
AutoAttention: Automatic Field Pair Selection for
Attention in User Behavior Modeling

Zuowu Zheng∗, Xiaofeng Gao∗, Junwei Pan†, Qi Luo‡, Guihai Chen∗, Dapeng Liu†, and Jie Jiang†
∗Shanghai Jiao Tong University, Shanghai, China

waydrow@sjtu.edu.cn, {gao-xf, gchen}@cs.sjtu.edu.cn
†Tencent Inc., Shenzhen, China

{jonaspan, rocliu, zeus}@tencent.com
‡Shandong University, Shandong, China

luoqi2018@mail.sdu.edu.cn

Abstract—In Click-through rate (CTR) prediction models, a
user’s interest is usually represented as a fixed-length vector
based on her history behaviors. Recently, several methods are
proposed to learn an attentive weight for each user behavior
and conduct weighted sum pooling. However, these methods only
manually select several fields from the target item side as the
query to interact with the behaviors, neglecting the other target
item fields, as well as user and context fields. Directly including all
these fields in the attention may introduce noise and deteriorate
the performance. In this paper, we propose a novel model named
AutoAttention, which includes all item/user/context side fields as
the query, and assigns a learnable weight for each field pair
between behavior fields and query fields. Pruning on these field
pairs via these learnable weights lead to automatic field pair
selection, so as to identify and remove noisy field pairs. Though
including more fields, the computation cost of AutoAttention
is still low due to using a simple attention function and field
pair selection. Extensive experiments on the public dataset and
Tencent’s production dataset demonstrate the effectiveness of the
proposed approach.

Index Terms—Click-Through Rate Prediction, User Behavior
Modeling, Recommendation System

I. INTRODUCTION

Click-through rate (CTR) prediction is one of the most
fundamental tasks for online advertising systems, and it has
attracted much attention from both industrial and academic
communities [1]–[3]. Modeling a user’s interest through his
or her history behaviors on items has proven as one of the
most successful advances in the CTR prediction task [4]–[6].

In the Embedding & Multi-Layer Perceptron (MLP) algo-
rithms for online advertising and recommendation systems,
a user’s interest is usually represented as a fixed-length
embedding vector, based on her history behaviors [4], [7].
Traditional methods take a straightforward way to do a sum or
mean pooling over all behavior embedding vectors to generate
one embedding [7]. However, it ignores the fact that some
behaviors are more important than others given the target item,
user and context features.

Recently, several user behavior modeling methods are pro-
posed to calculate attentive weights for different behaviors w.r.t

1Z. Zheng, X. Gao, and G. Chen are with the MoE Key Lab of Artificial
Intelligence, Department of Computer Science and Engineering, Shanghai Jiao
Tong University. X. Gao is the Corresponding author.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Inference Time (ms)

0.600

0.602

0.604

0.606

0.608

0.610

0.612

0.614

0.616

A
U

C

Sum Pooling
DIN
DIEN
DSIN

MAF-C
MAF-S
DIN+
DotProduct
AutoAttention

Fig. 1: AUC and inference time comparison of the proposed
AutoAttention with baselines on the public Alibaba dataset.
Sum pooling, DIN, DIEN, and DSIN are four existing meth-
ods, which only include several manually selected fields in
the attention unit. MAF-C, MAF-S, DIN+, and DotProduct
are several proposed baselines which include all available
fields. AutoAttention also includes all fields, but conducted
field pair selection and achieves new state-of-the-art AUC with
low inference time.

a given target item and then conduct a weighted sum pooling,
such as Deep Interest Network (DIN) [4] and its variants [5],
[6]. Even though these methods achieve significant perfor-
mance lift, they still suffer from the following limitations:
• First, in real-world recommendation systems, a user’s

interest may not only depend on the target item but also
on the user’s demographic features or context features.
However, existing works only manually select several
fields from the target item side as the query and interact
them with each behavior to calculate the attentive weight.
It neglects the effect of other fields, including other
fields from the target item side, as well as those from
the user and context sides. For example, when browsing
the game zone of a shopping website, a boy will click

ar
X

iv
:2

21
0.

15
15

4v
1 

 [
cs

.I
R

] 
 2

7 
O

ct
 2

02
2



a recommended new game The Witcher 3 because he
clicked some similar games last week, so the item side
fields should be included as all existing works do. Or
it’s because he is in the game zone now and any history
click on games indicates a strong interest in games. In
the latter case, the game zone feature from the context
side plays an important role in capturing his interest from
behaviors.

• Second, existing works interact all behavior fields with all
target item side fields. Recent studies [8], [9] show that
some interactions in attention are unnecessary and harm
the performance. Involving more fields as the query may
introduce more irrelevant field interactions and further
deteriorate the performance.

• Third, as a part of the input layer of a more complicated
DNN model for CTR prediction, the procedure of gener-
ating a user interest vector should be lightweight. Unfor-
tunately, most existing methods use an MLP to calculate
the attention weight, which leads to high computation
complexity.

To resolve these challenges, we propose to include all
item/user/context fields as the query in the attention unit, and
calculate a learnable weight for each field pair between user
behavior fields and these query fields. To avoid introducing
noisy field pairs, we further propose to automatically select the
most important ones by pruning on these weights. Besides, we
adopt a simple dot product function rather than an MLP as the
attention function, leading to much less computation cost. We
summarize the AUC as well as the average inference time of
AutoAttention and several baseline models in Fig. 1. Except
Sum Pooling which has a very low inference time due to its
simplicity, the proposed AutoAttention gets a higher AUC than
all the other baseline models with low inference time. The
main contributions of this paper are summarized as follows:

• We propose to involve all item/user/context fields as the
query in the attention unit for user interest modeling.
A weight is assigned for each field pair between user
behavior fields and these query fields. Pruning on weights
automates the field pair selection, preventing performance
deterioration due to introducing irrelevant field pairs.

• We propose to use a simple dot product attention, rather
than an MLP in existing methods. This greatly reduces
the time complexity with comparable or even better
performance.

• We conduct extensive experiments on public and produc-
tion datasets to compare AutoAttention with state-of-the-
art methods. Evaluation results verify the effectiveness
of AutoAttention. We also study the learnt field pair
weights and find that AutoAttention does identify several
field pairs including user or context side fields, which are
ignored by expert knowledge in existing works.

The rest of the paper is organized as follows. Section II
provides the preliminaries of existing user behavior methods.
In Section III, we describe AutoAttention, and describe its
connection with several existing methods. Experiment settings

and evaluation results are presented in Section IV. Finally,
Section V and Section VI discusses the related work and
concludes the paper, respectively.

II. PRELIMINARIES

In this section, we present the preliminaries of user behavior
modeling in CTR prediction. A CTR prediction model aims
at predicting the probability that a user clicks an item given
a context (e.g., time, location, publisher information, etc.). It
takes fields from three sides as the input:

pCTR = f(user, item, context)

where user side fields consists of user demographic fields and
behavior fields, item and context denote fields from the item
and context sides, respectively. In this paper, we focus on how
to capture a user’s interest from user behaviors.

Given a user u and her corresponding behaviors
{v1,v2, . . . ,vH}, her interest is represented as a fixed-length
vector as follows:

vu = f(v1,v2, . . . ,vH , eF1
, eF2

, . . . , eFM
) (1)

where vi denotes the embedding for the i-th behavior, H
denotes the length of user behaviors, and eFj ∈ RK denotes
the feature embedding from any other field besides the user
behaviors(e.g., item/user/context side fields), i.e., Fj . Each
behavior is usually represented by multiple item side fields.
Denoting the set of fields to represent behaviors as B = {Bp},
then each behavior is represented as vi =

∑
Bp∈B vBp , where

vBp
∈ RK denotes the feature embedding for the field Bp of

the i-th behavior.
A straightforward way to calculate vu is to do a sum

or mean pooling over all these vi embedding vectors [7].
However, it neglects the importance of each behavior given
a specific target item. Recently, a commonly used behavior
modeling strategy is to adopt an attention mechanism over
the user’s historical behaviors. It learns an attentive weight
for each behavior i w.r.t. a given target item t and then
conducts a weighted sum pooling, i.e. vu =

∑H
i=1 a(i, t)vi,

where a(i, t) denotes an attention function. For example, Deep
Interest Network (DIN) considers the influence of the target
item on user behaviors [4], which learns larger weights to
those behaviors that are more important given the target item,
as shown in Eqn. (2).

vu = f(v1,v2, . . . ,vH , et)

=

H∑
i=1

a(i, t)vi =

H∑
i=1

MLP(vi, et)vi

(2)

where et denotes the embedding vector of the target item t.
MLP() denotes an MLP with its output as the attention weight.
Following DIN, DIEN [5] further considers the evolution of
user interest, and DSIN [6] considers the homogeneity and
heterogeneity of a user’s interests within and among sessions.
DIF-SR [10] proposes to only consider the interaction between

2



User Behaviors

Target Item
Features

User
Features

Item 1 Item 2 Item N… Context
Features

…

Attention Attention Attention

X X X

Weighted Sum Pooling

Concat

MLP

Weight 1 Weight 2 Weight N

…

…

Attention Unit

Dot Product X Product

CTR Prediction

… …

Sum

Softmax

Behavior Weight

Query FieldsBehavior Fields

…

Fig. 2: Architecture of the proposed AutoAttention. The input features include four parts: user behaviors, target item, user,
and context. We use an attention function to calculate the weight of each behavior, the detail of which is depicted in the
Attention Unit. It assigns a learnable weight for each field pair between behavior fields and query fields which consists of all
item/user/context fields. Automatic field pair selection is conducted by pruning on these weights. All behaviors are summed
based on the attention weights, then fed into an MLP together with all other feature embeddings.

corresponding fields between queries and keys within the
attention.

All existing methods only interact each behavior with sev-
eral selected fields from the item side within the attention,
neglecting other fields, especially those from the user and
context sides.

III. AUTOATTENTION

In this section, we first describe several straightforward
approaches that interact user behavior with all fields in the at-
tention unit. Then we propose AutoAttention to automatically
identify and remove irrelevant field pairs which are introduced
to the model due to including all fields as the query in the
attention. At last, we discuss the model complexity and its
connection with several existing approaches.

Mathematically, we learn a user’s interest representation vu

from her historical behaviors based on all fields about the
current sample, i.e., all available fields from target item, user
and context sides.

vu(x) = f(v1,v2, . . . ,vH , eF1 , eF2 , . . . , eFM
)

=

H∑
i=1

a(vi, eF1:M
)vi

(3)

where vi denotes the embedding for the i-th behavior, which
is usually a summation of several attribute embeddings for this
behavior: vi =

∑
p vBp . And {eF1 , . . . , eFM

} denotes the set
of all fields from the target item, user and context sides.

A. Base Models

Before introducing AutoAttention, we first present several
straightforward approaches to interact user behaviors with all
fields within attention: MLP with All fields (MAF in short)
and DotProduct.

1) MLP with All Fields: MAF simply sums or concatenates
all field embedding vectors eF1:M

, then feeds it and the behav-
ior embedding vi to an MLP to calculate the weight. There
are two ways to construct the first layer of the MLP: element-
wisely sum eF1:M

and vi as a K dimension vector, denoted as
MAF-S (MLP with All Fields Summed); or concatenate eF1:M

and vi as a (M + 1)K dimension vector, denoted as MAF-C
(MLP with All Fields Concatenated). Mathematically,

aMAF-S(vi, eF1:M
) = MLP(vi ⊕ eF1 ⊕ eF2⊕, · · · ,⊕eFM

)

aMAF-C(vi, eF1:M
) = MLP([vi, eF1 , eF2 , · · · , eFM

])
(4)

where ⊕ denotes element-wise summation, [·] denotes con-
catenation, MLP(·) denotes an Multi-Layer Perceptron, with
the last layer as a single output node activated by the softmax
function.

2) DotProduct: Dot product is widely used in attention
models [11], and it has been proved that an MLP is hard to
learn a dot product [12]. So we propose another base model
to explicitly conduct a dot product between the user behavior

3



embedding and the sum pooling vector over all query fields.
We name it as DotProduct, formally:

aDotProduct(vi, eF1:M
) = σ

b+

M∑
j=1

〈vi, eFj
〉


= σ

b+ 〈vi,

M∑
j=1

eFj 〉

 (5)

where 〈vi,vj〉 =
∑K

k=1 vi,k · vj,k denotes the dot product
function, σ(·) denotes the softmax function, and b denotes the
bias term.

B. AutoAttention

In above base models, all available fields are considered as
the query in the attention function. However, there are still
several concerns: 1) simply involving all fields as the query
ignores the fact that some fields are more important than others
when being interacted with each behavior field; 2) in real-
world industry systems, the number of fields is large, including
all of them as the query may increase the computation cost
of the model; 3) some field pairs are irrelevant or noisy for
capturing user interests, leading to performance deterioration
when included in the attention.

To tackle the above mentioned challenges, we assign a
weight RBp,Fj

to model the interaction strength for each
field pair between a behavior field Bp and a query field
Fj . These field pair wise weights are learnable and trained
together with all the other parameters. We name our approach
as AutoAttention. Mathematically,

aAutoAttention(vi, eF1:M
) = σ

b+

P∑
p=1

M∑
j=1

〈vBp
, eFj
〉RBp,Fj


(6)

Directly including all query fields in the attention function
and interacting all of them with the behavior fields may
introduce irrelevant or noisy field pairs. In order to identify
and remove them, we conduct automatic field pair selection
by pruning on the field pair wise weights R. There are lots
of empirical studies in weight pruning area [13]–[15]. For
simplicity, we adopt a standard iterative pruning algorithm
used in [15]. An illustration of AutoAttention is presented in
Fig. 2.

The algorithm of pruning is depicted in Alg. 1. We first train
the model a few epochs to initialize the weights R and then
conduct pruning on R to remove those with the bottom-S%
lowest magnitude values. We gradually increase the sparsity
rate S% such that it increases faster in the early phase when the
network is stable and slower in the late phase when it becomes
sensitive. Other approaches such as regularization [16] can also
be used here.

Existing methods heavily rely on expert knowledge on
selecting relevant fields to involve them in the attention. For
example, in DIN [4], the authors manually select three fields

Algorithm 1: Field pairs selection training procedure
Input: Field pair strength weights R, initialize the

target sparsity rate S, damping ratios D and U .
1 Warm up Initialize whole network by training i

epochs;
2 Pruning Procedure;
3 for iteration j = 1, 2, ... do
4 Train the model for one iteration;
5 Update the current sparsity rate

S ← S × (1−Dj/U );
6 Prune the bottom-S% lowest magnitude weights in

R;

7 Online Prediction Use the fine-tuned sparse model to
make the prediction.

from the target item side: item id, shop id and category id.
Such expert knowledge is not always feasible and accurate.
AutoAttention avoids such reliance on expert knowledge by
automatic field pair selection.

C. Model Training

Follow [4], after we extract a user’s interest vu, we con-
catenate it with all the other features and feed them into an
MLP:

ŷ = sigmoid(MLP([vu, eF1 , eF2 , · · · , eFM
])) (7)

We then minimize the following cross-entropy loss during
model training:

L(Θ) = − 1

N

N∑
i=1

(yi log ŷi+(1−yi) log(1−ŷi))+λ ‖Θ‖2 (8)

where N denotes the number of training samples, Θ denotes
all trainable parameters, yi ∈ {0, 1} denotes the label, and
λ ‖Θ‖2 denotes the L2 regularization term.

D. Discussion

1) Model Complexity: The time complexity of the
proposed DotProduct and AutoAttention is O(MK) and
O(PMK) for each behavior respectively, where M denotes
the number of all the other fields, P denotes the number of
fields from the user behaviors, K denotes the dimension of
embedding vectors. With field pairs selection, the inference
time complexity of AutoAttention can be reduced since it
removes redundant field pairs during model training. Using
a sparsity rate S%, its inference time complexity is reduced
to O(S%PMK).

As for space complexity, DotProduct only introduces one
parameter, i.e., the bias term. AutoAttention introduces field
pair strength weights R and the bias term, which is PM + 1.
Using a sparsity rate S%, AutoAttention’s space complexity
becomes S%PM + 1. We summarize the complexities and
model architectures of these models in Tab. I and Fig. 3,
respectively.

4



TABLE I: A summary of model complexities. M denotes the number of query fields, P denotes the number of behavior
fields, K denotes the dimension of embedding vectors, the number of neurons of the two-layer MLP in the attention is d and
1, H denotes the length of user behaviors. Note that the time complexity of H behaviors includes the complexity of weight
calculation and weighted sum pooling over H behaviors. We list the estimated FLOPs and the number of parameters in Alibaba
Dataset with experiments settings of Section IV-B, i.e, M = 15, P = 2,K = 64, d = 200, H = 50.

Model
Time Complexity
(One Behavior)

Estimated FLOPs
(One Behavior)

Time Complexity
(H Behaviors)

#Parameters of One Behavior Estimated #Parameters

Sum Pooling O(1) 0 O(HK) 0 0
DIN O(dK2) 1,642,496 O(K2 + dKH) dK2 + 2d+ 1 819,601

DIEN O(K3 + dK2) 1,695,232 O(K3 + dKH) dK2 + 12K2 + 6K + 2d+ 1 869,137
DSIN O(H2K + dK2) 3,380,864 O(H2K +K2 + dKH) 2dK2 + 19K2 + 8K + 4d+ 2 1,717,538

DotProduct O(MK) 2,112 O(MK +HK) 1 1
AutoAttention O(PMK) 5,952 O(HPMK) PM + 1 31

DIN

Behavior Weight

Out Product

AutoAttention

Sum

Softmax

Behavior Weight

Softmax

Behavior Weight

DotProductCFI

Behavior Weight

Sum

Query Fields

Sum

Dot Product

Behavior Fields Query Fields

Concat Concat

Softmax

Concat
MLP

Softmax

Behavior Fields Query Fields Behavior Fields

…

Sum

Query FieldsBehavior Fields

…

Fig. 3: Model architecture comparison. DIN uses an MLP as the attention function, with several manually selected fields as
the query. CFI considers the corresponding field interactions between behavior fields and query fields. Both DotProduct and
AutoAttention consider all fields in the query. DotProduct uses a dot product function between behaviors fields and query
fields, and AutoAttention learns a weight RBp,Fj

for each behavior field and query field pair (Bp, Fj). The darker red color
represents higher strength weights of the field pairs.

We also summarize the estimated number of Floating Point
Operations (FLOPs), as well as the number of parameters
in Section IV-B from the public Alibaba dataset. As shown
in Tab. I, DotProduct and AutoAttention only take thousands
of FLOPs to extract user interests. Compared to DNN-based
methods, AutoAttention is at least two hundred of times
faster and also introduces fewer parameters, which makes it a
preferable choice in real-world online advertising systems.

2) Comparison to Self-Attention: Self-attention is widely
used in NLP [11], CV [17] and recommender systems [18].
In self-attention, the attention weight is a softmax over the
dot product between the query Q and key K. The value V
is then multiplied by these attention weights to get the final
output. The proposed DotProduct can be viewed as a self-
attention, taking all other fields as the query, and the user
behavior as the key and value. AutoAttention further assigns
a field pair wise weight for each field interaction. Recent
works [8], [9] on self-attention also reveal that some field pairs
(e.g., position cross position) are critical while others are noisy
within the attention, indicating the necessity of automatic field

pair selection.
3) Comparison to CFI: Recently, [10] proposes to only

interact a field from behavior with the corresponding field from
the target item in attention. For example, the category field
of behavior is only interacted with the category field of the
target item. We name this approach as CFI (Corresponding
Field Interaction). CFI assumes that the corresponding field
pairs are the most important ones, and all the other pairs are
noisy. We compare CFI with AutoAttention in Sec IV-D.

IV. EXPERIMENT

In this section, we evaluate AutoAttention on two real-
world datasets: the public Alibaba Display Ad CTR dataset
and Tencent’s production CTR dataset. The code is publicly
available1. We aim to answer the following research questions:
• RQ1: How does AutoAttention perform compared with

existing user interest methods?
• RQ2: Compared with existing methods, AutoAttention

includes more fields in the attention unit, and then con-

1https://github.com/waydrow/AutoAttention

5

https://github.com/waydrow/AutoAttention


TABLE II: Statistics of the datasets.

Datasets #Train Samples #Test Samples #Fields #Features #Items Positive Ratio

Alibaba 5,544,213 660,694 15 1,657,981 512,431 5.147%
Tencent 6,666,928 1,125,130 15 1,030,047 388,195 14.167%

ducts field pair selection by pruning on field pair weights.
Is it these additional fields or the field pair selection
contributes more to the performance lift?

• RQ3: AutoAttention can be used as a building block
of attention module in some complicated user interest
methods, such as DIEN and DSIN. Does the replace-
ment of the vanilla attention unit by AutoAttention bring
performance lift?

• RQ4: Which field pairs are regarded as the most im-
portant ones in AutoAttention? Are there any important
field pair regarded by AutoAttention ignored by existing
methods or expert knowledge? What are these ignored
field pairs?

A. Datasets and Baselines

We use the following two datasets for performance compar-
ison. Their statistics are presented in Tab. II.
• Alibaba Dataset2 [6] is a public advertising dataset

released by Alibaba. It randomly samples 1,140,000 users
from the website of Taobao from 8 days of click logs
(26 million records) to generate the original dataset.
Following [6], we use the first 7 days’ samples as the
training set (2017-05-06 to 2017-05-12), and the next
day’s samples as the testing set (2017-05-13). We keep
users’ most recent 50 behaviors. Please note that we only
extract the user click behaviors whose click time is before
the target item to prevent information leakage.

• Tencent CTR Dataset is collected by sampling user click
logs for one week from Tencent’s advertising CTR log.
We use samples from 2021-09-05 to 2021-09-10 as the
training set, and samples on 2021-09-11 as the testing
set. The data preprocessing strategy is the same as that
of the Alibaba dataset.

We compare AutoAttention with the following baseline
approaches:
• Sum Pooling conducts a sum pooling without weights on

the user’s behavior embeddings to generate a fixed-length
user interest representation.

• DIN [4] conducts a weighted sum pooling over user
behaviors. The attention weight is calculated over the
user behavior and several manually selected fields from
the item side. The attention is implemented as an out
product between the user behavior embedding and those
selected item side embedding, followed by an MLP.

• DIEN [5] uses a GRU encoder to capture the behavior
dependencies, followed by another GRU with an atten-
tional update gate to depict interest evolution.

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

• DSIN [6] captures users’ homogeneous interests in each
session and heterogeneous interests in different sessions.

• GRU4Rec [19] uses a GRU with ranking based loss to
model user sequences for session based recommendation.

• SASRec [20] uses a left-to-right Transformer to capture
users’ behaviors for sequential recommendation.

• BERT4Rec [21] uses a bi-directional self-attention to
model user behaviors.

• BST [22] uses self-attention and target-attention together
to model user behaviors.

• CFI [8] considers the corresponding field interactions for
sequential recommendation.

B. Experimental Settings

All methods are implemented in Tensorflow 1.4 with Python
3.5, which are trained from scratch on a NVIDIA TESLA
M40 GPU with 24G memory. For baseline methods, we follow
the hyper-parameter settings in their original papers but also
finetune them on our datasets. For both datasets, We set the
maximum user behavior length H to 50. The embedding di-
mension K is 64 for all features. The dimension of each hidden
layer of the three-layer MLP is 200, 80, and 1, with activation
functions PReLU, PReLU, and Softmax, respectively. We use
Adagrad [23] as the optimizer with a learning rate of 0.01.
The batch size is 4,096 and 16,384 for the training and testing
set, respectively. For DIN, DIEN, and DSIN, the dimension
of the two-layer MLP in the local activation unit is 200 and
1, with the dice activation function [4]. For DSIN, we divide
user behavior sequences into 5 sessions. The maximum user
behavior length of each session is 10. For AutoAttention, the
target sparsity rate S is 0.6 and 0.8 for Alibaba and Tencent
datasets respectively. The damping ratios D and U is set to
0.8 and 100, respectively.

We use user-weighted AUC as the evaluation metric [4],
which measures the goodness of samples ranking for each
user. A vanilla AUC is first calculated for all samples of each
user, then we conduct a weighted average over these AUCs,
using the number of samples of each user as the weights. We
still refer it as AUC in this paper for simplicity.

AUC =

∑n
i=1 #impressioni × AUCi∑n

i=1 #impressioni
(9)

where n denotes the number of users, #impressioni and
AUCi denote the number of impressions and AUC of the i-th
user, respectively.

C. Performance Comparison (RQ1)

The experiment results of comparison between existing
methods and our proposed AutoAttention on both datasets are

6

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56


TABLE III: Experiment results of AutoAttention and baselines on the public Alibaba dataset and Tencent dataset. The bold
value marks the best one in each column, while the underlined value corresponds to the second best one.

Model
Alibaba Tencent

Loss (mean±std) AUC (mean±std) AUC Impv. Loss (mean±std) AUC (mean±std) AUC Impv.

Sum Pooling 0.2083±0.00036 0.6024±0.00015 - 0.3561±0.00185 0.7125±0.00015 -
DIN 0.2052±0.00013 0.6055±0.00007 0.515% 0.3545±0.00096 0.7173±0.00050 0.674%

DIEN 0.2033±0.00020 0.6069±0.00062 0.747% 0.3539±0.00032 0.7236±0.00015 1.558%
DSIN 0.2008±0.00034 0.6094±0.00007 1.162% 0.3526±0.00010 0.7285±0.00006 2.246%

GRU4Rec 0.2031±0.00081 0.6043±0.00040 0.315% 0.3536±0.00054 0.7148±0.00004 0.323%
SAS4Rec 0.2014±0.00043 0.6043±0.00015 0.315% 0.3537±0.00029 0.7144±0.00031 0.267%

BERT4Rec 0.2027±0.00026 0.6049±0.00076 0.415% 0.3542±0.00016 0.7152±0.00063 0.379%
BST 0.2016±0.00002 0.6050±0.00037 0.432% 0.3540±0.00005 0.7160±0.00052 0.491%
CFI 0.1983±0.00007 0.6115±0.00047 1.511% 0.3516±0.00019 0.7349±0.00083 3.144%

AutoAttention 0.1945±0.00062 0.6156±0.00053 2.191% 0.3509±0.00081 0.7380±0.00040 3.579%

shown in Tab. III. All experiments are repeated 5 times and
the averaged results are reported.

The sum pooling method is treated as a baseline. DIN gets
0.52% and 0.67% relative AUC lift on two datasets compared
with sum pooling, since it considers the different impor-
tance of each behavior. GRU4Rec, SAS4Rec, BERT4Rec, and
BST achieve similar performance, which considers sequence
dependencies. DIEN and DSIN take both into account and
further improve AUC. CFI gets 1.51% and 3.14% AUC lift
respectively, which shows the advantage of corresponding field
interaction.

AutoAttention significantly lifts the AUC on two datasets
by 2.19% and 3.58%, respectively. Please note that even
a 0.1% AUC lift is huge and usually leads to a decent
Gross Merchandise Volume (GMV) lift in online advertising
systems [24].

D. Study of AutoAttention (RQ2)

So far, all baselines only consider several item side fields
as specified in their papers, while the proposed AutoAttention
uses all fields as the query and then conducts field pair
selection. One may wonder whether the performance lift is
mainly due to including more fields, or due to the selection.

1) Effect of additional fields: To answer this question, we
first equip several baseline models with all fields. Specifi-
cally, we consider all fields in three baseline models: DIN,
DIEN, and DSIN, making them consist of the same fields
with AutoAttention. We denote these three baselines with all
fields as DIN+, DIEN+, and DSIN+. We also present the
performance of the three baselines DotProduct, MAF-S, and
MAF-C that already consider all fields, and AutoAttention-
w/oP as a variant of AutoAttention without pruning on field
pairs. The results are summarized in Tab. IV.

DIN+, DIEN+, and DSIN+ get some performance lifts com-
pared to their original model, due to the inclusion of additional
fields. For example, DSIN+ improves AUC by 0.0021 and
0.0029 on two datasets. MAF-S and MAF-C get compara-
ble performance with DIEN+. However, they are still worse
than DotProduct and AutoAttention-w/oP. AutoAttention-w/oP
achieves the best result among these baselines. It indicates

that explicit field interaction strength modeling is necessary
between user behavior fields and query fields.

2) Effect of automatic field pair selection: CFI also con-
ducts field pair selection by manually selecting corresponding
field pairs, e.g., only interacting behavior category field with
target item category field. We compare it with AutoAttention
to investigate the effect of automatic field pair selection. To
make a fair comparison, we keep the same number of field
pairs in AutoAttention with CFI, naming it as AutoAttention-.
Please note that CFI selects P fields from the target item side,
and then interacts each behavior field Bp ∈ B with one of
the corresponding fields among the selected ones. Therefore,
AutoAttention- only keeps the top-P field pairs, where P = 2
in the Alibaba dataset and P = 3 in the Tencent dataset.

As shown in Tab. IV, AutoAttention- performs better than
CFI. Furthermore, the relative lift of AutoAttention over CFI
is 0.67% and 0.42%. We also compare the selected field
pairs of these two methods in the following two ways: a)
Compare the selected top-P field pairs from AutoAttention
with the P corresponding field pairs in CFI. In Alibaba dataset,
CFI considers two field pairs, (cate id, cate id) and (brand,
brand), where the first field in each pair is a query field, and
the second one is a behavior field. However, AutoAttention-
selects (cate id, brand) and (brand, brand). This indicates
that automatic field pair selection does not always rank the
corresponding field pairs the highest; b) We check the rank of
the corresponding field pairs according to the strength weight
of AutoAttention. (brand, brand) ranks 2nd and (cate id,
cate id) ranks 4th in AutoAttention. This indicates that the
corresponding field pairs are indeed important according to
AutoAttention, but not always the most important ones.

3) Effect of different sparsity rates: In this section, we
study the impact of pruning with various sparsity rates in
AutoAttention. The results are shown in Fig. 4.

At the beginning (the leftmost), AutoAttention with S% = 0
means that we just assign a different weight to each field pair,
but do not prune any field pair. Its performance increases with
a higher sparsity rate, and gets the best results with S% = 0.6
and S% = 0.8 on two datasets, respectively. The AUC lift

7



TABLE IV: Performance comparison of all baseline models
using all fields and field pair selection.

Model
Alibaba Tencent

Loss AUC Loss AUC

DIN+ 0.2020±0.00027 0.6083±0.00013 0.3541±0.00064 0.7196±0.00025

DIEN+ 0.2011±0.00037 0.6092±0.00046 0.3530±0.00011 0.7268±0.00017

DSIN+ 0.1984±0.00032 0.6115±0.00058 0.3515±0.00063 0.7314±0.00014

MAF-S 0.2015±0.00023 0.6087±0.00043 0.3531±0.00021 0.7269±0.00032

MAF-C 0.2013±0.00015 0.6089±0.00046 0.3529±0.00060 0.7273±0.00031

DotProduct 0.1992±0.00092 0.6108±0.00012 0.3518±0.00048 0.7312±0.00031

AutoAttention-w/oP 0.1969±0.00038 0.6134±0.00006 0.3512±0.00031 0.7369±0.00012

CFI 0.1983±0.00007 0.6115±0.00047 0.3516±0.00019 0.7349±0.00083

AutoAttention- 0.1972±0.00029 0.6124±0.00025 0.3515±0.00012 0.7366±0.00034

AutoAttention 0.1945±0.00062 0.6156±0.00053 0.3509±0.00081 0.7380±0.00040

0 0.5 0.6 0.7 0.8 0.9 0.95
Sparse Rate

0.193

0.194

0.195

0.196

0.197

0.198

Lo
ss

0.609

0.610

0.611

0.612

0.613

0.614

0.615

0.616

0.617

A
U

C

(a) Alibaba Dataset

0 0.5 0.6 0.7 0.8 0.9 0.95
Sparse Rate

0.3508

0.3510

0.3512

0.3514

0.3516

0.3518

Lo
ss

0.7350

0.7355

0.7360

0.7365

0.7370

0.7375

0.7380

0.7385

0.7390

A
U

C

(b) Tencent Dataset

Fig. 4: Effect of different sparsity rates S on the field pair
weights on two datasets.

is 0.36% and 0.15% compared to no pruning. This verifies
that identifying and removing irrelevant field pairs leads to
performance lift. With the sparsity rate becoming higher, the
performance deteriorates rapidly, due to the pruning some
important field pairs.

E. AutoAttention as a Building Block (RQ3)

TABLE V: Experiments of replacing the original attention unit
by DotProduct and AutoAttention in DIEN and DSIN.

Model Attention
Alibaba Tencent

Loss AUC Loss AUC

DIEN
Original 0.2033±0.00015 0.6069±0.00025 0.3539±0.00027 0.7236±0.00040

DotProduct 0.2027±0.00016 0.6076±0.00005 0.3535±0.00009 0.7244±0.00018

AutoAttention 0.2020±0.00023 0.6080±0.00032 0.3531±0.00010 0.7258±0.00035

DSIN
Original 0.2008±0.00008 0.6094±0.00005 0.3526±0.00037 0.7285±0.00076

DotProduct 0.2001±0.00034 0.6098±0.00042 0.3523±0.00019 0.7291±0.00013

AutoAttention 0.1998±0.00070 0.6101±0.00047 0.3521±0.00068 0.7294±0.00062

AutoAttention can be treated as a general purpose attention
unit. In addition to using it standalone to model a user’s inter-
est, we can also replace the original attention unit within DIEN
and DSIN by the proposed DotProduct and AutoAttention.
Note that we can not obtain the original field embeddings of
user behaviors since DIEN and DSIN use hidden states to
represent behavior within attention. Therefore, we only assign
field-wise weights for fields from the target item rather than

the field pair wise weights. In DIEN, we replace its attention
function by AutoAttention:

αt = σ

b+

M ′∑
j=1

〈ht, eFj
〉RFj

 (10)

where M ′ denotes the number of fields from the target
item side, ht is the hidden state of user behavior. While in
DSIN, we replace the attention function in the session interest
activating layer. The formulation is similar to Eqn. (10), except
that we use an embedding vector of session interest instead of
a hidden state of user behavior.

As shown in Tab V, the performance of DIEN and DSIN
can be further boosted with the two proposed attention units.
Note that replacing the original attention unit by AutoAttention
introduces marginal additional parameters and computational
cost, which can be ignored compared with the cost of the two
methods themselves.

F. Visualization of field pair selection (RQ4)

us
er
_i
d

ad
gr
ou
p_
id

sc
en
ar
io
_i
d

cm
s_
se
gi
d

cm
s_
gr
ou
p_
id

ge
nd
er

ag
e_
le
ve
l

co
ns
um
pt
io
n

sh
op
pi
ng
_l
ev
el

oc
cu
pa
tio
n

ci
ty
_l
ev
el

ca
m
pa
ig
n_
id

ad
ve
rti
se
r_
id

ca
te
_i
d

br
an
d

cate_id

brand

0.1 0.2 0.3 0.4 0.5 0.6

(a) Alibaba Dataset

us
er
_g
ra
de

us
er
_p
ro
vi
nc
e

us
er
_a
ge

us
er
_g
en
de
r

os
_t
yp
e

de
vi
ce
_a
lia
s

de
vi
ce
_b
ra
nd

ad
ve
rti
se
r_
id

ad
_p
ro
du
ct
_t
yp
e

cr
t_
si
ze

am
s_
fir
st
_i
nd
us
try
_i
d

am
s_
se
co
nd
_i
nd
us
try
_i
d

ad
_i
d

ca
m
pa
ig
n_
id

cr
ea
tiv
e_
id

ad_id

campaign_id

creative_id

0.1 0.2 0.3 0.4 0.5

(b) Tencent Dataset

Fig. 5: Heat map of learnt field pairs strength weights R of
AutoAttention on two datasets. The cells with red box denote
the selected field pairs in AutoAttention.

We would verify whether the learnt field pairs weights really
reflect the importance of each field interaction, and whether we
recognize some other important field pairs which are neglected
by the expert knowledge. We visualize the learnt field pair
strength weights R by heat maps on two datasets, shown in
Fig. 5a and Fig. 5b, where the x-axis and y-axis denote the
fields from current sample (including item/user/context fields)
and user behaviors, respectively.

We observe that the field pairs within item side fields
indeed play an important role within the attention, such as

8



(cate id, brand), (brand, brand), (creative id, ad id), and
(ams second industry id, creative id). In addition, we also
observe that some field pairs from other sides are also
important, such as (scenario id, cate id) and (user grade,
ad id). These field pairs are usually neglected when manually
selecting fields or field pairs, which can be identified in
AutoAttention.

V. RELATED WORKS

In this section, we discuss two research areas related to our
work, i.e., CTR prediction and user behavior modeling.

A. CTR Prediction

CTR Prediction is one of the most fundamental tasks in
online advertising and recommendation systems, which aims
at predicting the probability that a user clicks an item or
ad. Pioneer works of CTR prediction are proposed mainly
based on Logistic Regression (LR) [1]–[3], polynomial [25],
collaborative filtering [26], tree models [27], Bayesian mod-
els [28], etc. In order to explicitly model the feature interac-
tions, many factorization machine based methods are proposed
for high-dimensional data, such as Factorization Machine
(FM) [29], Field-aware Factorization Machine (FFM) [30],
Field-weighted Factorization Machine (FwFM) [31], [32], and
Field-matrixed Factorization Machine (FmFM) [33]. Besides,
there are some works that aim at learning weight for dif-
ferent feature interactions, including Attentional Factorization
Machines (AFM) [34], Dual-attentional Factorization Ma-
chines (DFM) [35], Dual Inputaware Factorization Machines
(DIFM) [36].

Since the number of samples and the dimension of features
have become larger and larger, many deep learning based
models have been proposed, such as Wide&Deep [24], Deep
Crossing [37], YouTube Recommendation [7], PNN [38],
Deep&Cross [39]. There are some studies that combine FM
with DNN, such as DeepFM [40], NFM [41], xDeepFM [42],
InterAtt [43], DeepLight [15] and DCN V2 [44].

B. User Behavior Modeling

Traditional methods take a straightforward way to represent
each behavior with an embedding vector, and then do a sum
or mean pooling over all these embedding vectors to generate
one embedding [7]. Then many works propose to assign a
dynamic weight for each behavior and then conduct weighted
sum pooling, such as Deep Interest Network (DIN) [4], Deep
Interest Evolution Network (DIEN) [5], and Deep Session
Interest Network (DSIN) [6]. There are also many works to
use RNN or Transformer for behavior sequence modeling,
including GRU4Rec [19], SAS4Rec [20], BERT4Rec [21], and
Behavior Sequence Transformer (BST) [22].

Recently, there are also some works further consider long-
term historical behavior sequences, such as Multi-channel user
Interest Memory Network (MIMN) [45], Hierarchical Periodic
Memory Network (HPMN) [46], Search-based Interest Model
(SIM) [47], UBR4CTR [48], ETA [49] and LimaRec [50].

VI. CONCLUSION

In this paper, we propose an efficient user interest model
AutoAttention for CTR prediction. We propose to include
all fields from item/user/context sides as the query fields
and interact them with behavior fields within attention. We
assign a learnable weight for each field pair between behavior
fields and query fields to capture their different importance.
Pruning fields pairs via these weights can identify and remove
irrelevant and noisy field pairs, leading to performance lift
and computation complexity reduction. Comprehensive ex-
periments on public and production datasets demonstrate the
effectiveness of the proposed approach.

ACKNOWLEDGMENT

This work was supported by the National Key R&D
Program of China [2020YFB1707903]; the National Natural
Science Foundation of China [61972254, 62272302];
Shanghai Municipal Science and Technology Major
Project [2021SHZDZX0102]; the CCF-Tencent Open
Fund [RAGR20200105]; and the Tencent Marketing Solution
Rhino-Bird Focused Research Program [FR202001].

REFERENCES

[1] O. Chapelle, E. Manavoglu, and R. Rosales, “Simple and scalable
response prediction for display advertising,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 5, no. 4, pp. 1–34, 2014.

[2] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady,
L. Nie, T. Phillips, E. Davydov, D. Golovin et al., “Ad click prediction:
a view from the trenches,” in ACM SIGKDD International conference
on Knowledge Discovery & Data Mining (KDD), 2013, pp. 1222–1230.

[3] M. Richardson, E. Dominowska, and R. Ragno, “Predicting clicks:
estimating the click-through rate for new ads,” in World Wide Web
Conference (WWW), 2007, pp. 521–530.

[4] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), 2018, pp. 1059–1068.

[5] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep interest evolution network for click-through rate prediction,” in
AAAI Conference on Artificial Intelligence (AAAI), vol. 33, no. 01, 2019,
pp. 5941–5948.

[6] Y. Feng, F. Lv, W. Shen, M. Wang, F. Sun, Y. Zhu, and K. Yang,
“Deep session interest network for click-through rate prediction,” in
International Joint Conference on Artificial Intelligence (IJCAI), 2019,
pp. 2301–2307.

[7] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in ACM Recommender Systems Conference
(RecSys), 2016, pp. 191–198.

[8] G. Ke, D. He, and T. Liu, “Rethinking positional encoding in language
pre-training,” in International Conference on Learning Representations
(ICLR), 2021.

[9] Y. Tay, D. Bahri, D. Metzler, D.-C. Juan, Z. Zhao, and C. Zheng,
“Synthesizer: Rethinking self-attention for transformer models,” in In-
ternational Conference on Machine Learning (ICML). PMLR, 2021,
pp. 10 183–10 192.

[10] Y. Xie, P. Zhou, and S. Kim, “Decoupled side information fusion for se-
quential recommendation,” in International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), E. Amigó,
P. Castells, J. Gonzalo, B. Carterette, J. S. Culpepper, and G. Kazai, Eds.,
2022, pp. 1611–1621.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998–
6008.

[12] S. Rendle, W. Krichene, L. Zhang, and J. Anderson, “Neural collabora-
tive filtering vs. matrix factorization revisited,” in ACM Recommender
Systems Conference (RecSys), 2020, pp. 240–248.

9



[13] W. Deng, X. Zhang, F. Liang, and G. Lin, “An adaptive empirical
bayesian method for sparse deep learning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019, pp. 5564–5574.

[14] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in International Conference on Learning
Representations (ICLR), 2019.

[15] W. Deng, J. Pan, T. Zhou, D. Kong, A. Flores, and G. Lin, “Deeplight:
Deep lightweight feature interactions for accelerating ctr predictions in
ad serving,” in ACM International Conference on Web Search and Data
Mining (WSDM), 2021, pp. 922–930.

[16] B. Liu, C. Zhu, G. Li, W. Zhang, J. Lai, R. Tang, X. He, Z. Li, and Y. Yu,
“Autofis: Automatic feature interaction selection in factorization mod-
els for click-through rate prediction,” in ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD), 2020, pp.
2636–2645.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in International Conference on
Learning Representations (ICLR), 2021.

[18] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representations
from transformer,” in ACM International Conference on Information and
Knowledge Management (CIKM), 2019, pp. 1441–1450.

[19] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,” in International Con-
ference on Learning Representations (ICLR), 2016.

[20] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in IEEE International Conference on Data Mining (ICDM), 2018,
pp. 197–206.

[21] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representations
from transformer,” in ACM International Conference on Information and
Knowledge Management (CIKM), 2019, pp. 1441–1450.

[22] Q. Chen, H. Zhao, W. Li, P. Huang, and W. Ou, “Behavior sequence
transformer for e-commerce recommendation in alibaba,” in Interna-
tional Workshop on Deep Learning Practice for High-Dimensional
Sparse Data (DLP-KDD), 2019, pp. 1–4.

[23] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of Machine
Learning Research (JMLR), vol. 12, no. 7, 2011.

[24] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,
V. Jain, X. Liu, and H. Shah, “Wide & deep learning for recommender
systems,” in Workshop on Deep Learning for Recommender Systems
(DLRS), 2016, pp. 7–10.

[25] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin,
“Training and testing low-degree polynomial data mappings via linear
svm.” Journal of Machine Learning Research (JMLR), vol. 11, no. 4,
2010.

[26] S. Shen, B. Hu, W. Chen, and Q. Yang, “Personalized click model
through collaborative filtering,” in ACM International Conference on
Web Search and Data Mining (WSDM), 2012, pp. 323–332.

[27] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,
R. Herbrich, S. Bowers et al., “Practical lessons from predicting clicks
on ads at facebook,” in International Workshop on Data Mining for
Online Advertising (ADKDD), 2014, pp. 1–9.

[28] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale
bayesian click-through rate prediction for sponsored search advertising
in microsoft’s bing search engine,” in International Conference on
Machine Learning (ICML), 2010, pp. 13–20.

[29] S. Rendle, “Factorization machines,” in IEEE International Conference
on Data Mining (ICDM), 2010, pp. 995–1000.

[30] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, “Field-aware factorization
machines for ctr prediction,” in ACM Conference on Recommender
Systems (RecSys), 2016, pp. 43–50.

[31] J. Pan, J. Xu, A. L. Ruiz, W. Zhao, S. Pan, Y. Sun, and Q. Lu, “Field-
weighted factorization machines for click-through rate prediction in
display advertising,” in World Wide Web Conference (WWW), 2018, pp.
1349–1357.

[32] J. Pan, Y. Mao, A. L. Ruiz, Y. Sun, and A. Flores, “Predicting different
types of conversions with multi-task learning in online advertising,” in
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), 2019, pp. 2689–2697.

[33] Y. Sun, J. Pan, A. Zhang, and A. Flores, “Fm2: field-matrixed factor-
ization machines for recommender systems,” in The Web Conference
(WWW), 2021, pp. 2828–2837.

[34] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T. Chua, “Attentional
factorization machines: Learning the weight of feature interactions via
attention networks,” in International Joint Conference on Artificial
Intelligence (IJCAI), 2017, pp. 3119–3125.

[35] F. Liu, W. Guo, H. Guo, R. Tang, Y. Ye, and X. He, “Dual-attentional
factorization-machines based neural network for user response predic-
tion,” in The Web Conference (WWW), 2020, pp. 26–27.

[36] W. Lu, Y. Yu, Y. Chang, Z. Wang, C. Li, and B. Yuan, “A dual input-
aware factorization machine for ctr prediction.” in International Joint
Conference on Artificial Intelligence (IJCAI), 2020, pp. 3139–3145.

[37] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao, “Deep
crossing: Web-scale modeling without manually crafted combinatorial
features,” in ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), 2016, pp. 255–262.

[38] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, and J. Wang, “Product-
based neural networks for user response prediction,” in International
Conference on Data Mining (ICDM), 2016, pp. 1149–1154.

[39] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for ad
click predictions,” in International Workshop on Data Mining for Online
Advertising (ADKDD), 2017, pp. 1–7.

[40] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-
machine based neural network for ctr prediction,” in International Joint
Conference on Artificial Intelligence (IJCAI), 2017, pp. 1725–1731.

[41] X. He and T.-S. Chua, “Neural factorization machines for sparse pre-
dictive analytics,” in International ACM SIGIR conference on Research
and Development in Information Retrieval (SIGIR), 2017, pp. 355–364.

[42] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “xdeepfm:
Combining explicit and implicit feature interactions for recommender
systems,” in ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), 2018, pp. 1754–1763.

[43] Z. Li, W. Cheng, Y. Chen, H. Chen, and W. Wang, “Interpretable
click-through rate prediction through hierarchical attention,” in ACM
International Conference on Web Search and Data Mining (WSDM),
2020, pp. 313–321.

[44] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin, L. Hong, and E. Chi,
“Dcn v2: Improved deep & cross network and practical lessons for web-
scale learning to rank systems,” in The Web Conference (WWW), 2021,
pp. 1785–1797.

[45] Q. Pi, W. Bian, G. Zhou, X. Zhu, and K. Gai, “Practice on long
sequential user behavior modeling for click-through rate prediction,”
in ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), 2019, pp. 2671–2679.

[46] K. Ren, J. Qin, Y. Fang, W. Zhang, L. Zheng, W. Bian, G. Zhou, J. Xu,
Y. Yu, X. Zhu et al., “Lifelong sequential modeling with personalized
memorization for user response prediction,” in International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR), 2019, pp. 565–574.

[47] Q. Pi, G. Zhou, Y. Zhang, Z. Wang, L. Ren, Y. Fan, X. Zhu, and K. Gai,
“Search-based user interest modeling with lifelong sequential behavior
data for click-through rate prediction,” in ACM International Conference
on Information & Knowledge Management (CIKM), 2020, pp. 2685–
2692.

[48] J. Qin, W. Zhang, X. Wu, J. Jin, Y. Fang, and Y. Yu, “User behavior
retrieval for click-through rate prediction,” in International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR), 2020, pp. 2347–2356.

[49] Q. Chen, C. Pei, S. Lv, C. Li, J. Ge, and W. Ou, “End-to-end user
behavior retrieval in click-through rate prediction model,” arXiv preprint
arXiv:2108.04468, 2021.

[50] Y. Wu, L. Yin, D. Lian, M. Yin, N. Z. Gong, J. Zhou, and H. Yang,
“Rethinking lifelong sequential recommendation with incremental multi-
interest attention,” arXiv preprint arXiv:2105.14060, 2021.

10


	I Introduction
	II Preliminaries
	III AutoAttention
	III-A Base Models
	III-A1 MLP with All Fields
	III-A2 DotProduct

	III-B AutoAttention
	III-C Model Training
	III-D Discussion
	III-D1 Model Complexity
	III-D2 Comparison to Self-Attention
	III-D3 Comparison to CFI


	IV Experiment
	IV-A Datasets and Baselines
	IV-B Experimental Settings
	IV-C Performance Comparison (RQ1)
	IV-D Study of AutoAttention (RQ2)
	IV-D1 Effect of additional fields
	IV-D2 Effect of automatic field pair selection
	IV-D3 Effect of different sparsity rates

	IV-E AutoAttention as a Building Block (RQ3)
	IV-F Visualization of field pair selection (RQ4)

	V Related Works
	V-A CTR Prediction
	V-B User Behavior Modeling

	VI Conclusion
	References

