ ∈ RN×K is a collection of eigenvectors v̂k of the largest
eigenvalue of Â in Theorem 1.



Lemma 3. Given a normalized adjacency matrix Â ∈ RN×N ,
a feature matrix H ∈ RN×D, the projection matrix for M,
V̂V̂

T
, where V̂ is the normalized bases of M, and F̂ is the

orthogonal complement of V̂, we have:

dM(H) = ‖ F̂
T

H ‖F ,

dM(ÂH) = ‖ ΛF̂
T

H ‖F ,

≤ ‖ Λ ‖F ‖ F̂
T

H ‖F ,

(16)

where dM(·) is the distance between representations and the
subspace M. The distance between node representations H
and M is denoted as dM(H) = infp∈M ‖ H − p ‖F. Λ
denotes all eigenvalues excluding the K largest eigenvalues,
and ‖ · ‖F represents the Frobenius norm.

Proof. Lemma 2 has been proved by [42] to show augmented
spectral property of an augmented adjacency, while Lemma 2
has been proved by [43] based on the notion of projection.
A projection matrix can project a given vector or matrix
onto subspace to obtain the projected vector or matrix. By
utilising Equation (16) in Lemma 3, we will have the following
derivation:

dM(Â
n

H) =‖ ΛnF̂
T

H ‖F ,

=‖ ΛΛn−1F̂
T

H ‖F ,

≤‖ Λ ‖F ‖ Λn−1F̂
T

H ‖F ,

≤‖ Λ ‖F dM(Â
n−1

H),

≤ λdM(Â
n−1

H).

(17)

Here, we get the inequality shown in Theorem 1.
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