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Abstract

Group interactions are prevalent in a variety of areas. Many of them, including email exchanges,
chemical reactions, and bitcoin transactions, are directional, and thus they are naturally modeled as
directed hypergraphs, where each hyperarc consists of the set of source nodes and the set of destination
nodes. For directed graphs, which are a special case of directed hypergraphs, reciprocity has played a key
role as a fundamental graph statistic in revealing organizing principles of graphs and in solving graph
learning tasks. For general directed hypergraphs, however, even no systematic measure of reciprocity has
been developed.

In this work, we investigate the reciprocity of 11 real-world hypergraphs. To this end, we first introduce
eight axioms that any reasonable measure of reciprocity should satisfy. Second, we propose HyperRec, a
family of principled measures of hypergraph reciprocity that satisfy all the axioms. Third, we develop
FastHyperRec, a fast and exact algorithm for computing the measures. Fourth, using them, we examine
11 real-world hypergraphs and discover patterns that distinguish them from random hypergraphs. Lastly,
we propose ReDi, an intuitive generative model for directed hypergraphs exhibiting the patterns.

1 Introduction

Beyond pairwise interactions, understanding and modeling group-wise interactions in complex systems
have recently received considerable attention [Benson et al., 2018a, Comrie and Kleinberg, 2021, Do
et al., 2020, Kook et al., 2020, Lee et al., 2021]. A hypergraph, which is a generalization of a graph, has
been used widely as an appropriate abstraction for such group-wise interactions. Each hyperedge in a
hypergraph is a set of any number of nodes, and thus it naturally represents a group-wise interaction.

Many group-wise interactions are directional, and they are modeled as a directed hypergraph, where
each hyperarc consists of the set of source nodes and the set of destination nodes. Examples of directional
group-wise interactions include email exchanges (from senders to receivers), chemical reactions [Yadati
et al., 2020], road networks [Luo et al., 2022], and bitcoin transactions [Ranshous et al., 2017]; and they
are modeled as directed hypergraphs for various applications, including metabolic-behavior prediction
[Yadati et al., 2020] and traffic prediction [Luo et al., 2022]. See Figure 1 for an example of hypergraph
modeling.

Reciprocity [Newman et al., 2002, Garlaschelli and Loffredo, 2004], which quantifies how mutually
nodes are linked, has been used widely as a basic statistic of directed graphs, which are a special case of
directed hypergraphs where every arc has exactly one source node and one destination node. Reciprocity
increase understanding of a graph, especially potential organizing principles of it, and has proved useful
for various tasks, including trust prediction [Nguyen et al., 2010], persistence prediction [Hidalgo and
Rodŕıguez-Sickert, 2008], anomaly detection [Akoglu et al., 2012], and analysis of the spread of a computer
virus through emails [Newman et al., 2002].
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Nodes (Authors) Head Sets and Tail Sets (Papers)

Paper 𝑻𝟏 by 𝒗𝟓 & 𝒗𝟔
Paper 𝑯𝟏 by 𝒗𝟏 & 𝒗𝟐
Paper 𝑻𝟐 by 𝒗𝟐, 𝒗𝟑, & 𝒗𝟒
Paper 𝑯𝟐 by 𝒗𝟔, 𝒗𝟕, & 𝒗𝟖
Paper 𝑻𝟑 by 𝒗𝟕 & 𝒗𝟖
Paper 𝑯𝟑 by 𝒗𝟒

Hyperarcs (Papers)

𝒆𝟏 : 𝑻𝟏 cites 𝑯𝟏

𝒆𝟐 : 𝑻𝟐 cites 𝑯𝟐

𝒆𝟑 : 𝑻𝟑 cites 𝑯𝟑

𝒗𝟏, ⋯, 𝒗𝟖

(a) Example Citation Dataset

𝒆𝟏 𝒆𝟐 𝒆𝟑

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

(b) Model

Figure 1: A citation dataset modeled as a directed hypergraph with 8 nodes and 3 hyperarcs. Nodes
correspond to authors. Hyperarcs correspond to citations. The head set and tail set of each hyperarc
correspond to sets of papers.

However, reciprocity has remained unexplored for directed hypergraphs, and to the best of our knowl-
edge, no principled measure of reciprocity has been defined for directed hypergraphs. One straightforward
approach is to first convert a directed hypergraph into an ordinary directed graph via clique expansion and
then calculate standard reciprocity on the ordinary graph, as suggested in [Pearcy et al., 2014]. However,
clique expansion may incur considerable information loss [Yadati et al., 2020, Dong et al., 2020, Yoon
et al., 2020]. Thus, multiple directed hypergraphs whose reciprocity should differ, if they are determined
by a proper measure, may become indistinguishable after being clique-expanded.

In this work, we investigate the reciprocity of real-world hypergraphs based on the first principled
notion of reciprocity for directed hypergraphs. Our contributions toward this goal are summarized as
follows:1

• Principled Reciprocity Measure: We design HyperRec, a family of probabilistic measures of
hypergraph reciprocity. We prove that HyperRec satisfy eight axioms that any reasonable measure of
hypergraph reciprocity should satisfy, while baseline measures do not.

• Fast and Exact Search Algorithm: The size of search space for computing HyperRec is exponential
in the number of hyperarcs. We develop FastHyperRec, a fast and exact algorithm for computing
HyperRec.

• Observations in Real-world Hypergraphs: Using HyperRec and FastHyperRec, we investigate
11 real-world directed hypergraphs, and discover three reciprocal patterns pervasive in them, which are
verified using a null hypergraph model.

• Realistic Generative Model: To confirm our understanding of the patterns, we develop ReDi, a
directed-hypergraph generator based on simple mechanisms on individual nodes. Our experiments
demonstrate that ReDi yields directed hypergraphs with realistic reciprocal patterns.

For reproducibility, the code and data are available at https://github.com/kswoo97/hyprec.
In Section 2, we discuss preliminaries and related work. In Section 3, we propose a family of measures

of hypergraph reciprocity with a computation algorithm. In Section 4, we discuss reciprocal patterns of
real-world directed hypergraphs. In Section 5, we propose a generative model for directed hypergraphs.
Lastly, we offer a conclusion in Section 6.

1This work is an extended version of [Kim et al., 2022], which was presented at the 22nd IEEE International Conference on
Data Mining (ICDM 2022). In the extended version, we introduce several theoretical extensions: (a) generalized versions of
the axioms in Section 3.1 and a proof of Theorem 1 for the generalized versions (Appendix A), (b) seven baseline hypergraph
reciprocity measures (Section 3.3), (c) a proof that none of the baseline measures satisfies all the axioms (Appendix B), and (d)
proofs of Theorem 2 and Corollary 1 (Appendix A). In addition, we conduct additional experiments regarding (a) the efficiency
of FastHyperRec (Figure 4 and Table 3 in Section 3.4), (b) the statistical significance of Observation 1 (Table 8 in Section 4.2),
(c) the robustness of HyperRec with respect to the choice of α (Tables 6 and 9 in Section 4.2), and (d) the verification of
Observation 2 in 12 more real and synthetic hypergraphs (Figure 5 in 4.2 and Figure 7 in Section 5.2). At last, we provide one
additional reciprocal pattern in real-world hypergraph (Observation 3: Figure 6 in Section 4.2) and verify whether ReDi can
reproduce this pattern.
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Table 1: Frequently-used symbols.

Notation Definition

G = (V,E) hypergraph with nodes V and hyperarcs E

ei = ⟨Hi, Ti⟩ hyperarc (or a target arc)

Hi, Ti head set and tail set of a hyperarc ei

Ri = {e′1, · · · , e′|Ri|} reciprocal set of a hyperarc ei (see Section 3.1 for details)

r(ei, Ri) reciprocity of a target arc ei with a reciprocal set Ri

r(G) reciprocity of a hypergraph G

din(v), dout(v) in-degree and out-degree of a node v

|A| cardinality of a set A (i.e., number of elements in A)

2 Basic Concepts and Related Work

In this section, we introduce some basic concepts and review related studies. See Table 1 for frequently-used
symbols.

2.1 Basic Concepts

A directed hypergraph G = (V,E) consists of a set of nodes V = {v1, · · · , v|V |} and a set of hyperarcs
E = {e1, · · · , e|E|} ⊆ {⟨H,T ⟩ : H ⊆ V, T ⊆ V }. For each hyperarc ei = ⟨Hi, Ti⟩ ∈ E, Hi indicates the
head set and Ti indicates the tail set . In Figure 1, the hyperarc e1 = ⟨H1, T1⟩ ∈ E is represented as
an arrow that heads to H1 = {v1, v2} from T1 = {v5, v6}. It is assumed typically and also in this work
that, in every hyperarc, the head set and the tail set are disjoint (i.e., Hi ∩ Ti = ∅, ∀i = 1, · · · , |E|). The
in-degree din(v) = |{ei ∈ E : v ∈ Hi}| of a node v ∈ V is the number of hyperarcs that include v as a
head. Similarly, the out-degree dout(v) = |{ei ∈ E : v ∈ Ti}| of v ∈ V is the number of hyperarcs that
include v as a tail.

From now on, we will use the term hypergraph to indicate a directed hypergraph and use the term
undirected hypergraph to indicate an undirected one. We will also use the term arc to indicate a hyperarc
when there is no ambiguity.

2.2 Related Work

Reciprocity of Directed Graphs: Reciprocity of directed graphs (i.e., a special case of directed hy-
pergraphs where all head sets and tail sets are of size one) is a tendency of two nodes to be mutually
linked [Newman et al., 2002, Garlaschelli and Loffredo, 2004]. This is formally defined as |E↔|/|E|, where
|E| is the number of edges in a graph, and |E↔| is the number of edges whose opposite directional arc
exists, i.e., e = ⟨{vi}, {vj}⟩ ∈ |E↔| if and only if ⟨{vj}, {vi}⟩ ∈ E. The notion was extended to weighted
graphs [Squartini et al., 2013, Akoglu et al., 2012], and using them, the relationship between degree and
reciprocity was investigated [Akoglu et al., 2012]. Moreover, the preferential attachment model [Albert
and Barabási, 2002] was extended by adding a parameter that controls the probability of creating a
reciprocal edge for generating reciprocal graphs [Cirkovic et al., 2022, Wang and Resnick, 2022]. Refer to
Section 1 for more applications of reciprocity.

Patterns and Generative Models of Hypergraphs: Hypergraphs have been used widely for model-
ing group-wise interactions in complex systems, and considerable attention has been paid to the structural
properties of real-world hypergraphs, with focuses on node degrees [Do et al., 2020, Kook et al., 2020],
singular values [Do et al., 2020, Kook et al., 2020], diameter [Do et al., 2020, Kook et al., 2020], density
[Kook et al., 2020], core structures [Bu et al., 2023], the occurrences of motifs [Lee et al., 2020, Lee and
Shin, 2021], simplicial closure [Benson et al., 2018a], ego-networks [Comrie and Kleinberg, 2021], the
repetition of hyperedges [Benson et al., 2018b, Choo and Shin, 2022], and the overlap of hyperedges [Lee
et al., 2021]. Many of these patterns can be reproduced by hypergraph generative models that are based
on intuitive mechanisms [Benson et al., 2018b, Do et al., 2020, Kook et al., 2020, Lee et al., 2021]. Such
models can be used for anonymization and graph upscaling in addition to testing our understanding of
the patterns [Leskovec, 2008]. All the above studies are limited to undirected hypergraphs, while this
paper focuses on directed hypergraphs.
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Directed Hypergraphs and Reciprocity: Directed hypergraphs have been used for modeling chemical
reactions [Yadati et al., 2020], knowledge bases [Yadati et al., 2021], road networks [Luo et al., 2022],
bitcoin transactions [Ranshous et al., 2017], etc. To the best of our knowledge, there has been only one
attempt to measure the reciprocity of directed hypergraphs [Pearcy et al., 2014], where (a) a hypergraph
G is transformed into a weighted digraph Ḡ by clique expansion, i.e., by replacing each arc ei = ⟨Hi, Ti⟩
with the bi-clique from Ti to Hi, (b) a weighted digraph Ḡ′ is obtained in the same way from a hypergraph
G′ where, the perfectly reciprocal arc ⟨Ti, Hi⟩ of each arc ei = ⟨Hi, Ti⟩ ∈ E is added if it is not already in

E, and (c) tr(Ā2)/tr(Ā′2), where Ā and Ā′ are the weighted adjacency matrices of Ḡ and Ḡ′, respectively,
is computed as the reciprocity of G. Note that tr(Ā2) corresponds to the weighted count of paths of
length two in Ḡ that start and end at the same node, which is the same as the weighted count of mutually
linked pairs of nodes in Ḡ, and tr(Ā′2) is the count in the perfectly reciprocal counterpart. However, as
discussed in Section 1, clique expansion may cause substantial information loss [Yadati et al., 2020, Dong
et al., 2020, Yoon et al., 2020], and thus multiple directed hypergraphs whose reciprocities should differ,
if they are determined by a proper measure, can be transformed into the same directed graphs by clique
expansion. We further analyze the limitations of this approach based on axioms in the following section.

3 Directed Hypergraph Reciprocity

In this section, we present eight necessary properties of an appropriate hypergraph reciprocity measure.
Then, we present a family of reciprocity measures, namely HyperRec, and an algorithm for fast
computation of them. Lastly, we compare HyperRec with baseline measures to support its soundness.

3.1 Framework and Axioms

We present our framework for measuring hypergraph reciprocity. Then, we suggest eight axioms that any
reasonable reciprocity measure must satisfy.

Framework for Hypergraph Reciprocity: Given a hypergraph G, we measure its reciprocity at two
levels:

• How much each arc (i.e., group interaction) is reciprocal.

• How much the entire hypergraph G is reciprocal.

For a target arc, which we measure reciprocity for, multiple arcs should be involved in measuring its
reciprocity inevitably. For example, in Figure 1, arc e2’s head set and tail set overlap with e1 and e3’s tail
set and head set, respectively, and thus we should consider both e1 and e3 in measuring e2’s reciprocity.
In graphs, however, only the arc with the opposite direction is involved in the reciprocity of an arc. This
unique characteristic of hypergraphs poses challenges in measuring reciprocity. The reciprocal set Ri of
a target arc ei is the set of reciprocal arcs that we use to compute the reciprocity of ei, We use r(ei, Ri)
to denote the reciprocity of an arc ei, where the domain is E× 2E .2 In graphs, a traditional reciprocity
measure [Newman et al., 2002] is defined as the proportion of arcs between nodes that point both ways,
and if we assign 1 to such an arc and 0 to the others as reciprocity, the proportion is equivalent to the
average reciprocity of arcs. Similarly, we regard, as the reciprocity of a hypergraph G, the average
reciprocity of arcs, i.e.,

r(G) :=
1

|E|
∑|E|

i=1
r(ei, Ri). (1)

Motivations of axioms: What are the characteristics required for r(ei, Ri) and r(G)? We introduce
eight axioms that any reasonable measure of r(ei, Ri) (Axioms 1-5) and r(G) (Axioms 6-8) should
satisfy. blue We first provide the motivation and necessity of the proposed axioms.

• Incremental changes: Understanding when a value of a measure increases (decreases) helps users to
understand how the measure works and have faith in the values the measure returns. Without this
understanding, one cannot trust the measure, and this unreliability towards a measure may lead to
misinterpretation of the measured value. Thus, we propose Axioms 1-4 (and their generalized axioms)
to describe the cases where the value of a reciprocity measure increases (decreases).

• Boundness: Establishing a finite range for a measure helps an intuitive comprehension of the numerical
extent of a characteristic. For instance, if a measure does not lie in a fixed range, it becomes challenging
to readily ascertain whether a particular hypergraph is reciprocal or not. Furthermore, a measure with

2Note that all arcs in Ri are used in computing the reciprocity of ei, and thus it does not correspond to a search space.
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(a) AXIOM 1 (b) AXIOM 2A (c) AXIOM 2B

(d) AXIOM 3A (e) AXIOM 3B (f) AXIOM 4

Left side in each subfigure

𝑒𝑖 (target arc)

𝑒𝑖1
′ (or 𝑒𝑖

′) 

𝑒𝑖2
′

Other candidates

(Only in Axiom 4)

𝑒𝑗 (target arc)

𝑒𝑗
′

Other candidates

(Only in Axiom 4)

Right side in each subfigure

Figure 2: Examples for Axioms 1-4. In each subfigure, the reciprocity of the arc ei on the left side should be
smaller than that of the arc ej on the right side. This inequality holds by HyperRec (see Section 3.2) in all
subfigures. Specifically, if α = 1, r(ei) & r(ej) are 0.0000 & 0.3605 in (a), 0.2697 & 0.5394 in (b), 0.4444 &
0.5394 in (c), 0.3167 & 0.6466 in (d), 0.3233 & 0.6466 in (e), and 0.2347 & 0.2500 in (f).

a defined finite range enhances the ability to make meaningful comparisons across diverse hypergraphs.
Motivated by this intuition, we propose Axiom 5 and Axiom 7, which suggest the bound of hyperarc
and hypergraph reciprocity measures, respectively.

• Reducibility: Reciprocity in an ordinary directed graph is a well-known statistic that is widely used
in various fields of study [Nguyen et al., 2010, Hidalgo and Rodŕıguez-Sickert, 2008, Newman et al.,
2002] (see Section 1 for details). Since a directed hypergraph is a generalization of an ordinary directed
graph, one would expect that a directed hypergraph reciprocity measure should be equivalent to the
common directed graph reciprocity when applied to any hypergraph containing only hypercars with
head sets and tail sets of size 1 (i.e., directed graph. where |Hi| = |Ti| = 1,∀⟨Hi, Ti⟩ ∈ E). Thus, we
propose Axiom 6, which suggests this characteristic

• Reachability: Identifying whether the upper bound of a measure is truly achievable or not plays a
crucial role in ensuring the reliability of the measure’s range and the accurate interpretability of its
returned value. For example, let’s consider a reciprocity measure with a known upper bound of 1, but
it can actually only reach the value of 0.2. In this scenario, if a particular hypergraph achieves the
reciprocity value of 0.2, which is actually the maximum possible value for a hypergraph, one may think
the corresponding hypergraph is not highly reciprocal, since the known upper bound of 1. Thus, we
propose Axiom 8 to formalize the reachability of the maximum reciprocity value.

Details of axioms: In Axioms 1-4, we compare the reciprocity of two target arcs ei and ej whose
reciprocal sets are Ri and Rj , respectively. Moreover, in Axiom 2-4, we commonly assume two target
arcs ei and ej are of equal size (i.e., |Hi| = |Hj | and |Ti| = |Tj |). Here, we say two arcs ei and ek ∈ Ri

inversely overlap if and only if Hi ∩ Tk ̸= ∅ and Ti ∩Hk ̸= ∅. Below, the statements in Axioms 1-4
are limited to the examples in Figure 2 for simplicity. Each statement of Axioms 1-4 is generalized in
Generalized Axioms 1-4.

Axiom 1 (Existence of Inverse Overlap). In Figure 2(a), r(ei, Ri) < r(ej , Rj) should hold. Roughly, an
arc with at least one inverse-overlapping reciprocal arc is more reciprocal than an arc with no inverse-
overlapping reciprocal arcs.

Generalized Axiom 1 (Existence of Inverse Overlap). Consider two arcs ei and ej . If Ri and Rj satisfy

(i) ∀e′i ∈ Ri : min(|Hi ∩ T ′
i |, |Ti ∩H ′

i|) = 0,

(ii) ∃e′j ∈ Rj : min(|Hj ∩ T ′
j |, |Tj ∩H ′

j |) ≥ 1,

then the following inequality holds:
r(ei, Ri) < r(ej , Rj).

Axiom 2 (Degree of Inverse Overlap). In Figures 2(b-c), r(ei, Ri) < r(ej , Rj) should hold. Roughly, an
arc that inversely overlaps with reciprocal arcs to a greater extent (with a larger intersection and/or with
a smaller difference, which are considered separately in the generalized axioms) is more reciprocal.
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Generalized Axiom 2A (Degree of Inverse Overlap: More Overlap). Consider two arcs ei and ej of
the same size (i.e., (|Hi| = |Hj |) ∧ (|Ti| = |Tj |)). If Ri = {e′i} and Rj = {e′j} satisfy

|H ′
i| = |H ′

j |, |T ′
i | = |T ′

j |, and

((i) 0 < |H ′
i ∩ Ti| < |H ′

j ∩ Tj | and 0 < |T ′
i ∩Hi| ≤ |T ′

j ∩Hj | or

(ii) 0 < |H ′
i ∩ Ti| ≤ |H ′

j ∩ Tj | and 0 < |T ′
i ∩Hi| < |T ′

j ∩Hj |),

then the following inequality holds:
r(ei, Ri) < r(ej , Rj).

Generalized Axiom 2B (Degree of Inverse Overlap: Small Difference). Consider two arcs ei and ej of
the same size (i.e., (|Hi| = |Hj |) ∧ (|Ti| = |Tj |)). If Ri = {e′i} and Rj = {e′j} satisfy

|H ′
i| > |H ′

j |, |T ′
i | = |T ′

j |, 0 < |H ′
i ∩ Ti| = |H ′

j ∩ Tj |, and 0 < |T ′
i ∩Hi| = |T ′

j ∩Hj |,

then the following inequality should hold:

r(ei, Ri) < r(ej , Rj).

Axiom 3 (Number of Reciprocal Arcs). In Figures 2(d-e), r(ei, Ri) < r(ej , Rj) should hold. Roughly,
when two arcs inversely overlap equally with their reciprocal sets, an arc with a single reciprocal arc is
more reciprocal than one with multiple reciprocal arcs.

Below, we generalize Axiom 3 by dividing it into two cases. Although the below two statements
compare an arc with a single reciprocal arc and an arc with exactly two reciprocal arcs, these statements can
be further extended to encompass a comparison of the former and an arc with two or more reciprocal arcs.
These extended statements remain valid for our proposed measure (refer to Remark 1 in Appendix A).

Generalized Axiom 3A (Number of Reciprocal Arcs Differs: Identical Tail Sets). Let e′k ⊆(R) ek indicate
H ′

k ⊆ Tk and T ′
k ⊆ Hk. Consider two arcs ei and ej of the same size (i.e., (|Hi| = |Hj |) ∧ (|Ti| = |Tj |)).

If Ri = {e′i1, e′i2} and Rj = {e′j} satisfy

e′i1 ⊆(R) ei, e′i2 ⊆(R) ei, e′j ⊆(R) ej , T ′
i1 = T ′

i2, |T ′
i1| = |Tj |,

H ′
i1 ∩H ′

i2 = ∅, and |(H ′
i1 ∪H ′

i2) ∩ Ti| = |H ′
j ∩ Tj |,

then the following inequality should hold:

r(ei, Ri) < r(ej , Rj).

Generalized Axiom 3B (Number of Reciprocal Arcs: Identical Head Sets). Let e′k ⊆(R) ek indicate
H ′

k ⊆ Tk and T ′
k ⊆ Hk. Consider two arcs ei and ej of the same size (i.e., (|Hi| = |Hj |) ∧ (|Ti| = |Tj |)).

If Ri = {e′i1, e′i2} and Rj = {e′j} satisfy

e′i1 ⊆(R) ei, e′i2 ⊆(R) ei, e′j ⊆(R) ej , H ′
i1 = H ′

i2, |H ′
i1| = |Hj |,

T ′
i1 ∩ T ′

i2 = ∅, and |(T ′
i1 ∪ T ′

i2) ∩Hi| = |T ′
j ∩Hj |,

then the following inequality should hold:

r(ei, Ri) < r(ej , Rj).

Axiom 4 (Bias). In Figure 2(f), r(ei, Ri) < r(ej , Rj) should hold. Roughly, when two arcs inversely
overlap equally with their reciprocal sets, an arc whose reciprocal arcs are equally reciprocal to all nodes
in the arc is more reciprocal than one with reciprocal arcs biased towards a subset of nodes in the arc.

Generalized Axiom 4 (Bias). Consider two arcs ei and ej of the same size (i.e., (|Hi| = |Hj |) ∧
(|Ti| = |Tj |)). If Ri and Rj satisfy

(i) |Ri| = |Rj | = |Ti| = |Tj |, and |T ′
i | = |T ′

j |, ∀e′i ∈ Ri, ∀e′j ∈ Rj ,

(ii) T ′
i = Hi, H ′

i ⊂ Ti, and |H ′
i| = 2, ∀e′i ∈ Ri,

(iii) T ′
j = Hj , H ′

j ⊂ Tj , and |H ′
j | = 2, ∀e′j ∈ Rj ,

(iv) ∃u, v ∈ Ti where |{u ∈ H ′
i | e′i ∈ Ri}| ̸= |{v ∈ H ′

i | e′i ∈ Ri}| (2)

(v) ∀u, v ∈ Tj where |{u ∈ H ′
j | e′j ∈ Rj}| = |{v ∈ H ′

j | e′j ∈ Rj}|, (3)

then the following inequality should hold:

r(ei, Ri) < r(ej , Rj).
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𝒗𝟏 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

𝒗𝟐

𝒆𝟑 𝒆𝟐 𝒆𝟏

(a) Non-optimal case

𝒗𝟏 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

𝒗𝟐

𝒆𝟐 𝒆𝟏

(b) Optimal

Figure 3: Examples for describing the computation of transition probabilities.

Axiom 5 (Upper and Lower Bounds). The reciprocity of any arc should be within within a fixed finite
range. Without loss of generality, we assume that the reciprocity values are within the range of [0, 1], i.e.,
for every ei ∈ E and Ri ∈ 2E, r : E × 2E 7→ [0, 1] should hold. Note that any fixed finite range can be
re-scaled to [0, 1].

Now, we present the axioms defined at the hypergraph level.

Axiom 6 (Inclusion of Graph Reciprocity). The graph reciprocity [Newman et al., 2002] should be
included as a special case. That is, if G is a graph (i.e., |Hi| = |Ti| = 1, ∀i ∈ {1, · · · , |E|}), then the
following equality should hold:

r(G) = |E↔|/|E|, (4)

where E↔ is the set of arcs between nodes that point each other in both directions.

Axiom 7 (Upper and Lower Bounds). The reciprocity of any hypergraph should be within a fixed finite
range. Without loss of generality, we assume that the reciprocity values are within the range of [0, 1], i.e.,
for any hypergraph G, the reciprocity function r : G 7→ [0, 1] should hold. Note that any fixed finite range
can be re-scaled to [0, 1].

Axiom 8 (Reachability of Bounds). The maximum reciprocity, which is 1 by Axiom 7, should be reachable
from any hypergraph by adding specific arcs. That is, for every G = (V,E), there exist G+ = (V,E+)
with E+ ⊇ E such that r(G+) = 1. Similarly, the minimum reciprocity, which is 0 by Axiom 7, should
be reachable from any hypergraph by removing specific arcs. That is, for every G = (V,E), there exist
G− = (V,E−) with E− ⊆ E such that r(G−) = 0.

Note that Axiom 8 is about whether the maximum and minimum values of a reciprocity measure are
attainable or not (i.e., whether its bounds are tight or not), and it does not specify the situation when
the value of a measure is maximized or minimized.

3.2 Proposed Measure of Hypergraph Reciprocity: HyperRec

We propose HyperRec, a family of principled hypergraph-reciprocity measures based on transition
probability.

Transition Probability: For a target arc ei = ⟨Hi, Ti⟩ and its reciprocal arcs Ri, the transition
probability ph(v) from a head set node vh ∈ Hi to each node v is the probability of a random walker
transiting from vh to v when she moves to a uniform random tail-set node of a uniform random arc
among the reciprocal arcs incident to vh. For example, consider a target arc e1 and a reciprocal set
R1 = {e2, e3} in Figure 3(a). For a head set node v2 of the target arc, the reciprocal arcs incident
to it are {e2, e3}. The node v7 is only in the head set of e2, and thus the transition probability
p2(v7) = P (e2 | {e2, e3}) × P (v7 | H2) = 0.5 × 0.5 = 0.25. Similarly, since the node v6 is in the
head set of both e2 and e3, p2(v6) = P (e2 | {e2, e3}) × P (v6 | H2) + P (e3 | {e2, e3}) × P (v6 | H3) =
0.5× 0.5 + 0.5× 0.5 = 0.5. Since, v8 is not in tail set of any reciprocal arc, p2(v8) = 0. For a head set
node v3 of the target arc, the only reciprocal arc incident to it is e2. Since the node v6 is in the head set
of e2, p3(v6) = P (e2 | {e2})× P (v6 | T2) = 1.0× 0.5 = 0.5.

There might be some head set nodes that are not incident to any reciprocal arc. For example, v4 in
Figure 3(a) is such a node when the target arc is e1 and the reciprocal set is R1 = {e2, e3}. We assume
that, from such a node, the random walker always transits to the virtual sink node vsink /∈ V .

Then, for each head set node vh ∈ Hi of a target arc ei, a transition probability distribution over
V ∪ {vsink} is defined, and we use ph to denote it. We also denote an optimal transition probability
distribution by p∗h, which is a transition probability distribution when the perfectly reciprocal arc
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e∗i = ⟨H∗
i = Ti, T

∗
i = Hi⟩ is assumed as the reciprocal arc of ei, i.e., Ri = {e∗i }. For example, in Figure

3(b), e2 is the perfectly reciprocal arc of e1. The following equality always holds:

p∗h(v) =

{
1

|Ti|
if v ∈ Ti,

0 otherwise.

Proposed Measures: Based on the above concepts, we propose HyperRec (Hypergraph Reciprocity)
as a family of principled measures of hypergraph reciprocity. We notice that reciprocal arcs in a graph
lead to paths of length two that start and end at the same node. Thus, intuitively, in a hypergraph, a
target arc should become more reciprocal if its reciprocal arcs allow for heading back to the head-set
nodes of the target arc more “accurately”. In order to measure numerically the accuracy for a target
arc ei, we compare the transition probability distribution ph from each head-set node vh ∈ Hi with the
optimal distribution p∗h.

While any distance function L can be used to quantify the difference between ph and p∗h, we use the
Jensen-Shannon Divergence (JSD) [Lin, 1991] since it is a symmetric measure that can handle zero mass
in both distributions. The JSD between distributions p and q with domain D is defined as

L(p, q) :=
∑
i∈D

(
p(i)

2
log

2p(i)

p(i) + q(i)
+

q(i)

2
log

2q(i)

p(i) + q(i)

)
.

Based on L, we define HyperRec of an arc ei whose reciprocal set is Ri as

r(ei, Ri) :=

(
1

|Ri|

)α
(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
, (5)

where α ∈ (0, 1] is a constant controlling the degree of penalization of a large reciprocal set, and Lmax

is the maximum value of the distance measure L, which is log 2 for the JSD. Note that the value of
r(ei, Ri) becomes larger if L(ph, p∗h) becomes small, implying that an arc is more reciprocal if its transition
distribution becomes closer to the optimal distribution.

Note that as the value of α increases, the penalty that occurs from the size of the reciprocal set (i.e.,
|Ri|) increases. This allows HyperRec to effectively capture the user’s preferences regarding the impact
of reciprocal set size on reciprocity. For instance, in certain domains, users may believe that, under the
same conditions, an arc with a larger number of reciprocal arcs is considerably less reciprocal compared
to an arc with fewer reciprocal arcs. To reflect this belief, a higher value of α can be set. However, in
domains where the size of the reciprocal set is relatively less significant in relation to reciprocity, a smaller
value of α can be employed. The flexibility of choosing α allows HyperRec to adapt to different scenarios
and user preferences.

Since the value of r(ei, Ri) varies depending on the specific choice of α, HyperRec can be regarded as
a family of hypergraph-reciprocity measures. Throughout the remainder of the paper, we use HyperRec
to denote any measure that falls within the HyperRec family, unless explicitly mentioned otherwise.

Composing Reciprocal Sets: The value of r(ei, Ri) is dependent on how we select the reciprocal set
Ri from the set E of all arcs. For each target arc ei, we propose to choose non-empty Ri ⊆ E that
maximizes the reciprocity r(ei, Ri) of ei, i.e.,

Ri := argmax
R′

i⊆E,R′
i ̸=∅

r(ei, R
′
i). (6)

In summary, according to HyperRec, the reciprocity of an arc ei ∈ E is

r(ei) := max
Ri⊆E,Ri ̸=∅

r(ei, Ri), (7)

and by Eq. (1), the reciprocity of G is r(G) := 1
|E|
∑|E|

i=1 r(ei).

Strengths of HyperRec: HyperRec satisfies all proposed Axioms regardless of the value of α > 0,
as stated in Theorem 1, while none of the considered baseline measures, which are described below, does.

Theorem 1 (Soundness of HyperRec). HyperRec always satisfies Axioms 1-8 and Generalized
Axioms 1, 2A, 2B, 3A, 3B, and 4

Proof. See the caption of Figure 2 for the numerical values for the examples. Full proofs can be found in
Appendix A.2.
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Note that while any distance function can be utilized as L in Eq (5), the selected function should
enable HyperRec to satisfy all the axioms to ensure the soundness of HyperRec.

Limitations of HyperRec: One limitation of HyperRec is its high computational cost, as it involves
finding maximum reciprocity value over O(2|E|) potential reciprocal sets. This search, however, is necessary
to satisfy the proposed axioms, as discussed in Section 3.3 In Section 3.4, we discuss methods to reduce
the search space and thus mitigate this computational burden, without affecting the reciprocity value.

3.3 Baseline Approaches and Axiomatic Analysis

Below, we present the baseline measures considered in our work.

B1. Pearcy et al. [2014]: Refer to the last paragraph of Section 2 for details of this measure. This
measure is defined only for the entire hypergraph. For the arc-level axioms (i.e., Axioms 1-5), we use
the hypergraphs that consist only of arcs that are mentioned in each axiom. That is, we compare the
reciprocity of Gi = (V, {ei} ∪Ri) and Gj = (V, {ej} ∪Rj).

B2. Ratio of Covered Pairs: This measures, roughly, how accurately pair interactions within a target
arc are matched with those within reciprocal arcs. We define the pair interactions within ei as:

K(ei) = {⟨vh, vt⟩ | vh ∈ Hi, vt ∈ Ti}.

We also define the set of inverse pair-interactions for ek as:

K−1(ek) = {⟨vt, vh⟩ | vh ∈ Hk, vt ∈ Tk}.

Then, inspired by the Jaccard Index, we define the measure as the ratio of identical members between
K(ei) and K−1(ek) for all ek ∈ Ri as follows:

r(ei, Ri) =
|K(ei) ∩

⋃
ek∈Ri

K−1(ek)|
|K(ei) ∪

⋃
ek∈Ri

K−1(ek)|
.

B3. Penalized Ratio of Covered Pairs: This measure is an extension of B2, where large reciprocal
sets are penalized as in HyperRec:

r(ei, Ri) =

(
1

|Ri|

)α

×
|K(ei) ∩

⋃
ek∈Ri

K−1(ek)|
|K(ei) ∪

⋃
ek∈Ri

K−1(ek)|
.

To demonstrate the necessity of the reciprocal-set penalty term ((1/|Ri|)α) and the normalizing term
|Hi| in Eq. (5), we consider two variants of HyperRec where these two terms are removed respectively
from Eq. (5).

B4. HyperRec w/o Normalization: This measure is a variant of HyperRec where the normalization
by |Hi| is removed from Eq. (5) as follows:

r(ei, Ri) =

(
1

|Ri|

)α
(
|Hi| −

∑
vh∈Hi

L(ph, p∗h)
Lmax

)

B5. HyperRec w/o Size Penalty: This measure is a variant of HyperRec where the reciprocal-size
penalty term (1/|Ri|)α is removed from Eq. (5) as follows:

r(ei, Ri) = 1−
∑

vh∈Hi
L(ph, p∗h)

|Hi| · Lmax

The baseline measures B1 - B5 are other forms of arc-level reciprocity r(ei, Ri) given Ri. Below, we
suggest two more baseline measures that are variants of HyperRec with different ways of forming Ri.

B6. HyperRec w/ All Arcs as Reciprocal Set: This measure is a variant of HyperRec where the
reciprocal set is always defined as Ri = E.

B7. HyperRec w/ Inversely Overlapping Arcs as Reciprocal Set: This measure is a variant of
HyperRec where the reciprocal set is always defined as

Ri = {ek ∈ E : min(|Hi ∩ Tk|, |Ti ∩Hk|) ≥ 1}.
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Table 2: HyperRec satisfies all axioms, while all the others do not.

(a) Arc-level Axioms (B6 and B7 are exactly the same with HyperRec regarding
arc-level reciprocity)

Axioms

Measure 1 2 3 4 5

B1 (Pearcy et al. [2014]) ✔ ✔ ✗ ✔ ✔

B2 (Ratio of Covered Pairs) ✔ ✔ ✗ ✗ ✔

B3 (Penalized Ratio of Covered Pairs) ✔ ✔ ✔ ✗ ✔

B4 (HyperRec w/o Normalization) ✔ ✔ ✔ ✔ ✗

B5 (HyperRec w/o Size Penalty) ✔ ✔ ✗ ✔ ✔

HyperRec (proposed) ✔ ✔ ✔ ✔ ✔

(b) Hypergraph-level Axioms (B2-B5 are not applicable)

Axioms

Measure 6 7 8

B1 (Pearcy et al. [2014]) ✗ ✔ ✔

B6 (HyperRec w/ All Arcs as Reciprocal Set) ✗ ✔ ✗

B7 (HyperRec w/ Inversely Overlapping Arcs as Reciprocal Set) ✔ ✔ ✗

HyperRec (proposed) ✔ ✔ ✔

That is, all inversely overlapping arcs (see Section 3.1 for the definition) are used as the reciprocal set.
As summarized in Table 2, none of the considered baseline measures satisfies all the axioms, while

HyperRec satisfies all (Theorem 1). Refer to Appendix B for specific counter-examples for the baseline
measures. Especially, the failure of B6 and B7 highlights the necessity of finding the maximum reciprocity
value over all potential reciprocal arcs, as described in Eq (6), in order for HyperRec to satisfy all the
axioms.

3.4 Exact and Rapid Search for Reciprocal Sets

We propose FastHyperRec (Fast and Exact Algorithm for Hypergraph Reciprocity), an approach for
rapidly searching for the reciprocal set Ri of Eq. (6). We prove the exactness of FastHyperRec and
demonstrate its efficiency in real-world hypergraphs.

High-level ideas: The computational overhead of HyperRec lies in finding the maximum reciprocity
value over all possible subsets of the hyperarc set E (i.e., maxRi⊆E,Ri ̸=∅ r(ei, Ri)). Conducting an
exhaustive search over the entire search space results in the time complexity of O(2|E|), which becomes
infeasible for the considered real-world hypergraphs (refer to Table 4 for the sizes of the real-world
hypergraphs). To address this issue, FastHyperRec explores 2Ψi instead of 2E , where Ψi ⊆ E holds,
without affecting the computed reciprocity value. Specifically, FastHyperRec first creates disjoint groups
of hyperarcs, which will be further explained in the following paragraph. Subsequently, it constructs Ψi

by selecting solely the hyperarcs with the smallest head set size from each group. Then, FastHyperRec
computes maxRi⊆Ψi,Ri ̸=∅ r(ei, Ri). Importantly, |Ψi| ≪ |E| for most, if not all, real-world hypergraphs.
That is, by employing FastHyperRec, the computation of r(ei, Ri) in HyperRec is performed for
a significantly smaller number of reciprocal sets Ri, leading to a substantial reduction in the overall
computational time. Again, it is important to highlight that FastHyperRec is an exact algorithm that
gives the precise value of Eq (7).

Detailed Procedure: FastHyperRec is described in Algorithm 1. For each arc ei, we first retrieve
the set Ωi of inverse-overlapped arcs (see Section 3.1 for the definition) and check whether ei is (1)
non-reciprocal, (2) perfectly reciprocal, or (3) partially reciprocal. Reciprocity for the first two cases is 0
(lines 5-6) and 1 (lines 7-8), respectively. For a partially reciprocal case (lines 9-17), we group the arcs in
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Algorithm 1: FastHyperRec for Exact and Rapid Computation of HyperRec

Input: Hypergraph G = (V,E)
Output: The reciprocity {r(e1), · · · r(e|E|)} of arcs in E

1 foreach ei ∈ E do
2 Φi ← a mapping table whose default value is ∅
3 Ψi ← {}
4 Ωi ← {ej : min(|Hi ∩ Tj |, |Ti ∩Hi|) ≥ 1}
5 if Ωi = ∅ then
6 r(ei)← 0

7 else if ⟨Ti, Hi⟩ ∈ Ωi then
8 r(ei)← 1
9 else

10 foreach ek = ⟨Hk, Tk⟩ ∈ Ωi do
11 H ′

i ← Hi ∩ Tk;
12 T ′

i ← Ti ∩Hk

13 Φi(⟨H ′
i, T

′
i ⟩)← Φi(⟨H ′

i, T
′
i ⟩) ∪ {ek}

14 foreach ⟨H ′
i, T

′
i ⟩ where Φi(⟨H ′

i, T
′
i ⟩) ̸= ∅ do

15 e′i ← argminej∈Φi(⟨H′
i,T

′
i ⟩)
|Hj |

16 Ψi ← Ψi ∪ {e′i}
17 r(ei)← maxRi⊆Ψi r(ei, Ri)

18 return {r(e1), · · · r(e|E|)}

Table 3: Running time in seconds of FastHyperRec and searching Ωi. O.O.T.: out of time (≥ 12 hours).

metabolic email citation qna bitcoin
iAF1260b iJO1366 enron eu data mining software math server 2014 2015 2016

FastHyperRec 0.382 0.567 0.220 8.221 20.766 422.764 2.820 2.981 12297.318 762.645 428.283

Searching Ωi O.O.T. O.O.T. O.O.T. O.O.T. O.O.T. O.O.T. O.O.T. O.O.T. O.O.T. O.O.T. O.O.T.

Ωi using a mapping table Φi where the key of each arc ek ∈ Ωi is the head-set and tail-set nodes of ei
that it covers (i.e., ⟨H ′

i, T
′
i ⟩ where H ′

i ← Hi ∩ Tk and T ′
i ← Ti ∩Hk). For each group with the same key

⟨H ′
i, T

′
i ⟩, we choose an arc with the minimum number of head set nodes. Then, we create a new search

space Ψi containing only the chosen arcs. After that, every subset Ri of Ψi is considered to maximize
Eq. (5), and we return the maximum value as the reciprocity r(ei) of ei.

Theoretical Properties: As stated in Theorem 2, FastHyperRec finds the best reciprocal set, as in
Eq. (6), and thus it computes the reciprocity of each arc exactly, as in Eq. (7).

Theorem 2 (Exactness of FastHyperRec). For every ei ∈ E, maxRi⊆E r(ei, Ri) is identical to the
maxRi⊆Ψi r(ei, Ri).

Proof. See Appendix A.3.

For a special type of hypergraphs, we further reduce the search space based on Corollary 1. Recall
that Ψi is a final search space produced by FastHyperRec.

Corollary 1. Consider a hypergraph G where every arc’s tail set size is 1 (i.e., |Ti| = 1, ∀i ∈ {1, · · · , |E|}),
and let Γi,k be a subset of Ψi that satisfies |Γi,k| = k and |Hs| ≤ |Ht|,∀es ∈ Γi,k, ∀et ∈ {Ψi \
Γi,k}. Then, argmax(Ri⊆E s.t.|Ri|=k) r(ei, Ri) is identical to Γi,k, ∀k ∈ {1, · · · , |Ψi|}, which implies
that argmaxRi⊆Ψi,Ri ̸=∅ r(ei, Ri) is identical to argmaxRi∈{Γi,1,··· ,Γi,|Ψi|}

r(ei, Ri). That is, the size of the

search space for Ri is reduced to O(|Ψi|).

Proof. See Appendix A.4.

Complexity Analysis and Evaluation in Real-world Hypergraphs: After the reduction above,
the size of the search space for Ri becomes O(2|Ψi|) in general and O(|Ψi|) for the case where every
arc’s tail set size is 1 (i.e., |Ti| = 1, ∀i ∈ {1, · · · , |E|}). Although the complexity is still exponential, we
demonstrate that the search space is reasonably small, and thus a search can be performed within a
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metabolic email

iAF1260b iJO1366 enron eu

Naïve’s Max 𝟐𝟒𝟔𝟑 𝟐𝟓𝟎𝟐 𝟐𝟖𝟖 𝟐𝟒𝟑𝟑

FastHyperRec’s Max 𝟐𝟏𝟏 𝟐𝟏𝟏 𝟏𝟖 𝟏𝟏

Search 

Space for 

each Arc

𝟐𝟑𝟖 × 𝟐𝟐𝟑 × 𝟐𝟒𝟓 ×𝟐𝟑𝟒 ×

Figure 4: FastHyperRec (FastHR in short, left in each box plot) reduces the search space by up to
2491(≈ 10147)×, compared to that of the naive method (right in each box plot) in the iJO1366 dataset,
which has 1,805 nodes and 2,251 arcs. To improve legibility, we remove several outliers that lie outside the
interquartile range (refer to Footnote 3).

Table 4: Summary of 11 real-world hypergraphs from 5 domains: the number of nodes |V |, the number of
arcs |E|, the average size of head set |Hi|, the average size of tail set |Ti|, the average node in-degree |din(v)|
and the average node out-degree |dout(v)|.

Dataset |V | |E| |Hi| |Ti| |din(v)| |dout(v)|

metabolic-iaf1260b 1,668 2,083 2.267 1.998 2.831 2.495

metabolic-iJO1366 1,805 2,251 2.272 2.026 2.833 2.527

email-enron 110 1,484 2.354 1.000 31.764 13.491

email-eu 986 35,772 2.368 1.000 85.900 36.280

citation-dm 27,164 73,113 3.038 3.253 8.177 8.755

citation-software 16,555 53,177 2.717 2.927 8.729 9.401

q&a-math 34,812 93,731 1.000 1.779 2.692 4.789

q&a-server 17,2330 27,2116 1.000 1.747 1.579 2.759

bitcoin-2014 1,697,625 1,437,082 1.697 1.478 1.437 1.251

bitcoin-2015 1,961,886 1,449,827 1.744 1.568 1.288 1.159

bitcoin-2016 2,009,978 1,451,135 1.715 1.495 1.238 1.079

reasonable time period for real-world hypergraphs. To evaluate the effectiveness of FastHyperRec, we
compare the size of search space of FastHyperRec and a naive method that finds the best reciprocal
set in Ωi in four real-world hypergraphs, which are described in the following section. As shown in
Figure 4,3 in the iJO1366 dataset, which has 1,805 nodes and 2,251 arcs, the naive method searches at
most 2502(≈ 10148) sets for the reciprocity of an arc, while FastHyperRec searches at most 211(= 2048)
sets. In addition, we report the running time taken to compute the reciprocity of each of the 11 real-world
hypergraphs, which are described in detail in the following section. As shown in Table 3, FastHyperRec
terminates within 3.5 hours for every hypergraph, while naively searching Ωi does not terminate within
12 hours for any of the hypergraphs.
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Table 5: Hypergraph reciprocity r(G) of 11 datasets when α ≈ 0, α = 0.5, and α = 1.

metabolic email citation q&a bitcoin

iAF1260b iJO1366 enron eu data mining software math server 2014 2015 2016

r(G)

α ≈ 0 21.455 22.533 59.161 79.489 12.078 15.316 9.608 13.219 10.829 6.923 3.045

α = 0.5 17.756 18.497 49.480 65.477 10.840 13.984 9.283 13.196 10.654 6.845 2.988

α = 1.0 16.654 17.385 44.459 58.139 10.585 13.704 9.236 13.193 10.606 6.828 2.977

Table 6: Hypergraph reciprocity r(G) is robust to the choice of α. Although their absolute value may differ
(see Table 5), their relative values are not sensitive to the to the choice of α, as supported by the fact that all
the measured Pearson correlation coefficients and Spearman rank correlation coefficients are greater than
0.99.

Pearson Correlation Spearman Rank Correlation

r(G)
α ≈ 0 ↔ α = 0.5 0.999 1.0
α ≈ 0 ↔ α = 1.0 0.999 0.991
α = 0.5 ↔ α = 1.0 0.999 0.991

4 Datasets and Observations

In this section, we investigate the reciprocal patterns of real-world hypergraphs using HyperRec and
FastHyperRec. After introducing used real-world hypergraph datasets and null hypergraphs, we discuss
our observations at three different levels: hypergraph, arc, and node. The significance of the patterns are
verified by a comparison with the null hypergraphs.

4.1 Datasets and Null Hypergraphs

Datasets: We use 11 real-world hypergraphs from five different domains. Refer to Table 4 for basic
statistics of them. All duplicated edges are removed, and detailed pre-processing steps are described in
the Appendix C.

• Metabolic (iAF1260b and iJO1366 Yadati et al. [2020]): Each network models chemical reactions
among various genes. Nodes correspond to genes, and arcs indicate reactions.

• Emails (email-enron Chodrow and Mellor [2020] and email-eu Leskovec and Krevl [2014]): Each node
is an email account, and each arc consists of two ordered sets of senders and receivers of an email.

• Citations (DBLP-data mining and DBLP-software Sinha et al. [2015]). Each node is a researcher, and
each head set and tail set indicates a paper. Arcs represent citations, as in Figure 1.

• Question and Answering (math-overflow and stack-exchange server fault Archive [2022]). Each
node is a user, and each arc corresponds to a post. The questioner of a post becomes the head of an
arc and the answerers compose its tail set.

• Bitcoin Transactions (bitcoin-2014, 2015, 2016 Wu et al. [2021]). Each node is an address in bitcoin
transactions, and each arc is a transaction among users. The three datasets contain the first 1,500,000
transactions of Nov 2014, June 2015, and Jan 2016, respectively. We filtered out all transactions where
the head set and the tail set are the same.

Null Hypergraphs: Patterns observed in real-world graphs can be caused by chance. In order to
demonstrate discovered reciprocal characteristics are distinguishable from random behavior, we measure
the same statistics and patterns in randomized hypergraphs, which we call null hypergraphs. Given a
real hypergrpah, we create a null hypergraph with the same number of nodes and the same distribution
of arc sizes (i.e., the size of the head set and tail set of each arc). To create each arc, we draw nodes

3Note that, to improve legibility, we remove data points that lie outside the interquartile range (i.e., [Q1 − 1.5(Q3 −Q1), Q3 +
1.5(Q3 −Q1)], where Q3 and Q1 denote the third and first quantile of the corresponding distribution) from the box plots.
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Table 7: Observations 1 and the superiority of ReDi. Reciprocity in (a) real-world hypergraphs, (b) null
hypergraphs, (c) those generated by ReDi (Section 5), and (d) those generated by a baseline generator is
reported. Specifically, we generate five synthetic hypergraphs using each generator (Null, ReDi, and Baseline)
and the statistics from each dataset, and report the average (r(G)) and standard deviation (sd(r(G))) of
hypergraph-level reciprocity values of the generated hypergraphs. As the arc-level difference, we report the D-
statistic (the lower the better) between each distribution of arc-level reciprocity and that in the corresponding
real-world hypergraph. Values below 10−6 are all marked with ∗. In each column, the hypergraph reciprocity
closest to that in the real-world hypergraph and the minimum D-statistic are underlined. Note that real-world
hypergraphs are more reciprocal than null hypergraphs, and our proposed generator, ReDi, successfully
reproduces the reciprocity in real-world hypergraphs.

metabolic email citation q&a bitcoin
iAF1260b iJO1366 enron eu data mining software math server 2014 2015 2016

Real World r(G) 21.455 22.533 59.001 79.416 12.078 15.316 9.608 13.219 10.829 6.923 3.045

Null
r(G) 0.306 0.270 14.862 4.633 0.094 0.147 0.018 0.002 0.0001 0.000∗ 0.000∗

sd(r(G)) 0.054 0.091 0.296 0.110 0.005 0.006 0.001 0.005 0.000∗ 0.000∗ 0.000∗

D-Stat 0.625 0.642 0.539 0.807 0.355 0.377 0.124 0.160 0.147 0.100 0.050

ReDi
(Section 5)

r(G) 21.727 22.185 59.161 79.489 12.601 14.279 9.427 13.229 10.267 6.587 3.497
sd(r(G)) 1.811 0.562 2.895 1.013 0.586 0.448 0.004 0.083 0.451 0.121 0.796
D-Stat 0.098 0.104 0.053 0.043 0.212 0.151 0.011 0.005 0.045 0.033 0.017

Baseline
(Section 5)

r(G) 0.412 0.851 23.846 31.190 0.048 0.004 1.622 0.002 0.002 0.002 0.001
sd(r(G)) 0.117 0.882 1.437 0.273 0.642 0.543 0.004 0.009 0.002 0.002 0.002
D-Stat 0.625 0.623 0.403 0.535 0.328 0.367 0.103 0.160 0.147 0.099 0.050

Table 8: P-value testing results on the 11 considered datasets. The null hypotheses are all rejected, which
implies that real-world hypergraphs are significantly more reciprocal than null hypergraphs. A p-value smaller
than 0.00001 is denoted by 0.0000∗.
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Z-stat -1502.52 -1789.79 -241.13 -3835.98 -17548.20 -9605.19 -8884.98 -88965.12 -691316.77 -555709.95 -325308.06

P-value 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

Null hypothesis Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject

uniformly at random and compose a head set and a tail set with the chosen nodes. To minimize the
randomness of experiments, we create 30 null hypergraphs from each dataset and report the statistics
averaged over them.

4.2 Observations

We investigate the reciprocal patterns of real-world hypergraphs at three different levels: Hypergraph,
Arc, and Node.

L1. Hypergraph Level: We first demonstrate that hypergraph reciprocity r(G) = 1
|E|
∑

ei∈E r(ei) is
robust to the choice of α, i.e. the size penalty term for reciprocal sets. As shown in Table 6, although
absolute reciprocity values vary depending on α, their ranks in real-world hypergraphs remain almost the
same, as supported by the fact that both the Pearson and rank correlation coefficients are near 1. Based
on this result, we fix α to a value near zero for the investigation below.

As shown in Table 7, the hypergraph reciprocity is several orders of magnitude greater in real-world
hypergraphs than in corresponding null hypergraphs. To statistically verify this, we conduct statistical
tests for all the datasets where the alternative hypothesis is that r(G) is statistically-significantly greater
than r(Gnull). The detailed numerical results of the tests are provided in Table 8. In summary, we
demonstrate that the hypergraph reciprocity is statistically-significantly greater in real-world hypergraphs
than in corresponding null hypergraphs.

Observation 1. Real-world hypergraphs are more reciprocal than randomized hypergraphs.

L2. Arc Level: We first show the robustness of arc-level reciprocity to the choice of α, i.e. the size
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Table 9: Arc-level reciprocity r(e,R) is robust to the choice of α. Although their absolute values may differ,
their relative values are not sensitive to the choice of α, as supported by the fact that the measured Pearson
correlation coefficients and Spearman rank correlation coefficients are at least 0.678 and in many cases even
close to 1.
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Pearson

α ≈ 0 ↔ α = 0.5 0.961 0.957 0.928 0.836 0.984 0.986 0.994 0.999 0.997 0.998 0.997

α ≈ 0 ↔ α = 1.0 0.916 0.913 0.828 0.678 0.973 0.977 0.992 0.999 0.995 0.997 0.996

α = 0.5 ↔ α = 1.0 0.985 0.986 0.975 0.967 0.998 0.998 0.999 0.999 0.999 0.999 0.999

Spearman Rank

α ≈ 0 ↔ α = 0.5 0.973 0.969 0.947 0.817 0.998 0.998 0.999 0.999 0.999 0.999 0.999

α ≈ 0 ↔ α = 1.0 0.925 0.918 0.869 0.721 0.996 0.996 0.999 0.999 0.999 0.999 0.999

α = 0.5 ↔ α = 1.0 0.975 0.973 0.978 0.983 0.999 0.999 0.999 0.999 0.999 0.999 0.999

penalty term for reciprocal sets. We measure the Pearson and Rank correlation coefficients between
arc-level reciprocity values in each pair of settings with different α values (spec., 0.0↔ 0.5, 0.0↔ 1.0,
and 0.5↔ 1.0). As shown in Table 9, the correlation coefficients are at least 0.721 and in most cases close
to 1, implying that relative values of arc-level reciprocity remain almost the same regardless of α values.
Due to this robustness, we fix α to a value close to 0 for all the following experiments.

At the arc level, we examine the relations between the degree of arcs and their reciprocity. We define
degrees at the arc level as follows:

Head set out-degree: dH,out(ei) =
1

|Hi|
∑
v∈Hi

dout(v) (8)

Tail set in-degree: dT,in(ei) =
1

|Ti|
∑
v∈Ti

din(v) (9)

Refer to Section 2.1 for the definitions of dout(v) and din(v). Then, we compare the distributional
difference of these statistics (i.e., Eqs. (8) and (9)) between the arcs of zero reciprocity and those of
non-zero reciprocity.

As shown in Figure 5, the degrees at arcs with non-zero reciprocity tend to be greater than those at
arcs with zero reciprocity. This is intuitive since arcs where their head sets are frequently being pointed
and tail sets are frequently pointing others tend to have higher chance to be reciprocal. Such tendency,
however, is not clear in null hypergraphs.

Observation 2. Arcs with non-zero reciprocity tend to have higher head set out-degree and tail set
in-degree than arcs with zero reciprocity.

L3. Node Level: Lastly, we investigate reciprocal patterns at the node level. A node is called degree-
balanced, when its in-degree and out-degree are similar. One may suspect that degree-balanced nodes tend
to be involved in highly reciprocal arcs, as the number of incoming arcs and outgoing arcs are similar
at them. To verify this hypothesis, we measure the degree balance of each node v, which we define as
x(v) := log(din(v) + 1)− log(dout(v) + 1), and measure node-level reciprocity r(v), which we define as

r(v) =
1

|Ev|
∑

ek∈Ev

r(ek) (10)

where Ev = {ek : v ∈ (Hk ∪ Tk)} is the set of arcs where v is included in its head set or its tail set.
Figure 6 shows how the average node-level reciprocity depends on the degree balance of nodes after
applying the Savitzky–Golay filter [Savitzky and Golay, 1964] for smoothing the curves. The curves
from the real-world hypergraphs are bell-shaped with maximum values around zero, implying node-level
reciprocity gets larger as nodes’ in- and out-degrees become balanced. On the other hand, such a tendency
is not clear in null hypergraphs.

Observation 3. There is a tendency that degree-balanced nodes participate more in arcs with high
reciprocity.
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Figure 5: Observation 2. In real-world hypergraphs, the (a) head set out-degree and the (b) tail set in-degree
tend to be larger at arcs with non-zero reciprocity (left in each box plot) than at arcs with zero reciprocity
(right in each box plot), while there is no such trend in null hypergraphs.

5 Directed Hypergraph Generation: ReDi

In this section, we propose ReDi (Reciprocal andDirectional Hypergraph Generator), a realistic generative
model of directed hypergraphs. We first describe ReDi. Then, we demonstrate its successful reproduction
of the reciprocal properties of real-world hypergraphs examined in Section 4. In addition to testing our
understanding of the patterns, ReDi can also be used for anonymization, graph upscaling, etc [Leskovec,
2008].

5.1 Model Description

High-level Introduction to ReDi: Given some basic hypergraph statistics and three hyperparameter
values, ReDi generates a directed hypergraph with realistic structural and reciprocal patterns. ReDi is
largely based on HyperPA [Do et al., 2020], an extension of the preferential attachment model [Albert
and Barabási, 2002] to hypergraphs. In HyperPA, each new node forms hyperedges with groups of nodes
that are drawn with probability proportional to the degree of groups (i.e., the number of hyperedges
containing each group). Introducing the degree of groups, instead of the degree of individual nodes,
tends to lead to more realistic higher-order structures of generated graphs [Do et al., 2020]. ReDi
extends HyperPA, which only can generate undirected hypergraphs, to generate directed hypergraphs
and especially those with realistic reciprocal patterns. In a nutshell, ReDi stochastically creates reciprocal
arcs while controlling the number of reciprocal arcs and their degree of reciprocity.

Details of ReDi: The pseudocode of ReDi is provided in Algorithm 2. It requires three hyperparameters:
(a) a proportion β1 ∈ [0, 1] of reciprocal arc, (b) their extent β2 ∈ [0, 1] of reciprocity, and (c) the number
N of initial nodes. In addition, ReDi requires the following statistics that it preserves in expectation: (a)
the number n of nodes, (b) the distributions fHD and fTD of the head-set and tail-set sizes, and (c) the
distribution fNP of the number of new arcs per node. We adopt NP distribution suggested in [Do et al.,
2020] as our fNP .

At each step, ReDi introduces a new node vi and creates k arcs where k is sampled from fNP . Before
creating a new arc, we decide whether it to be reciprocal (with prob. β1) or ordinary. After deciding the
size of a new arc according to the sizes sampled from fHD and fTD, we decide whether to include v into
the head set (with prob. 0.5) or the tail set.

If a new arc is decided to be ordinary, we include vi in either the head set or the tail set according
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Figure 6: Observation 3 and the superiority of ReDi. Relations between the degree balance and average
reciprocity of nodes in real-world hypergraphs (RW), synthetic hypergraphs generated by ReDi (R) (Section 5),
null hypergraphs (N), and those generated by a baseline generator (B) are reported. For each dataset, we also
report the mean gap values (Eq. (11)) from the real-world hypergraph. In real-world hypergraphs and those
generated by ReDi, node-level reciprocity tends to increase as nodes’ in- and out-degrees become balanced.
The curves from the hypergraphs generated by ReDi are most similar to those from real-world hypergraphs,
as supported numerically by the smallest gaps from the real-world hypergraphs.

to the choice made beforehand. Subsequently, we fill the new arc with nodes sampled based on in- and
out-degrees of groups (i.e., the number of arcs that include the group in their head set and tail set,
respectively). Note that the head set and the tail set should be disjoint for both reciprocal and ordinary
arcs.

If a new arc is decided to be reciprocal, we choose an opponent arc eo uniformly at random among
those with vi (or among all existing arcs if no arc contains vi). Then, we decide how many nodes are
brought from the opponent arc’s head set and tail set by binomial sampling with probability β2 ∈ [0, 1].
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Algorithm 2: ReDi: Realistic Directed Hypergraph Generator

Input: (1) Number of nodes n and number of initial arcs N
(2) Distribution of hyperedge head, tail set size fHD, fTD

(3) Distribution of number of new hyperedges fNP

(4) Reciprocal hyperparameter β1 and β2

Output: Generated hypergraph G = (V,E).
1 Initialize G with N arcs (w/ 1 head & 1 tail) with 2N nodes
2 foreach node vi ∈ {v1, · · · , vn} do
3 k ← a number sampled from fNP

4 V ← V ∪ {vi}
5 Ei ← {}
6 for j ← 1 to k do
7 while True do
8 recip.← B(1, β1); head← B(1, 0.5)a

9 h, t← arc sizes sampled from fHD, fTD

10 if recip. = 0 then
11 if head = 1 then
12 H ′ ← {vi}; T ′ ← ∅
13 else
14 T ′ ← {vi}; H ′ ← ∅
15 H ′ ← H ′ ∪ ((h− |H ′|) nodes sampledb)
16 T ′ ← T ′ ∪ ((t− |T ′|) nodes sampledc)

17 else

18 eo ← an arc sampledd from Ei

19 nH ← B(min(h, |To|), β2)
a

20 H ′ ← max(nH , 1) nodes samplede from To

21 nT ← B(min(t, |Ho|), β2)
a

22 T ′ ← max(nT , 1) nodes sampledf from Ho

23 if head = 1 and h > |H ′| then
24 H ′ ← H ′ ∪ {vi}
25 else if head = 0 and t > |T ′| then
26 T ′ ← T ′ ∪ {vi}
27 H ′ ← H ′∪ ((h− |H ′|) nodes sampledb)
28 T ′ ← T ′∪ ((t− |T ′|) nodes sampledc)

29 if H ′ ∩ T ′ = ∅ then
30 break the while loop

31 E ← E ∪ {⟨H ′, T ′⟩}; Ei = Ei ∪ {⟨H ′, T ′⟩}

32 return G = (V,E)
a B(n, p) denotes binomial sampling with parameters n and p
b with probability proportional to group in-degree [Do et al., 2020]
c with probability proportional to group out-degree [Do et al., 2020]
d uniformly at random from Ei (or from E if Ei = ∅)
e with probability proportional to node in-degree
f with probability proportional to node out-degree

After sampling nodes from the opponent arc with probability proportional to their degree, we fill the new
arc with vi and those sampled based on in- and out-degrees of groups.

5.2 Evaluation of ReDi

We evaluate how well ReDi can reproduces the reciprocal patterns of real-world hypergraphs discussed in
Section 4. For each real-world hypergraph, we generate 5 hypergraphs using their statistics and report
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Figure 7: Hypergraphs generated by ReDi exhibits Observation 2, which is a pervasive pattern in real-world
hypergraphs, as shown in Figure 5

the average of generated statistics.4 In addition, we introduce a naive preferential attachment model, as
a baseline model for comparison, to clarify the necessity of the reciprocal edge generation step. The
baseline model is identical to ReDi, except only for that it always decides to create ordinary arcs, i.e.,
β1 = β2 = 0.5

Reproducibility of Observation 1: We measure the reciprocity of generated hypergraphs at the
hypergraph and arc levels and compare it with that of real-world hypergraphs. As shown in Table 7, ReDi
generates hypergraphs whose reciprocity is very close to that in the corresponding real-world hypergraphs
both at the hypergraph and arc levels. The baseline model fails to reproduce high enough reciprocity in
most cases.

Reproducibility of Observation 2: Moreover, as shown in Figure 7, in the hypergraphs generated by
ReDi, arcs with non-zero reciprocity tend to have higher (a) head set out-degree and (b) tail set in-degree
than arcs with zero reciprocity, just as in the real-world hypergraphs.

Reproducibility of Observation 3: Furthermore, as shown in Figure 6, the bell-shaped relation be-
tween the degree balance and average reciprocity of nodes in hypergraphs generated by ReDi is close
to the relation in the corresponding real-world hypergraphs, as supported numerically by the smallest
mean gaps (i.e., mean of squared differences) from the real-world hypergraphs. Formally, the mean gap is
defined as follows:

mean-gap(f, f ′) =
1

|D|
∑
x∈D

(f(x)− f ′(x))2, (11)

where D is the intersection of the domains of f and f ′. Specifically, the mean gaps are up to 13× smaller
in hypergraphs generated by ReDi than in those generated by the baseline model.

6 Conclusion

In this paper, we perform a systematic and extensive study of reciprocity in real-world hypergraphs. We
propose HyperRec, a family of probabilistic measures of reciprocity that guarantee all eight desirable
properties (Table 2). Our algorithmic contribution is to develop FastHyperRec, which enables rapid
yet exact computation of HyperRec (Theorem 2, Figure 4, and Table 3). Using both, we discover
several unique reciprocal patterns (Table 7 and Figures 5-6) that distinguish real-world hypergraphs
from random hypergraphs. Lastly, we design ReDi, a simple yet powerful generator that yields realistic
directed hypergraphs (Table 7 and Figures 6-7). For reproducibility, we make the code and all datasets
available at https://github.com/kswoo97/hyprec.

4The search space of β1 is (a) [0.05, 0.1, · · · , 0.6] for the small datasets where |V | ≤ 104, and (b) [0.001, 0.0015, · · · , 0.005] for
the dense large datasets where |V | > 104 and |E|/|V | ≥ 3, and (c) [0.01, 0.02, · · · 0.15] for the other sparse large datasets. The
search space of β2 is fixed to ∈ [0.1, 0.1, · · · , 0.5] for all datasets.

5As bitcoin transactions are made among randomly chosen accounts, the repetition of (partial) group interactions is rarely
observed. Due to this intrinsic characteristic of the datasets, we use the degrees of individual nodes instead of the degrees of
groups when ReDi and the baseline model are given the statistics from bitcoin datasets. The same strategy is also used for the
baseline model when the input statistics are from the q&a server dataset. Without the strategy, the baseline model takes more
than 12 hours.
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A Appendix: Proof of Theorems

In this section, we provide proofs of theorems in the main paper. We first introduce some preliminaries
of proofs and then prove why HyperRec, the proposed family of reciprocity measures, satisfies all of
Axioms 1-8. Then, we prove the exactness of FastHyperRec and the related complexity reduction
techniques.

A.1 Preliminaries of Proofs

In this subsection, we first give the general form of our proposed measure. Then, we introduce several
important characteristics of Jensen-Shannon Divergence (JSD) [Lin, 1991], which plays a key role in our
proofs. After that, we examine how these concepts are applied to our measure. Basic symbols used for
hypergraphs and arcs are defined in Section 2.1.

HyperRec, the proposed reciprocity measure for an arc ei and for a hypergraph G is defined as

r(ei) := max
Ri⊆E,Ri ̸=∅

(
1

|Ri|

)α
(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
, (12)

r(G) :=
1

|E|

|E|∑
i=1

r(ei), (13)

where L(ph, p∗h) denotes Jensen-Shannon Divergence [Lin, 1991] between a transition probability distribu-
tion ph and the optimal transition probability distribution p∗h.

For a target arc ej with an arbitrary non-empty reciprocal set Rj , the transition probability is defined
as

ph(v) =


∑

ek∈Rj

(
1[vh∈Tk,v∈Hk]

|Hk|

)
∑

ek∈Rj
(1[vh∈Tk])

if vh ∈
⋃

ek∈Rj
Tk,

1 if v = vsink and vh /∈
⋃

ek∈Rj
Tk,

0 otherwise,

where 1[TRUE] = 1, and 1[FALSE] = 0.
In Lemma 1, we provide several theoretical properties of JSD that are used for our proofs. Note that

a general form of JSD(P ∥ Q) is defined as

L(P,Q) =
n∑

i=1

ℓ(pi, qi), (14)

where

ℓ(pi, qi) =
pi
2
log

2pi
pi + qi

+
qi
2
log

2qi
pi + qi

. (15)

Lemma 1 (Basic Properties of Jensen-Shannon Divergence). The Jensen-Shannon Divergence (JSD)
has the following properties:

• A-I. For any two discrete probability distributions P and Q, 0 ≤ JSD(P ∥ Q) ≤ log 2 holds.

• A-II. For two discrete probability distributions P and Q where their non-zero-probability domains do
not overlap (i.e., piqi = 0, ∀i = {1, · · · , |V |}), JSD(P ∥ Q) is maximized, and the maximum value is
log 2.

• A-III. Consider two discrete probability distributions P and Q. If there exists a value where both P
and Q have non-zero probability, JSD(P ∥ Q) < log 2 holds.
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Proof. • (Proof of A-I) Refer to [Lin, 1991] for a proof of A-I.

• (Proof of A-II) Let Xp be the domain where P has non-zero probability, and let Xq be the domain
where Q has non-zero probability. Since Xp and Xq do not overlap, Eq. (14) is rewritten as

L(P,Q) =
∑
i∈Xp

pi
2
log 2 +

∑
i∈Xq

qi
2
log 2 =

log 2

2

∑
i∈Xp

pi +
∑
i∈Xq

qi

 = log 2.

• (Proof of A-III) Let k be a point where pkqk ̸= 0 holds. Then, Eq. (14) is rewritten as

L(P,Q) ≤
∑

i∈Xp\k

pi
2
log 2 +

∑
i∈Xq\k

qi
2
log 2 +

(
pk
2

log
2pk

pk + qk
+

qk
2

log
2qk

pk + qk

)
. (16)

The below inequality implies that Eq. (16) is smaller than log 2.(pk
2

log 2 +
qk
2

log 2
)
−
(
pk
2

log
2pk

pk + qk
+

qk
2

log
2qk

pk + qk

)
> 0

≡ pk
2

log

(
1 +

qk
pk

)
+

qk
2

log

(
1 +

pk
qk

)
> 0 (∵ pk, qk > 0).

Since log(x) > 0 holds for any x > 1, the last inequality holds. Thus, we can conclude that JSD(P ∥ Q) <
log 2 holds in this case.

In Lemma 2, we provide several basic properties of HyperRec, our proposed measure of reciprocity
in hypergraphs.

Lemma 2 (Basic Properties of HyperRec). HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) has the
following properties:

• A-IV. If a target arc’s head set and the tail sets of its reciprocal arcs do not overlap, the target arc’s
reciprocity becomes zero. Formally,

If Hi ∩
⋃

ek∈Ri

Tk = ∅ then r(ei, Ri) = 0.

• A-V. If a target arc’s tail set and the head sets of its reciprocal arcs do not overlap, the target arc’s
reciprocity becomes zero. Formally,

If Ti ∩
⋃

ek∈Ri

Hk = ∅ then r(ei, Ri) = 0.

• A-VI. If (a) a target arc’s head set and the tail sets of its reciprocal arcs overlap and (b) the target
arc’s tail set and the head sets of its reciprocal arcs overlap, then the target arc’s reciprocity is greater
than zero. Formally,

If
∑

ek∈Ri

|Hi ∩ Tk| · |Ti ∩Hk| ≥ 1 then r(ei, Ri) > 0.

Proof. Below, we use Lmax to denote the maximum value of JSD, which is log 2.

• (Proof of A-IV) For this case, as mentioned in Section 3.2, the probability mass is non-zero only at
vsink. On the other hand, the optimal transition probability p∗ is non-zero only at each v ∈ Ti. Since
vsink ̸∈ Ti, the non-zero-probability domains of the transition probability and the optimal transition
probability do not overlap, and by A-II, the probabilistic distance between them is maximized. This
happens for all v ∈ Hi. Therefore,

r(ei, Ri) =

(
1

|Ri|

)α
(
1−

∑
vh∈Hi

Lmax

|Hi| · Lmax

)

=

(
1

|Ri|

)α(
1− |Hi| · Lmax

|Hi| · Lmax

)
=

(
1

|Ri|

)α

× 0 = 0.
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• (Proof of A-V) As in A-IV, the non-zero probability domains of the transition probability and
the optimal transition probability do not overlap since Ti ∩

⋃
ek∈Ri

Hk = ∅. Again, the probabilistic
distance is maximized. This happens for all Hi, i.e.,

r(ei, Ri) =

(
1

|Ri|

)α
(
1−

∑
vh∈Hi

Lmax

|Hi| · Lmax

)

=

(
1

|Ri|

)α(
1− |Hi| · Lmax

|Hi| · Lmax

)
= 0

• (Proof of A-VI) According to the statement, there exists at least one reciprocal arc ek whose (a)
tail set overlaps with the target arc’s head set (i.e., |Tk ∩Hi| ≥ 1) and (b) head set overlaps with the
target arc’s tail set (i.e., |Hk ∩ Ti| ≥ 1). Thus, for vh ∈ Hi ∩ Tk, ph and p∗h share non-zero probability
domains, which implies L(ph, p∗h) < log 2 by A-III. Hence, we can derive the following inequality:

r(ei, Ri) =

(
1

|Ri|

)α
(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)

>

(
1

|Ri|

)α(
1− |Hi| · Lmax

|Hi| · Lmax

)
= 0.

A.2 Proof of Theorem 1.

In this section, we show that the proposed measure HyperRec satisfies all the generalized axioms.
For a proof of Generalized Axiom 1, we simply show that the former’s reciprocity gets zero (i.e.,
r(ei, Ri) = 0), while the latter’s reciprocity gets a positive value (i.e., r(ej , Rj) > 0). For proofs of
Generalized Axioms 2-4, we first show how the formal statement of each axiom can be written in terms
of the probabilistic distance. Then, we derive a less reciprocal case has a higher probabilistic distance
between the transition probability and the optimal transition probability for every head set node of a
target arc.

A.2.1 Proof of the Fact that HyperRec Satisfies Axiom 1

Through an example, Axiom 1 states that an arc that has at least one inversely-overlapping arc should
be more reciprocal than an arc without any inversely-overlapping arc. The generalized statement of
Axiom 1 is formalized in Generalized Axiom 1.

Proposition 1. HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) satisfies Generalized Axiom 1.

Proof. We first show that r(ei, Ri) = 0. The suggested condition (∀e′i ∈ Ri : min(|Hi ∩T ′
i |, |Ti ∩H ′

i|) = 0)
implies that every reciprocal arc e′i ∈ Ri lies in one of the following cases (for simplicity, we refer to
e′i ∈ Ri as a non-influential arc if e′i does not contribute to making the non-zero probability domains
of the transition probability that overlap with that of the optimal transition probability): (1) When
(Hi ∩ T ′

i = ∅) ∧ (Ti ∩ H ′
i ≠ ∅) holds, as shown in the proof of A-IV, e′i is non-influential. (2) When

(Hi ∩ T ′
i ̸= ∅) ∧ (Ti ∩ H ′

i = ∅) holds, as shown in the proof of A-V, e′i is non-influential. (3) When
(Hi ∩ T ′

i = ∅) ∧ (Ti ∩H ′
i = ∅) holds, as shown in the proof of A-II and A-V, e′i is non-influential. That

is, all reciprocal hyperarcs in Ri are non-influential, and by A-II, the distance between the transition
probability and the optimal transition probability is maximized. This happens for all v ∈ Hi. Therefore,

r(ei, Ri) =

(
1

|Ri|

)α
(
1−

∑
vh∈Hi

Lmax

|Hi| · Lmax

)

=

(
1

|Ri|

)α(
1− |Hi| · Lmax

|Hi| · Lmax

)
=

(
1

|Ri|

)α

× 0 = 0.

We now show that r(ej , Rj) > 0 holds. The suggested condition (∃e′i ∈ Ri : min(|Hi ∩ T ′
i |, |Ti ∩H ′

i|) ≥ 1)
is equivalent to the condition of A-VI. Thus, by A-VI, the inequality r(ej , Rj) > 0 holds. Since
r(ei, Ri) = 0 and r(ej , Rj) > 0, the following inequality holds: r(ei, Ri) < r(ej , Rj).
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A.2.2 Proof of the Fact that HyperRec Satisfies Axiom 2

Through an example, Axiom 2 states that an arc that inversely overlaps with reciprocal arcs to a greater
extent should be more reciprocal. In addition, Axiom 2 is divided into two cases, which are formalized
in Generalized Axiom 2A and 2B respectively.

Proposition 2A. HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) satisfies Generalized Axiom 2A.

Proof. Since |Ri| = |Rj | = 1, the cardinality penalty terms on both sides can be discarded, i.e.,

r(ei, Rj) =

(
1

|Ri|

)α
(
1−

∑
vi∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
= 1−

∑
vi∈Hi

L(ph, p∗h)
|Hi| · Lmax

.

Since |Hi| = |Hj |, the main inequality is rewritten as

r(ei, Ri) < r(ej , Rj)

≡
∑

vh∈Hi

L(ph, p∗h) >
∑

vh∈Hj

L(ph, p∗h). (17)

Each head set can be divided into two parts: Hk \ T ′
k and Hk ∩ T ′

k, ∀k = i, j. For Hk \ T ′
k, as described

in A-IV, the probabilistic distance is maximized to Lmax = log 2. For Hk ∩ T ′
k, by using the fact that

Tk ∩H ′
k ̸= ∅, ∀k = i, j, we can derive L(ph, p∗h) < log 2 holds, ∀vh ∈ Hk ∩ T ′

k, ∀k = i, j by A-VI. One
more notable fact is that, since there is a single reciprocal arc for the target arc, L(ph, p∗h) is the same for
every vh ∈ Hk ∩ T ′

k. Here, let p̄k, ∀k = i, j be the transition probability distribution regarding the target
arc ek and its reciprocal set Rk. We rewrite the inequality (17)∑

vh∈Hi

L(ph, p∗h) >
∑

vh∈Hj

L(ph, p∗h)

≡ |Hi \ T ′
i | × log 2 + |Hi ∩ T ′

i | × L(p̄i, p̄∗i ) > |Hj \ T ′
j | × log 2 + |Hj ∩ T ′

j | × L(p̄j , p̄∗j ).

Below, we show that this inequality holds for Case (i) and then Case (ii).

Case (i): For Case (i), we first show that the inequality (17) is equivalent to L(p̄i, p̄∗i ) > L(p̄j , p̄∗j ). The
intersection of the target arc’s head set and the reciprocal arc’s tail set is larger for ej than for ei. Thus,
the following inequality hold:

|Hi \ T ′
i | × log 2 + |Hi ∩ T ′

i | × L(p̄i, p̄∗i ) ≥ |Hj \ T ′
j | × log 2 + |Hj ∩ T ′

j | × L(p̄i, p̄∗i ).

Therefore, Eq. (17) is implied by

|Hj \ T ′
j | × log 2 + |Hj ∩ T ′

j | × L(p̄i, p̄∗i ) > |Hj \ T ′
j | × log 2 + |Hj ∩ T ′

j | × L(p̄j , p̄∗j )
≡ |Hj ∩ T ′

j | × L(p̄i, p̄∗i ) > |Hj ∩ T ′
j | × L(p̄j , p̄∗j )

≡ L(p̄i, p̄∗i ) > L(p̄j , p̄∗j ).

Now, we show that L(p̄i, p̄∗i ) > L(p̄j , p̄∗j ) holds. To this end, denote the size of the intersection regions as
F1 = |Ti ∩H ′

i| < F2 = |Tj ∩H ′
j |. We can decompose the domain of v ∈ V into four parts as

Tk ∩H ′
k, Tk \H ′

k, H ′
k \ Tk, and V \ {H ′

k ∪ Tk}, ∀k = i, j

For the last part, both the transition probability and the optimal transition probability of it have zero
mass, i.e., ph(v) = p∗h(v) = 0, which results in no penalty. We only need to consider the first three parts
for comparison. Here, the probabilistic distance can be explicitly written as

L(p̄i, p̄∗i ) = F1 × ℓ

(
1

T
,
1

A

)
+ (A− F1)×

1

2A
log 2 + (T − F1)×

1

2T
log 2,

L(p̄j , p̄∗j ) = F2 × ℓ

(
1

T
,
1

A

)
+ (A− F2)×

1

2A
log 2 + (T − F2)×

1

2T
log 2,
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where ℓ denotes a single-element comparison of JSD(P ∥ Q) in Eq. (15). Let A = |H ′
i| = |H ′

j | and
T = |Ti| = |Tj |. Then, we can rewrite L(p̄i, p̄∗i )− L(p̄j , p̄∗j ) > 0 as

L(p̄i, p̄∗i )− L(p̄j , p̄∗j ) > 0

≡ (F1 − F2)× ℓ

(
1

T
,
1

A

)
+ (F2 − F1)×

(
1

2A
+

1

2T

)
log 2 > 0

≡ (F2 − F1)×
(

1

2A
log 2 +

1

2T
log 2− ℓ

(
1

T
,
1

A

))
> 0

≡
(

1

2A
log 2− 1

2A
log

2T

A+ T
+

1

2T
log 2− 1

2T
log

2A

A+ T

)
> 0 ∵ F2 − F1 > 0

≡ 1

2A
log

A+ T

T
+

1

2T
log

A+ T

A
> 0

The inequality holds since log(x) > 0 holds for any x > 1. Hence, we show L(p̄i, p̄∗i ) > L(p̄j , p̄∗j ) and thus
the inequality (17) hold for Case (i).

Case (ii): For Case (ii), we first show that the inequality (17) is equivalent to L(p̄i, p̄∗i ) ≥ L(p̄j , p̄∗j ). The
inequality can be rewritten as

(|Hi| − |Hi ∩ T ′
i |)× log 2 + |Hi ∩ T ′

i | × L(p̄i, p̄∗i )
> (|Hj | − |Hj ∩ T ′

j |)× log 2 + |Hj ∩ T ′
j | × L(p̄j , p̄∗j )

≡ |Hi ∩ T ′
i | × (L(p̄i, p̄∗i )− log 2) > |Hj ∩ T ′

j | × (L(p̄j , p̄∗j )− log 2)

≡
|Hj ∩ T ′

j |
|Hi ∩ T ′

i |
>

log 2− L(p̄i, p̄∗i )
log 2− L(p̄j , p̄∗j )

∵ |Hj ∩ T ′
j |, |Hj ∩ T ′

j | > 0 and log 2 > L(p̄i, p̄∗i ),L(p̄j , p̄∗j ).

By the condition of the axiom, the intersection of the target arc’s head set and the reciprocal arc’s tail set

is larger than for ej than for ei, and thus
|Hj∩T ′

j |
|Hi∩T ′

i |
> 1 holds. Thus, Eq. (17) is implied by

log 2−L(p̄i,p̄
∗
i )

log 2−L(p̄j ,p̄
∗
j )
≤ 1,

which is equivalent to L(p̄i, p̄∗i ) ≥ L(p̄j , p̄∗j ), holds. Now we show that L(p̄i, p̄∗i ) ≥ L(p̄j , p̄∗j ) holds, which
is rewritten as

L(ph,i, p∗h,i)− L(ph,j , p∗h,j) ≥ 0

≡ (F1 − F2)× ℓ

(
1

T
,
1

A

)
+ (F2 − F1)×

(
1

2A
+

1

2T

)
log 2 ≥ 0

≡ (F2 − F1)×
(

1

2A
log 2 +

1

2T
log 2− ℓ

(
1

T
,
1

A

))
≥ 0

Note that, unlike Case (i), where F1 < F2 holds, F1 ≤ F2 holds for Case (ii). If F2 = F1, then ths LHS
above becomes 0, and thus above inequality holds. If F2 > F1,

(F2 − F1)×
(

1

2A
log 2 +

1

2T
log 2− ℓ

(
1

T
,
1

A

))
≥ 0

≡
(

1

2A
log 2− 1

2A
log

2T

A+ T
+

1

2T
log 2− 1

2T
log

2A

A+ T

)
> 0 ∵ F2 − F1 > 0

≡ 1

2A
log

A+ T

T
+

1

2T
log

A+ T

A
> 0.

The inequality holds since log(x) > 0 holds for any x > 1. Hence, we show L(p̄i, p̄∗i ) ≥ L(p̄j , p̄∗j ) and thus
the inequality (17) hold for Case (ii).

Proposition 2B. HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) satisfies Generalized Axiom 2B.

Proof. Since |Ri| = |Rj | = 1, the cardinality penalty terms can be ignored. The overall inequality is
re-written as

r(ei, Ri) < r(ej , Rj)

≡ 1−
∑

vi∈Hi
L(ph, p∗h)

|Hi| · Lmax
< 1−

∑
vj∈Hj

L(ph, p∗h)
|Hj | · Lmax

≡
∑

vj∈Hj
L(ph, p∗h)

|Hj | · Lmax
<

∑
vi∈Hi

L(ph, p∗h)
|Hi| · Lmax
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As in the previous proof, |Hi| = |Hj |, and L(ph, p∗h) is identical for every vh ∈ Hk ∩ T ′
k. Let p̄k, ∀k = i, j

be the transition probability distribution regarding the target arc ek and its reciprocal set Rk. Here,
|Hi ∩ T ′

i | = |Hj ∩ T ′
j |, |T ′

i | = |T ′
j |, and the number of target arc’s head set nodes vh that satisfy

L(ph, p∗h) < log 2 is identical for both cases. Thus, the above inequality is re-written as∑
vj∈Hj

L(ph, p∗h)
|Hj | · Lmax

<

∑
vi∈Hi

L(ph, p∗h)
|Hi| · Lmax

≡ |Hj ∩ T ′
j | × L(p̄j , p̄∗j ) < |Hi ∩ T ′

i | × L(p̄i, p̄∗i )
≡ L(p̄j , p̄∗j ) < L(p̄i, p̄∗i ).

Now, we only need to show that the probabilistic distance between transition probability and the
optimal transition probability is greater in ei than in ej . Let A = |H ′

i| > B = |H ′
j |. We can decompose

the domain of v ∈ V into four parts as

Tk ∩H ′
k, Tk \H ′

k, H ′
k \ Tk, and V \ {H ′

k ∪ Tk}, ∀k = i, j

Here, JSD(P ∥ Q) in the second and fourth parts is identical for both cases. That is, we only need to
compare the probabilistic distances that are related to the first and third parts of the above four domains.
That is,

L(p̄j , p̄∗j ) < L(p̄i, p̄∗i )

≡ F × ℓ

(
1

B
,
1

T

)
+

B − F

2B
log 2 < F × ℓ

(
1

A
,
1

T

)
+

A− F

2A
log 2,

where F = |H ′
i ∩ Ti| = |H ′

j ∩ Tj | and T = |Ti| = |Tj |. Note that A > B. Overall inequality is rewritten as

L(p̄j , p̄∗j ) < L(p̄i, p̄∗i )

≡ F

2

(
1

B
− 1

A

)
log 2 > F ×

(
ℓ

(
1

B
,
1

T

)
− ℓ

(
1

A
,
1

T

))
To simplify the equation, we unfold ℓ(p, q) as

F

2

(
1

B
− 1

A

)
log 2 > F ×

(
ℓ

(
1

B
,
1

T

)
− ℓ

(
1

A
,
1

T

))
≡ 1

2

(
1

B
− 1

A

)
log 2 >

1

2T
log

2B

B + T
+

1

2B
log

2T

B + T
− 1

2T
log

2A

A+ T
− 1

2A
log

2T

A+ T

≡
(

1

B
− 1

A

)
log 2 >

1

T
log

2B

B + T
+

1

B
log

2T

B + T
− 1

T
log

2A

A+ T
− 1

A
log

2T

A+ T

≡ 0 >
1

T
log

B

B + T
+

1

B
log

T

B + T
− 1

T
log

A

A+ T
− 1

A
log

T

A+ T

∵ pull 2 inside each log term out

≡ 0 >
1

T
log

B(A+ T )

A(B + T )
− 1

B
log

B + T

T
+

1

A
log

A+ T

T

≡ 0 > log
AB +BT

AB +AT
+

T

A
log (1 +

A

T
)− T

B
log (1 +

B

T
) ∵ multiply both sides by T

We show that the last inequality holds by splitting it into two parts: log AB+BT
AB+AT

< 0 and T
A
log (1 + A

T
)−

T
B
log (1 + B

T
) < 0. The first part is trivial since B < A implies

AB +BT

AB +AT
< 1.

In the second part, each term is in the form of f(x) = 1
x
log (1 + x). Since f(x) is decreasing at x > 0,6

A > B implies

T

A
log (1 +

A

T
)− T

B
log (1 +

B

T
) < 0.

6Note that (1 + 1
x
)x is a well-known increasing function whose limit as x → ∞ is e. Thus, log(1 + 1

x
)x = x log(1 + 1

x
) is also

an increasing function, and since x′ = 1/x is decreasing at x > 0, x′ log(1 + 1
x′ ) =

1
x
log(1 + x) is decreasing at x > 0.
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A.2.3 Proof of the Fact that HyperRec Satisfies Axiom 3

Through an example, Axiom 3 states that when two arcs inversely overlap equally with their reciprocal
sets, an arc with a single reciprocal arc is more reciprocal than one with multiple reciprocal arcs. Axiom
3 is split into two cases and each case is formalized in Generalized Axioms 3A and 3B respectively,
where an arc with a single reciprocal arc and an arc with exactly two reciprocal arcs are compared. In
Remark 1, we further generalize them to encompass a comparison of the former and an arc with two or
more reciprocal arcs and provide a proof sketch to show that these extended statements hold true for our
proposed measure.

Proposition 3A. HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) satisfies Generalized Axiom 3A.

Proof. Since the sizes of the reciprocal sets differ, the cardinality penalty term should be considered.
Here, r(ei, Ri) and r(ej , Rj) is rewritten as

r(ei, Ri) =

(
1

2

)α
(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
,

r(ej , Rj) =

(
1−

∑
vh∈Hj

L(ph, p∗h)
|Hj | · Lmax

)
.

Since α > 0, r(ei, Ri) < r(ej , Rj) is implied by(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
≤

(
1−

∑
vh∈Hj

L(ph, p∗h)
|Hj | · Lmax

)
.

Since |Hi| = |Hj |, the inequality is rewritten as(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
≤

(
1−

∑
vh∈Hj

L(ph, p∗h)
|Hj | · Lmax

)

≡
∑

vh∈Hj
L(ph, p∗h)

|Hj | · Lmax
≤
∑

vh∈Hi
L(ph, p∗h)

|Hi| · Lmax

≡
∑

vh∈Hj

L(ph, p∗h) ≤
∑

vh∈Hi

L(ph, p∗h). (18)

For the target arc ei, since T ′
i1 = T ′

i2, ph for every vh ∈ Hi has the same distribution. For the target
arc ej , since there is only one single reciprocal arc, ph for every vh ∈ Hi has the same distribution. Let
p̄k, ∀k = i, j be the transition probability distribution regarding the target arc ek and its reciprocal set
Rk. Here, the inequality (18) is rewritten as∑

vh∈Hj

L(ph, p∗h) ≤
∑

vh∈Hi

L(ph, p∗h)

≡ |Hj ∩ T ′
j | × L(p̄j , p̄∗j ) ≤ |Hi ∩ T ′

i1| × L(p̄i, p̄∗i )

Since e′i1 ⊆(R) ei, e′i2 ⊆(R) ei, e′j ⊆(R) ej , and |T ′
j | = |T ′

i1|, the last inequality is rewritten as

|Hj ∩ T ′
j | × L(p̄j , p̄∗j ) ≤ |Hi ∩ T ′

i1| × L(p̄i, p̄∗i )
≡ |T ′

j | × L(p̄j , p̄∗j ) ≤ |T ′
i1| × L(p̄i, p̄∗i )

≡ L(p̄j , p̄∗j ) ≤ L(p̄i, p̄∗i ).

The proof can be done by showing the last inequality, L(p̄j , p̄∗j ) ≤ L(p̄i, p̄∗i ).
In order to show L(p̄j , p̄∗j ) ≤ L(p̄i, p̄∗i ), we should take a close look at the transition probability in ei.

Since the head sets of the two reciprocal arcs do not overlap, the transition probability is

ph,i(v) =


1

2|H′
i1|

if v ∈ H ′
i1

1
2|H′

i2|
if v ∈ H ′

i2

0 otherwise.

Since e′i1 ⊆(R) ei, e′i2 ⊆(R) ei, and e′j ⊆(R) ej , the domain of v ∈ V can be divided into

H ′
i1, H ′

i2, Ti \ {H ′
i1 ∪H ′

i2}, and V \ Ti, for ei,

H ′
j , Tj \H ′

j , and V \ Tj , for ej .
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Since |Ti| = |Tj |, the probability mass for the last part is identical for both cases. Let A = |Hj |, B = |Hi1|,
and T = |Ti| = |Tj |. Since H ′

i1, H
′
i2 ⊆ Ti, H

′
j ⊆ Tj , H

′
i1 ∩H ′

i2 = ∅, and |(H ′
i1 ∪H ′

i2) ∩ Ti| = |H ′
j ∩ Tj |,

|Hi1|+ |Hi2| = |Hj | holds. Then, based on the above fact, we rewrite L(p̄j , p̄∗j ) ≤ L(p̄i, p̄∗i ) as

L(p̄j , p̄∗j ) ≤ L(p̄i, p̄∗i )

≡ A× ℓ

(
1

T
,
1

A

)
+

T −A

2T
log 2

≤ B × ℓ

(
1

T
,

1

2B

)
+ (A−B)× ℓ

(
1

T
,

1

2(A−B)

)
+

T −B − (A−B)

2T
log 2

≡ A× ℓ

(
1

T
,
1

A

)
≤ B × ℓ

(
1

T
,

1

2B

)
+ (A−B)× ℓ

(
1

T
,

1

2(A−B)

)
(19)

≡ A

2T
log

2A

A+ T
+

A

2A
log

2T

A+ T

≤ B

2T
log

4B

2B + T
+

B

4B
log

2T

2B + T

+
(A−B)

2T
log

4(A−B)

2(A−B) + T
+

(A−B)

4(A−B)
log

2T

2(A−B) + T
, ∵ unfold ℓ(p, q)

≡ A

2T
log

A

A+ T
+

A

2A
log

T

A+ T

≤ B

2T
log

2B

2B + T
+

B

4B
log

T

2B + T

+
(A−B)

2T
log

2(A−B)

2(A−B) + T
+

(A−B)

4(A−B)
log

T

2(A−B) + T
,

where, for the last equivalence, we subtract
(

A
2T

+ 1
2

)
log 2 =

(
A
2T

+ A
2A

)
log 2 =

(
B
2T

+ B
4B

+ A−B
2T

+ B−A
4(B−A)

)
log 2

from both sides. We show the last inequality by dividing it into two and proving each. If the following
two inequality holds, the proof is done.

A

2T
log

A

A+ T
≤ B

2T
log

2B

2B + T
+

(A−B)

2T
log

2(A−B)

2(A−B) + T
, (20)

1

2
log

T

A+ T
≤ 1

4
log

T

2B + T
+

1

4
log

T

2(A−B) + T
. (21)

We first show the inequality (20). By multiplying by 2T both sides, we get

A

2T
log

A

A+ T
≤ B

2T
log

2B

2B + T
+

(A−B)

2T
log

2(A−B)

2(A−B) + T

≡ A log
A

A+ T
≤ B log

2B

2B + T
+ (A−B) log

2(A−B)

2(A−B) + T
(22)

Here, we prove this inequality by using the functional form of f(B) = B log 2B
2B+T

+(A−B) log 2(A−B)
2(A−B)+T

where 0 < B < A. Its derivative is

∂f(B)

∂B
= log (2B)− log (2B + T ) +B

(
2

2B
− 2

2B + T

)
− log (2(A−B)) + log (2(A−B) + T )− (A−B)

(
2

2(A−B)
− 2

2(A−B) + T

)
.

= log (2B)− log (2B + T )− 2B

2B + T

− log (2(A−B)) + log (2(A−B) + T ) +
2(A−B)

2(A−B) + T

= log
2B

2B + T
− 2B

2B + T
− log

2(A−B)

2(A−B) + T
+

2(A−B)

2(A−B) + T
.

Thus, ∂f(B)
∂B

= log x− x− (log y − y) for x = 2B
2B+T

and y = 2(A−B)
2(A−B)+T

, which satisfy 0 < x, y < 1, and it
has the following properties:

• If we plug in B = A
2
, f ′(B) = 0 holds,
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• log x− x is an increasing function at 0 < x < 1,

• If 0 < B < A
2
, then (log y)− y > (log x)− x, which implies f ′(B) < 0,

• If A
2
< B < A, then (log x)− x > (log y)− y, which implies f ′(B) > 0.

From these properties, we can derive

f ′(B)


< 0 if 0 < B < A

2

= 0 if B = A
2

> 0 if A
2
< B < A.

Hence, when 0 < B < A, f(B) has its minimum value at B = A/2, and therefore the inequality (22),
which is equivalent to the inequality (20), holds. Now we show the inequality (21), which is rewritten as

1

2
log

T

A+ T
≤ 1

4
log

T

2B + T
+

1

4
log

T

2(A−B) + T

≡ 1

4
log

T 2

(A+ T )(A+ T )
≤ 1

4
log

T 2

(2B + T )(2(A−B) + T )
,

≡ (2B + T )(2(A−B) + T ) ≤ (A+ T )(A+ T )

= 4B(A−B) + 2AT + T 2 ≤ A2 + 2AT + T 2

≡ A2 − 4AB + 4B2 = (A− 2B)2 ≥ 0.

The last inequality trivially holds.

Proposition 3B. HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) satisfies Generalized Axiom 3B.

Proof. By following the proof of Proposition 3A, we can show that r(ei Ri) < r(ej Rj) is implied by∑
vh∈Hi

L(ph, p∗h) ≤
∑

vh∈Hj

L(ph, p∗h).

Since T ′
i1∩T ′

i2 = ∅ andH ′
i1 = H ′

i2, the transition probability for every vh ∈ Hi∩{T ′
i1∪T ′

i2} is identical for ei.
This is also true for ej , whose reciprocal set has only one arc. Let p̄k,∀k = i, j be the transition probability
distribution regarding the target arc ek and its reciprocal set Rk. Since |Hi ∩ {T ′

i1 ∪ T ′
i2}| = |Hj ∩ T ′

j |,
the above inequality is rewritten as

L(p̄i, p̄∗i ) ≤ L(p̄j , p̄∗j ).
Since e′i1 ⊆(R) ei, e

′
i2 ⊆(R) ei, e

′
j ⊆(R) ej , and |H ′

i1| = |H ′
j |, the probabilistic distances for ei and ej are

identical. That is,
L(p̄i, p̄∗i ) = L(p̄j , p̄∗j ), (23)

and thus L(p̄i, p̄∗i ) ≤ L(p̄j , p̄∗j ) also holds.

Remark 1 (Extension of Propositions 3A and 3B to Multiple Hyperarc Cases). Although the
statement of Proposition 3A presents a case with a single arc in Ri and two arcs in Rj, it can be
further generalized: a single arc in Ri and K ≥ 2 hyperarcs in Rj under the following conditions, which
are equivalent to the current conditions for K = 2: (1) the head sets of the arcs in Ri are disjoint and
their tail sets are identical, (2) all arcs in Ri satisfy the condition of ⊆(R), and (3) the coverage of Ti by
the head sets of the arcs in Ri is of the same size as the coverage of Tj by the head set of the arc in Rj.

We provide a proof sketch to demonstrate the validity of HyperRec in this generalized setting. As in
the proof of Proposition 3A, it suffices to show that Eq. (24) holds, which generalizes Eq. (19),

A× ℓ

(
1

T
,
1

A

)
≤ B1ℓ

(
1

T
,

1

KB1

)
+ · · ·+BKℓ

(
1

T
,

1

KBK

)
, (24)

where A =
∑K

i=1 Bi. Considering that the Jensen-Shannon Divergence (JSD) is an average of two
KL-divergence terms, which is a well-known convex function when one probability distribution is fixed
(1/T in our case), we can derive that each term ℓ in Eq. (24) is also a convex function.

From this fact, we can apply Jensen’s Inequality, which states: f(a1x1 + · · · + aKxK) ≤ a1f(x1) +
· · ·+ aKf(xK) holds for a convex function f and non-negative coefficients a1, · · · , aK where

∑K
i=1 ai = 1.
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By considering the fact that ℓ( 1
T
, x) is a convex function with respect to x, we derive Eq. (25) by setting

ai = Bi/A and xi = 1/(KBi).

ℓ

(
1

T
,
1

A

)
= ℓ

(
1

T
,
K

AK

)
= ℓ

(
1

T
,

1

KB1
× B1

A
+ · · · 1

KBK
× BK

A

)
≤ B1

A
ℓ

(
1

T
,

1

KB1

)
+ · · · BK

A
ℓ

(
1

T
,

1

KBK

)
. (25)

Multiplying both sides of Eq. (25) by A implies Eq. (24), which is the result we aim to show.
Similarly, we can further generalize Proposition 3B to case with a single arc in Ri and K ≥ 2 arcs

in Rj under the following conditions, which are equivalent to the current conditions when K = 2: (1)
the tail sets of the arcs in Ri are disjoint and their head sets are identical, (2) all arcs in Ri satisfy the
condition of ⊆(R), and (3) the coverage of Hi by the tail sets of the arcs in Ri is of the same size as the
coverage of Hj by the tail set of the arc in Rj. The proof provided for Proposition 3B can be directly
applied in this generalized setting to show the validity of HyperRec.

A.2.4 Proof of the Fact that HyperRec Satisfies Axiom 4

Through an example, Axiom 4 states that an arc whose reciprocal arcs are equally reciprocal to all
nodes in the arc is more reciprocal than one with reciprocal arcs biased towards a subset of nodes in the
arc. The generalized statement of Axiom 4 is formalized in Generalized Axiom 4.

Proposition 4. HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) satisfies Generalized Axiom 4.

Proof. By the definition, the inequality is rewritten as

r(ei, Ri) < r(ej , Rj)

=

(
1

|Ri|

)α
(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
<

(
1

|Rj |

)α
(
1−

∑
vh∈Hj

L(ph, p∗h)
|Hj | · Lmax

)
.

Let p̄k, ∀k = i, j be the transition probability distribution regarding the target arc ek and its reciprocal
set Rk which does not rely on the starting node vh. The above inequality is rewritten as

r(ei, Ri) < r(ej , Rj)

≡

(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
<

(
1−

∑
vh∈Hj

L(ph, p∗h)
|Hj | · Lmax

)
∵ |Ri| = |Rj |

≡
∑

vh∈Hj

L(ph, p∗h) <
∑

vh∈Hi

L(ph, p∗h) ∵ |Hi| = |Hj |

≡ L(p̄j , p̄∗j ) < L(p̄i, p̄∗i ) ∵ T ′
i = Hi and T ′

j = Hj

Here, we prove the last inequality by showing that, in the above setting, (a) Rj minimizes the
distance (i.e., L(ph,j , p∗h,j) ≡ L(p̄j , p̄∗j )), and (b) the distance is inevitably larger in all other cases. By the
assumptions, for the target arc ej , the corresponding reciprocal arcs have a head set of size 2, and the
number of reciprocal arcs equals the number of tail nodes (i.e., |Rj | = |Tj |). In addition, the head set of
every reciprocal arc is a subset of the tail set Tj of ej and T ′

j = Hj . Thus, Eq. (3), which is about ej ,
implies that every node v ∈ Tj in the tail set is included in two of the head sets of the reciprocal arcs.
Because of these facts, the transition probability can be written as

ph,j(v) =

{
1

2|Tj |
+ 1

2|Tj |
= 1

|Tj |
if v ∈ Tj ,

0 otherwise,

Note that this is identical to the optimal transition probability.
Now, consider the case of ei. Here, due to Eq. (2), the transition probability cannot be uniform as

in the case of ej . Assume a node v′i1 ∈ Ti belongs to reciprocal arcs’ head sets K ̸= 2 times. Then, the
transition probability assigned to v′i1 is p(v′i1) =

1
2|Ti|

×K ≠ 1
|Ti|

. This result indicates that the transition
probability of ei is not the only optimal one. Thus, the following inequality holds:

L(p̄j , p̄∗j ) < L(p̄i, p̄∗i )
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A.2.5 Proof of the Fact that HyperRec Satisfies Axioms 5-8

Proposition 5. HyperRec (i.e., defining r(ei, Ri) as in Eq. (5)) satisfies Axiom 5.

Proof. This can be shown by using the known range of the probabilistic distance L(p, q) as follows:

0 ≤
∑

vh∈Hi

L(ph, p∗h)
Lmax

≤ |Hi| (∵ 0 ≤ L(p, q) ≤ Lmax, ∀p, q)

≡ 0 ≤
∑

vh∈Hi
L(ph, p∗h)

|Hi| · Lmax
≤ 1

≡ 0 ≤ 1−
∑

vh∈Hi
L(ph, p∗h)

|Hi| · Lmax
≤ 1

≡ 0 ≤
(

1

|Ri|

)α
(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
≤ 1 (∵ α > 0)

Proposition 6. HyperRec (i.e., defining r(G) as in Eq. (1)) satisfies Axiom 6.

Proof. Recall that the hypergraph level reciprocity of HyperRec is defined as

r(G) =
1

|E|

|E|∑
i=1

r(ei, Ri)

By the assumption, the size of every arc’s head set is 1, and thus each r(ei, Ri) is rewritten as

r(ei) = max
Ri⊆E,Ri ̸=∅

(
1

|Ri|

)α(
1− L(ph, p

∗
h)

Lmax

)
,

where {vh} = Hi. Here, the optimal transition probability is

p∗h(v) =

{
1 if {v} = Ti,

0 otherwise.

For a case where the perfectly reciprocal opponent e′i = ⟨H ′
i = Ti, T

′
i = Hi⟩ of ei exists (i.e., e′i ∈ E),

Ri = {e′i} maximizes
(

1
|Ri|

)α (
1− L(ph,p∗h)

Lmax

)
since it minimizes both |Ri| (to 1) and L(ph, p∗h) (to 0).

Thus, r(ei) becomes 1.
For a case where the perfectly reciprocal opponent e′i = ⟨H ′

i = Ti, T
′
i = Hi⟩ of ei does not exist (i.e.,

e′i /∈ E). Then, for each arc ek in the reciprocal set Ri, since |Hi| = |Ti| = |Hk| = |Tk| = 1, Hi ∩ Tk = ∅
or Ti ∩Hk = ∅ should hold. Thus, there is no transition possibility from any node in ∈ Hi to any node in
Ti, and as a result, ph(v) = 0, ∀vh ∈ Hi, ∀v ∈ Ti. Hence, for every Ri ⊆ E, by A-II, L(ph, p∗h) = Lmax,
and thus r(ei) = 0.

If we consider both cases together, r(ei) becomes an indicator function that gives 1, if there exists the
perfectly reciprocal opponent, and 0, otherwise. Formally,

r(G) =
1

|E|

|E|∑
i=1

r(ei)

=
1

|E|

|E|∑
i=1

1(∃e′i ∈ E such that H ′
i = Ti and T ′

i = Hi),

where 1(TRUE) = 1 and 1(FALSE) = 0; and this is identical to the digraph reciprocity measure [Newman
et al., 2002, Garlaschelli and Loffredo, 2004], i.e., |E↔|/|E|.
Proposition 7. HyperRec (i.e., defining r(G) as in Eq. (1)) satisfies Axiom 7.

Proof. Recall that the hypergraph-level reciprocity of HyperRec is defined as

r(G) =
1

|E|

|E|∑
i=1

r(ei) =
1

|E|

|E|∑
i=1

max
Ri⊆E,Ri ̸=∅

r(ei, Ri)

By Axiom 5, 0 ≤ r(ei Ri) ≤ 1 for any ei and Ri. This implies 0 ≤
∑|E|

i=1 r(ei) ≤ |E|, which is equivalent

to 0 ≤ r(G) = 1
|E|
∑|E|

i=1 r(ei) ≤ 1.
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Proposition 8. HyperRec (i.e., defining r(G) as in Eq. (1)) satisfies Axiom 8.

Proof. We first show that the maximum value of HyperRec is attainable under the given condition of
Axiom 8. From an arbitrary hypergraph G, let E′ = {ei ∈ E : ⟨Ti, Hi⟩ /∈ E} be the set of arcs whose
perfectly reciprocal opponents do not exist in G. Let Eadd =

⋃
eki∈E

′ ⟨Ti, Hi⟩ be the set of perfectly

reciprocal opponents of the arcs in E′. If we add Eadd to G, which gives G+ = (V,E+ = E ∪ Eadd),
then for each arc ei ∈ E+, the perfectly reciprocal opponent e′i = ⟨H ′

i = Ti, T
′
i = Hi⟩ of ei exists (i.e.,

e′i ∈ E+), and thus

r(ei) = r(ei, {e′i}) =

(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)

=

(
1− 0 + · · ·+ 0

|Hi| · Lmax

)
(∵ ph = p∗h)

= 1,

which implies that r(G+) = 1
|E+|

∑|E+|
i=1 r(ei) = 1.

We now show that the minimum value of HyperRec is attainable under the given condition of
Axiom 8. From an arbitrary hypergraph G = (V,E), let E− = {ei} be a hyperarc set that contains any
single hyperarc ei ∈ E. For a hypergraph G− = (V,E−), the only possible choice of Ri is Ri = {ei} since
Ri should be a non-empty set and there exists only a single hyperarc ei in G−, and thus

r(ei) = r(ei, {ei}) =

(
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)

=

(
1− |Hi| · Lmax

|Hi| · Lmax

)
(∵ A-IV and A-V)

= 0,

which implies that r(G−) = r(ei) = 0.

A.3 Proof of Theorem 2

Proof. Refer to Section 3.4 for the definition of Φi(⟨H ′
i, T

′
i ⟩). Given a target arc ei, let ea and eb be two

arcs in a set Φi(⟨H ′
i, T

′
i ⟩) where A = |Ha| ≤ B = |Hb|. Consider an arbitrary reciprocal set Ri ⊆ E.

We use p(i,a,h) to denote the probability distribution at each node vh ∈ H ′
i when the reciprocal set is

Ri ∪ {ea}. Then, probabilistic distance between p(i,a,h) and p∗h is rewritten as

L(p(i,a,h), p∗h) =
∑
v∈T ′

i

ℓ(
1

|Ti|
,
Kq(i,h)(v)

K + 1
+

1

A(K + 1)
) +

∑
v∈Ti\T ′

i

ℓ(
1

|Ti|
,
Kq(i,h)(v)

K + 1
)

+
∑

v∈(
⋃

ek∈E′
(i,h)

Hk)\Ti

Kq(i,h)(v)

2(K + 1)
log 2 +

∑
v∈Ha\Ti

1

2A(K + 1)
log 2, (26)

where E′
(i,h) = {ek ∈ Ri : vh ∈ Tk}, K = |E′

i,h|, and q(i,h) is the probability distribution at each
node vh ∈ H ′

i when the reciprocal set is Ri. It should be noticed that the definition of H ′
i and T ′

i ,
H ′

i = Ta ∩Hi = Tb ∩Hi and T ′
i = Ha ∩ Ti = Hb ∩ Ti hold. In the same way, we define p(i,b,h) is as the

probabilistic distribution at each node vh ∈ H ′
i when Ri ∪ {eb} is the reciprocal set. Then, L(p(i,b,h), p∗h)

can be rewritten as in Eq. (26).
We prove the theorem by showing that L(p(i,a,h), p∗h) ≤ L(p(i,b,h), p∗h) holds for every vh ∈ H ′

i =
Hi ∩ Ta = Hi ∩ Tb. Note that the second and third terms of the RHS do not depend on ea and eb, and
they are identical in L(p(i,a,h), p∗h) and L(p(i,b,h), p∗h). Thus, we rewrite L(p(i,a,h), p∗h) ≤ L(p(i,b,h), p∗h) as

L(p(i,a,h), p∗h) ≤ L(p(i,b,h), p∗h)

≡
∑
v∈T ′

i

ℓ(
1

|Ti|
,
Kq(i,h)(v)

K + 1
+

1

A(K + 1)
) +

∑
v∈Ha\Ti

1

2A(K + 1)
log 2

≤
∑
v∈T ′

i

ℓ(
1

|Ti|
,
Kq(i,h)(v)

K + 1
+

1

B(K + 1)
) +

∑
v∈Hb\Ti

1

2B(K + 1)
log 2.
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For simplicity, let |Ti| = T abd |T ′
i | = F . Then, the above inequality is rewritten as∑

v∈T ′
i

ℓ(
1

T
,
Kq(i,h)(v)

K + 1
+

1

A(K + 1)
)− ℓ(

1

T
,
Kq(i,h)(v)

K + 1
+

1

B(K + 1)
)

≤ B − F

2B(K + 1)
log 2− A− F

2A(K + 1)
log 2 . (27)

Let v′ = argmaxv∈T ′
i
ℓ( 1

T
,
Kq(i,h)(v)

K+1
+ 1

A(K+1)
)− ℓ( 1

T
,
Kq(i,h)(v)

K+1
+ 1

B(K+1)
), and let p′ = q(i,h)(v

′). Then,
the following inequality holds:∑

v∈T ′
i

ℓ(
1

T
,
Kq(i,h)(v)

K + 1
+

1

A(K + 1)
)− ℓ(

1

T
,
Kq(i,h)(v)

K + 1
+

1

B(K + 1)
)

≤ F × (ℓ(
1

T
,

Kp′

K + 1
+

1

A(K + 1)
)− ℓ(

1

T
,

Kp′

K + 1
+

1

B(K + 1)
))

Thus, the inequality (27) is implied by

F × (ℓ(
1

T
,

Kp′

K + 1
+

1

A(K + 1)
)− ℓ(

1

T
,

Kp′

K + 1
+

1

B(K + 1)
))

≤ F

2A(K + 1)
log 2− F

2B(K + 1)
log 2 . (28)

By unfolding ℓ in the LHS and dividing both sides by F , the inequality (28) is rewritten as

1

2(K + 1)
(
1

A
− 1

B
) log 2 ≥

1

2T
log(

2
T

1
T
+ Kp′

K+1
+ 1

A(K+1)

) +
1

2
(

Kp′

K + 1
+

1

A(K + 1)
) log(

2( Kp′

K+1
+ 1

A(K+1)
)

1
T
+ Kp′

K+1
+ 1

A(K+1)

)

− 1

2T
log(

2
T

1
T
+ Kp′

K+1
+ 1

B(K+1)

)− 1

2
(

Kp′

K + 1
+

1

B(K + 1)
) log(

2( Kp′

K+1
+ 1

B(K+1)
)

1
T
+ Kp′

K+1
+ 1

B(K+1)

)

≡ 1

(K + 1)
(
1

A
− 1

B
) log 2− 1

(K + 1)
(
1

A
− 1

B
) log 2 ≥

1

T
log(

1
T

1
T
+ P ′ + 1

A(K+1)

) + (P ′ +
1

A(K + 1)
) log(

P ′ + 1
A(K+1)

1
T
+ P ′ + 1

A(K+1)

)

− 1

T
log(

1
T

1
T
+ P ′ + 1

B(K+1)

)− (P ′ +
1

B(K + 1)
) log(

P ′ + 1
B(K+1)

1
T
+ P ′ + 1

B(K+1)

),

where P = Kp′

K+1
. Let PA = P ′ + 1

A(K+1)
and PB = P ′ + 1

B(K+1)
, where PA ≥ PB . Then, by cancelling

out all identical terms, the above inequality is simplified as

0 ≥ 1

T
log(

1
T

1
T
+ PA

)− 1

T
log(

1
T

1
T
+ PB

)

+ PA log(
PA

1
T
+ PA

)− PB log(
PB

1
T
+ PB

)

≡ 0 ≥ 1

T
log(

1
T
+ PB

1
T
+ PA

) + PB log(
1
T
+ PB

PB
)− PA log(

1
T
+ PA

PA
)

If we multiply by T both sides, this inequality is implied by the two following inequalities:

log(
1
T
+ PB

1
T
+ PA

) ≤ 0, (29)

log

(
(1 + 1

TPB
)TPB

(1 + 1
TPA

)TPA

)
≤ 0. (30)

The inequality (29) is trivial since PA ≥ PB . For the inequality (30), the numerator and the denominator
are in the form of f(n) = (1 + 1

n
)n, which is a non-decreasing function. Thus, the denominator is always

greater than or equal to the numerator, thus satisfying the inequality.
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A.4 Proof of Corollary 1

Proof. Since HyperRec measures a weighted average of the probabilistic distances that are defined for
each head set node of the target arc, we consider each head set node vh ∈ Hi of the target arc ei. Since
the tail set size of every arc is identical to 1 (i.e., |Ti| = 1), there exists at most one arc in Ψi that covers
a specific node vh in the head set Hi of the target arc, i.e., ∀vh ∈ Hi,

|{ek ∈ Ψi : vh ∈ Tk}| ≤ 1, (31)

Let v′ be the target arc’s tail set node, i.e., Ti = {v′}. Then, by the definition of Ψi, v
′ is included in the

head set of every ek ∈ Ψi, i.e., ∀ek ∈ Ψi,
v′ ∈ Hk. (32)

Eq. (31) and Eq. (32) imply that, ∀ek ∈ Ri ⊆ Ψi, Eq. (33) holds.

JSD(ph ∥ p∗h) = ℓ(1,
1

|Hk|
) +

∑
v∈Hk\{v′}

ℓ(0,
1

|Hk|
). (33)

Let A = |Hk1| and B = |Hk2|. Then, ∀e′h1, e′h2 ∈ Ri ⊆ Ψi s.t. |H ′
h1| ≤ |H ′

h2|,

JSD(ph1 ∥ p∗h1) ≤ JSD(ph2 ∥ p∗h2) (34)

≡ ℓ(1,
1

|Hk1|
) +

∑
v∈Hk1\{v′}

ℓ(0,
1

|Hk1|
) ≤ ℓ(1,

1

|Hk2|
) +

∑
v∈Hk2\{v′}

ℓ(0,
1

|Hk2|
)

≡ 1

2A
log(

2

1 +A
) +

1

2
log(

2A

1 +A
) +

A− 1

2A
log 2

≤ 1

2B
log(

2

1 +B
) +

1

2
log(

2B

1 +B
) +

B − 1

2B
log 2

≡ log(
A(B + 1)

B(A+ 1)
) + (

1

A
− 1

B
) log 2 + log((1 +B)

1
B )− log((1 +A)

1
A ) ≤ (

1

A
− 1

B
) log 2

≡ log(
A(B + 1)

B(A+ 1)
) + log(

(1 +B)
1
B

(1 +A)
1
A

) ≤ 0, (35)

We prove the inequality (34) by showing that both first and second terms of the LHS of the inequality
(35) are smaller than or equal to 0. Since A ≤ B, it is trivial that the first term is smaller than or equal
to 0. The second term has a functional form of log(f(x)/f(x′)) where f(x) is a non-increasing function
and x ≤ x′, and thus the second term is also smaller than or equal to 0.

In addition, let e′h ∈ Ψi be the only arc where T ′
h = {vh}. Then, the probabilistic distance at a each

head set node vh depends on whether e′h is in any reciprocal set Ri ⊆ Ψi as follows:

L(ph, p∗h) =

{
JSD(p′h ∥ p∗h) if e′h ∈ Ri

Lmax otherwise,
(36)

where p′h is the probability distribution at vh when the reciprocal set Ri = {e′h}, p∗h is the optimal
probability distribution at a node vh ∈ Hi.

By Eq. (31) and Eq. (36), for any R′
i = {e′h1, · · · , e′hk} ⊆ Ψi, Eq. (37) holds.

r(ei, R
′
i) =

(
1

k

)α(
1− JSD(p′h1 ∥ p∗h1) + · · ·+ JSD(p′hk ∥ p∗hk) + (|Hi| − k)× Lmax

|Hi| × Lmax

)
, (37)

where T ′
hj = {vhj} for every j ∈ {1, · · · , k}. In addition, Eq. (37) and the inequality (34) imply that

drawing k reciprocal arcs from Ψi in ascending order of their head set size achieves the maximum
reciprocity for fixed k. Let Γi,k be such a reciprocal set. Formally, if we let Γi,k be a subset of Ψi such
that |Γi,k| = k and |Hs| ≤ |Ht|, ∀es ∈ Γi,k, ∀et ∈ {Ψi \Γi,k}, then argmaxRi⊆Ψis.t.|Ri|=k r(ei, Ri) = Γi,k

holds.

B Appendix: Limitations of Baseline Measures

In this section, we show why several baseline measures fail in satisfying some of Axiom 1-8. Below,
We use Gi = (Vi, Ei) and Gj = (Vj , Ej) to denote the hypergraphs on the left side and the right side,
respectively, of each subfigure of Figure 2.
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Table 10: Violation of Axiom 3. We use Gi and Gj to denote the hypergraphs on the left side and the right
side, respectively, of each subfigure of Figure 2. This table reports the computed reciprocity values, r(Gi)
and r(Gj), of [Pearcy et al., 2014] (B1), and the computed reciprocity values, r(ei, Ri) and r(ej , Rj), of the
ratio of covered pairs (B2) and HyperRec without size penalty (B5), for Figures 2(d)-(e). In order to satisfy
Axiom 3, r(ei, Ri) < r(ej , Rj) (or r(Gi) < r(Gj)) should hold in both subfigures. Note that, B1, B2, and
B5 cannot satisfy the inequality in at least one subfigure.

Figure 2(d) (Axiom 3A) Figure 2(e) (Axiom 3B)

r(ei, Ri) or r(Gi) r(ej , Rj) or r(Gj) r(ei, Ri) or r(Gi) r(ej , Rj) or r(Gj)

B1 (Pearcy et al. [2014]) 0.2093 0.2093 0.2093 0.2093

B2 (Ratio of Covered Pairs) 0.5625 0.5625 0.5625 0.5625

B5 (HyperRec w/o Size Penalty) 0.6333 0.6446 0.6446 0.6446

Table 11: Violation of Axiom 4. The computed reciprocity values, r(ei, Ri) and r(ej , Rj), of the ratio of
covered pairs (B2) and the penalized ratio of covered pairs (B3) with α = 1 in Figure 2(f). While r(ei, Ri) <
r(ej , Rj) should hold to satisfy Axiom 4, the inequality does not hold for B2 and B3.

Figure 2(f) (Axiom 4)

r(ei, Ri) r(ej , Rj)

B2 (Ratio of Covered Pairs) 1.00 1.00

B2 (Penalized Ratio of Covered Pairs) 0.25 0.25

B.1 Violations of Axiom 3

We show how several baseline measures violate Axiom 3. In Figures 2(d)-(e), r(ei, Ri) < r(ej , Rj) should
hold in order to satisfy Axiom 3. However, we numerically verify that r(ei, Ri) = r(ej , Rj) hold for some
baseline measures, which violates Axiom 3.

B1. [Pearcy et al., 2014]: They use clique expansion, which transforms every hyperedge of a hypergraph
to a clique of a pairwise graph (e.g., ⟨{v1}, {v2, v3}⟩ → {⟨{v1}, {v2}⟩, ⟨{v1}, {v3}⟩}). Through this process,
the original hypergraph is transformed into a weighted digraph (see Section 2.2). Since Pearcy et al. [2014]
do not propose any arc-level reciprocity, we compare its hypergraph-level reciprocity for counterexamples
regarding Axiom 3. That is, we compare r(Gi) and r(Gj) in Figures 2(d)-(e). As reported in Table 10,
r(Gi) = r(Gj) = 0.2093 and r(Gi) = r(Gj) = 0.2093 hold in Figure 2(d) and Figure 2(e), respectively,
violating Axiom 3.

B2. Ratio of Covered Pairs: We compare the ratio of covered pairs (B2), which is arc-level reciprocity,
in Figures 2(d)-(e). As reported in Table 10, r(ei, Ri = {e′i1, e′i2}) = r(ej , Rj = {e′j}) = 0.5625 and
r(ei, Ri) = r(ej , Rj) = 0.5625 hold in Figure 2(d) in Figure 2(e), respectively, which violates Axiom 3.

B5. HyperRec w/o Size Penalty: As reported in Table 10, r(ei, Ri = {e′i1, e′i2) = r(ej , Rj = {e′j}) =
0.6446 holds in Figure 2(e), which violates Axiom 3.

B.2 Violations of Axiom 4

We show how several baseline measures violate Axiom 4. In Figure 2(f), r(ei, Ri) < r(ej , Rj) should
hold in order to satisfy Axiom 4. However, we numerically verify that r(ei, Ri) = r(ej , Rj) hold for some
baseline measures, which violates Axiom 4.

B2. Ratio of Covered Pairs: As reported in Table 11, r(ei, Ri = (Ei \ {ei}) = r(ej , Rj = Ej \ {ej}) =
1.00 holds in Figure 2(f), which violates Axiom 4.

B3. Penalized Ratio of Covered Pairs: As reported in Table 11, r(ei, Ri = (Ei \ {ei}) = r(ej , Rj =
Ej \ {ej}) = 0.25 holds in Figure 2(f), which violates Axiom 4.
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B.3 Violations of Axiom 5

B4. HyperRec w/o Normalization: In order to satisfy Axiom 5, reciprocity should always lie in a
fixed finite range. Here, we demonstrate that (B4) violates Axiom 5 by showing that its reciprocity
value can become infinite. Recall that (B4) is defined as

r(ei, Ri) =

(
1

|Ri|

)α
(
|Hi| −

∑
vh∈Hi

L(ph, p∗h)
Lmax

)
. (38)

Consider a case where Ri = {e′i = ⟨Ti, Hi⟩}. Then, for each vh ∈ Hi, L(ph, p∗h) = 0 holds. In turn, Eq (38)
becomes r(ei, Ri) = |Hi|. In this case, as |Hi| approaches infinity, r(ei, Ri) also becomes infinite. Since
the value of (B4) does not lie in a fixed finite range, (B4) violates Axiom 5.

B.4 Violations of Axiom 6

𝒗𝟏

𝒗𝟑

𝒗𝟐
𝒆𝟏

𝒆𝟐
𝒆𝟑

Figure 8: A counterexample that shows that some baseline measures fail to satisfy Axiom 6.

B1. [Pearcy et al., 2014]: Consider the digraph in Figure 8 The digraph reciprocity of the digraph is
r(G) = 2

3
since E = {e1, e2, e3}, and E↔ = {e1, e2}. In this case, however, the clique-expanded adjacency

matrices of the digraph and the perfectly reciprocal hypergraph are

Ā =

0 1 1
1 0 0
0 0 0

 and Ā′ =

0 1 1
1 0 0
1 0 0

 .

Thus, according to the definition in [Pearcy et al., 2014], the reciprocity becomes 2
4
= 0.5 because

tr(Ā2) = 2 and tr(Ā′2) = 4. Since 2
4
̸= 2

3
, [Pearcy et al., 2014] (B1) violates Axiom 6.

B6. HyperRec with All Arcs as Reciprocal Set: According to Axiom 6, a hypergraph reciprocity
value should equal 2/3 ≈ 0.6667 in Figure 8. If we let α = 1, then the overall hypergraph-level reciprocity
(r(G)) based on HyperRec with all arcs as the reciprocal set (B6) is

r(e1, {e2, e3}) = 0.5, r(e2, {e1, e3}) = 0.3444, and r(e3, {e1, e2}) = 0

r(G) =
r(e1, {e2, e3}) + r(e2, {e1, e3}) + r(e3, {e1, e2})

3

=
0.5 + 0.3444 + 0

3
= 0.2815 ̸= 0.6667

which violates Axiom 6.

B.5 Violations of Axiom 8

B6. HyperRec with All the Arcs as Reciprocal Set: Even when there exists the perfect reciprocal
opponent of a specific arc, the transition probability cannot be identical to the optimal transition
probability if there exists another inversely overlapping arc (see the target arc e2’s case in Figure 8).

B7. HyperRec with Inversely Overlapping Arcs as Reciprocal Set: As in the previous case, if
there exist multiple inversely overlapping arcs, all of them are included in the reciprocal set. As a
result, for such arcs, the cardinality penalty term gets smaller than 1 (i.e., (1/|Ri|)α < 1), resulting in
r(ei, Ri) < 1. Consequently, the overall hypergraph reciprocity becomes smaller than 1.
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C Appendix: Data Description

In this section, we provide the sources of the considered datasets and describe how we preprocess them.

Metabolic datasets: We use two metabolic hypergraphs, iAF1260b and iJO1366, which are provided
by [Yadati et al., 2020]. They are provided in the form of directed hypergraphs, and they do not require
any pre-processing. We remove one hyperarc from each dataset since their head set or tail set is abnormally
large. Specifically, the size of their head sets is greater than 20, while the second largest one is 8. Each
node corresponds to a gene, and each hyperarc indicates a metabolic reaction among them. Specifically, a
hyperarc ei indicates that a reaction among the genes in the tail set Ti results in the genes in the head
set Hi.

Email datasets: We use two email hypergraphs, email-enron and email-eu. The Email-enron dataset
is provided by [Chodrow and Mellor, 2020]. We consider each email as a single hyperarc. Specifically, the
head set is composed of the receiver(s) and cc-ed user(s), and the tail set is composed of the sender. The
Email-eu dataset is from SNAP [Leskovec and Krevl, 2014]. The original dataset is a dynamic graph
where each temporal edge from a node u to a node v at time t indicates that u sent an email to v at time
t. The edges with the same source node and timestamp are replaced by a hyperarc, where the tail set
consists only of the source node and the head set is the set of destination nodes of the edges. Note that
every hyperarc in these datasets has a unit tail set, i.e., |Ti| = 1,∀i = {1, · · · , |E|}.
Citation datasets: We use two citation hypergraphs, citation-data mining and citation-software,
which we create from pairwise citation networks, as suggested by [Yadati et al., 2021]. Nodes are the
authors of publications. Assume that a paper A, which is co-authored by {v1, v2, v3}, cited another paper
B, which is co-authored by {v4, v5}. Then, this citation leads to a hyperarc where the head set is {v4, v5}
and the tail set is {v1, v2, v3}. As pairwise citation networks, we use subsets of a DBLP citation dataset
[Sinha et al., 2015]. The subsets consist of papers published in the venues of data mining and software
engineering, respectively.7 In addition, we filter out all papers co-authored by more than 10 authors to
minimize the impact of such outliers.

Question answering datasets: We use two question answering hypergraphs, qna-math and qna-
server. We create directed hypergraphs from the log data of a question answering site, stack exchange,
provided at [Archive, 2022]. Among various domains, we choose math-overflow, which covers mathematical
questions, and server-fault, which treats server related issues. The original log data contains the posts of
the site, and one questioner and one or more answerers are involved with each post. We ignore all posts
without any answerer. We treat each user as a node, and we treat each post as a hyperarc. For each
hyperarc, the questioner of the corresponding post composes the head set, and the answerer(s) compose the
tail set. Note that every hyperarc in these datasets has a unit head set, i.e., 1 |Hi| = 1, ∀i = {1, · · · , |E|}.
Bitcoin transaction dataset: We use three bitcoin transaction hypergraphs, bitcoin-2014, bitcoin-
2015, and bitcoin-2016. The original datasets are provided by [Wu et al., 2021], and they contain
first 1,500,000 transactions in 11/2014, 06/2015, and 01/2016, respectively. We model each account as a
node, and we model each transaction as a hyperarc. As multiple accounts can be involved in a single
transaction, the accounts from which the coins are sent compose the tail set, and the accounts to which
the coins sent compose the head set. We remove all transactions where the head set and the tail set are
exactly the same.

7We use the venues listed at [Wikipedia, 2022]
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