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Abstract—Graph-based fraud detection has heretofore received
considerable attention. Owning to the great success of Graph
Neural Networks (GNNs), many approaches adopting GNNs for
fraud detection has been gaining momentum. However, most
existing methods are based on the strong inductive bias of
homophily, which indicates that the context neighbors tend to
have same labels or similar features. In real scenarios, fraudsters
often engage in camouflage behaviors in order to avoid detection
system. Therefore, the homophilic assumption no longer holds,
which is known as the inconsistency problem. In this paper, we
argue that the performance degradation is mainly attributed to
the inconsistency between topology and attribute. To address
this problem, we propose to disentangle the fraud network
into two views, each corresponding to topology and attribute
respectively. Then we propose a simple and effective method
that uses the attention mechanism to adaptively fuse two views
which captures data-specific preference. In addition, we further
improve it by introducing mutual information constraints for
topology and attribute. To this end, we propose a Disentangled
Information Graph Neural Network (DIGNN) model, which
utilizes variational bounds to find an approximate solution to our
proposed optimization objective function. Extensive experiments
demonstrate that our model can significantly outperform state-
of-the-art baselines on real-world fraud detection datasets.

Index Terms—Graph Neural Networks, Fraud Detection, In-
formation Theory

I. INTRODUCTION

Graph-based fraud detection is a crucial task and has
tremendous impact in various applications, such as opinion
fraud detection [1], fake news detection [2], [3], review spams
[4] and financial fraud detection [5], [6]. In these scenarios, as
graph can effectively model the correlations among entities,
interactive activities on platform can be characterized as a
graph, where users or objects are often treated as nodes, and
transactions or relations between them are treated as edges.

Numerous techniques have been proposed to detect the
fraudsters. Recently, driven by the powerful representation
capability of graph structure and advances of Graph Neural
Networks (GNNs) [7]–[9], many approaches try to harness

†The first two authors contributed equally to this work.
*Corresponding author.

GNNs for fraud detection on either homogeneous or hetero-
geneous graphs. The main idea is to leverage GNNs to learn
expressive node representations with the goal of distinguishing
abnormal nodes from the normal ones in the latent embedding
space. Message-Passing GNNs (MP-GNNs) are mainstream-
ing in recent years, which aggregate neighbor node features
and achieve local smoothing by stacking layers. Although
MP-GNNs can obtain satisfactory performance on most of
cases, the strong inductive bias of homophily limits their
representative ability on heterophilic graphs. Some works [10]
point out that plentiful GNNs can be seen as low-pass filters,
so their generalization ability on high frequency graph signals
are poor. In fraud detection task, fraudsters often imitate
normal users in order to camouflage themselves, hence they
will interact with normal users more frequently. For instance,
normal users account for 81% of the fraudsters’ neighbor
nodes in YelpChi dataset (Figure 1). In other words, fraudsters’
features are inconsistent with their behaviors (interactions,
e.g., topological structure). Thus, recall that MP-GNNs do
not work well on heterophilic graphs, they fail to tackle the
inconsistency phenomenon in graph-based fraud detection and
fraudsters could fool the detection system.

Recently, a few works have noticed this problem, and they
employ aggregating weights to reduce the adverse impact
of dissimilar neighbors, or set similarity-aware thresholds to
select and re-link similar nodes. For instance, GraphConsis
[11] computes consistent score between connected node pairs
as the sampling probability. PC-GNN [6] combines label
information and latent embeddings as distance function to
measure similarity. Although such methods can alleviate the
inconsistency problem in some extent, they discard a lot of
information during filting dissimilar neighbors out, thus they
may lead to sub-optimal performance.

In this paper, we analyze the inconsistency problem in
graph-based fraud detection task, which has been obstruct-
ing a full understanding of this field. First, we clarify that
the inconsistency problem is the bottleneck of graph fraud
detection. According to [12], the underlying optimization
process of GNNs is equivalent with minimizing the topology

ar
X

iv
:2

21
0.

12
38

4v
1 

 [
cs

.L
G

] 
 2

2 
O

ct
 2

02
2



and attribute constraints, and Yang et al. [13] indicates that
the degradation of performance is imputed to the compro-
mise between topology and attribute. Due to the camouflage
behaviors (topology) of fraudsters, which are inconsistent
with their essence (attribute), this conflict in fraud networks
may injure the discriminative ability of GNNs. Second, the
forefronts of different datasets are diverse, and most existing
methods are not satisfactory in fusing topological structures
and node attributes [14]. For example, fraudsters may possess
distinguishable attribute on some platforms, but their deceptive
behaviors can confuse the detection model. Therefore, we
are motivated to explore a novel method that is able to
minimize the conflict between topology and attribute and
meanwhile effectively extract most task-relevant information
from datasets.

We borrow the concept of multi-view learning problems
to graph-based fraud detection task and propose a simple
and effective model, Disentangled Information Graph Neural
Networks (DIGNN). Technically, we first disentangle fraud
networks into topology and attribute views. Next, we employ
attention mechanism to fuse two view embeddings adaptively
for extracting task-relevant information. Surprisingly, we ob-
serve that this simple method surpasses all state-of-the-art
baselines. This empirically proves that the conflict between
topology and attribute causes the inconsistency problem. Be-
sides, to further decrease the entanglement between topology
and attribute and improve the performance, we design a new
optimization objective based on information theory, which
resorts to variational bounds to minimize mutual information
between two views and maximize the mutual information
between view embeddings and original inputs.

We conduct extensive experiments to compare our proposed
model with existing graph-based fraud detection models, the
results demonstrate the effectiveness of our model. In sum-
mary, the contributions of this paper can be summarized as
follows:
• We analyze the cause of the inconsistency problem, and

point out that it is mainly attributed to the conflict
between topology and attribute. In light of this, we
propose a simple yet effective model, DIGNN, which
firstly disentangles fraud network into two views and
fuses them by attention mechanism.

• We propose a novel optimization objective based on
mutual information theory and theoretically derive its
upper bound for tractable calculation.

• We verify the effectiveness of our model on real-world
fraud detection datasets. It is shown that our model is
able to significantly improve the performance in terms of
all commonly adopted metrics.

II. RELATED WORK

A. Graph-based Fraud Detection

The core idea of graph-based fraud detection task is tak-
ing the advantages of GNNs to get the discriminative node
embeddings, and find out the malicious ones in the latent

Benign Fraudster
Heterophilic

Relation

Homophilic

Relation

(a) (b)

Fig. 1. (a) Illustration of graph-based fraud detection. (b) Neighbor distribu-
tion of fraudsters and benign users in YelpChi dataset.

space. Examples include [11], [15], [16] for review fraud
detection, [2], [3] for fake news detection and [5], [6], [17]–
[19] for financial fraud detection. Ma et al. [20] provides a
comprehensive investigation on graph-based fraud detection.

Most of existing GNNs methods holds homophilic as-
sumption that neighbor nodes share same labels or similar
features. However, fraudsters will try to conceal themselves,
so that their features are inconsistent with their camouflage
behaviors. Some graph-based fraud detection works have no-
ticed this problem. GraphConsis [11] pioneers to formulate
and tackle the inconsistency problem. They introduce three
kinds of inconsistency phenomenon existing in fraud networks.
CARE-GNN [15] devises a label-aware similarity measure to
find informative neighboring nodes and utilizes reinforcement
learning to select similar neighbors. FRAUDRE [21] aggre-
gates difference between adjacent node pairs. PC-GNN [6]
devises a choose operation to select beneficial neighbors based
on feature similarity. IHGAT [22] is devised to encode both
sequence-like intentions and relationship among transactions
for leveraging the cross-interaction information.

Our model is different from all above works. We in-
novatively disentangle topology and attribute and consider
graph learning as a multi-view learning problem, instead of
measuring similarity between adjacent node pairs.

B. Multi-view on GNNs

Topology and attribute are two essential compositions of
graphs. However existing state-of-the-art GNN models are
disable to effectively fuse topological structure and node
attributes. AM-GCN [14] uses k-nearest neighbor to con-
struct feature graph and combine it with topological struc-
ture view and common embeddings. SCRL [23] designs a
self-supervised approach to maximize the agreement of the
embeddings in the topology graph and the feature graph. A
recent work [13] claims that the interference between topology
and attribute is mainly ascribed to compromises between
them. LINKX [24] processes node attributes and topological
structure in an orthogonal manner. In this paper, we also follow



this idea and extend it by proposing a novel architecture and
optimization objective.

Information-theoretic methods have been gaining momen-
tum in recent years, which take into consideration the mutual
dependency of different views. MIB [25] extends the informa-
tion bottleneck principle to unsupervised multi-view setting
to discard superfluous information. DVIB [26] and CMIB
[27] leverage mutual information constrains to better preserve
shared and private information of multi-view learning. To
cope with intractable computation of mutual information, these
methods adopt variational inference to optimize objective
lower and upper bounds. In comparison, our model propose a
novel optimization objective to reconcile consistency and com-
plementarity between topology and attribute views. Equipped
with variational inference, we also approximate the mutual
information with derived bounds.

III. PRELIMINARIES

A. Problem Statement

Definition 1. Graph-based Fraud Detection. Given a fraud
network G = (V,A,X), where V = {v1, v2, . . . , vN} is the
set of nodes; A ∈ RN×N is the adjacency matrix, if vi and
vj are connected, Aij = 1, otherwise, Aij = 0; X ∈ RN×D

denotes node feature matrix, each node vi is associated with a
D-dimensional feature vector xi and a label yi ∈ {0, 1}, where
0 denotes the node is a normal user (negative) and 1 indicates
it is a fraudster (positive). The core idea of graph-based fraud
detection is to learn discriminative node embeddings to detect
the anomaly samples in latent space.

Definition 2. Graph Neural Networks. Most of GNNs
follow message passing mechanism which uses feature trans-
formation and aggregation operations to capture the struc-
tural and attribute information. One of the most popular and
representative GNNs model is graph convolutional networks
(GCNs). The forward inference at the l-th layer of GCNs is
formally defined as:

H(l) = σ(ÂH(l−1)W(l)), (1)

where σ(·) is nonlinear activation function, W(l) ∈ Rd×d

is the linear transformation matrix, H(l) denotes the node
embedding matrix at the l-th layer, and H(0) = X, Â is
the normalized adjacency matrix, which can be implemented
by row-normalization, Â = D−1(A + I) or symmetric
normalization, Â = D−

1
2 (A + I)D−

1
2 , and D is a diagonal

matrix, I is an identity matrix.
Interestingly, some works [12] have declared that represen-

tative GNN models can be regarded as solving a Graph Signal
Denoising problem, which given a noisy signal S ∈ RN×din

on graph G, the goal is to recover a clean signal F ∈ RN×dout :

argmin
F

L = ‖F− S‖2F + c · tr(F>LF), (2)

where the first term guides output signal F similar to original
signal S and the second term encourages signal smoothness
on graph.

IV. METHOD

In this section, we will present our model, Disentangled
Information Graph Neural Network (DIGNN). Figure 2 gives
an overview of our model. It consists of three main objectives:
1. Disentangle attribute fraud network into topology and
attribute views and fuse them by attention mechanism, the
final embeddings are trained with Cross-Entropy loss; 2. To
further reduce the conflict between two views, we minimize
the mutual information between them; 3. In order to maintain
the semantic information from input space, we maximize the
mutual information between view-specific embeddings and
their original inputs.

A. View-specific Embedding

It is universally acknowledged that topology and attribute
are of vital importance for graph learning. However, in graph
fraud detection scenario, traditional message passing along
neighboring nodes is inappropriate as graph signal smoothing
makes fraudsters more indistinguishable. To alleviate the in-
consistency problem, we disentangle the topology and attribute
information and encode them in parallel.

Given an attributed fraud network G, it can be disentangled
into topology view A and attribute view X. Here we provide
two view encoders fA, fX for each input view, as shown
in Figure 2. Specifically, we employ Multi-Layer Percep-
tron (MLP) as encoders to obtain view-specific embeddings
ZA,ZX ∈ RN×d:

ZA = fA(A), ZX = fX(X), (3)

in which d is the embedding dimension. With these two em-
beddings, we need to fuse them to obtain final representation
and extract task-relevant information.

B. Cross-view Fusion

Now we have two view-specific embeddings ZA and ZX ,
we then perform cross-view fusion by utilizing attention
mechanism. The attention value ωi can be represented as:

ωj
i = q · tanh(W · (zji )

> + b), j ∈ {A,X} (4)

where q denotes the learnable attention vector, W is the weight
matrix and b is bias vector. Thus, we can get the attention
values ωA

i and ωX
i for view-specific embeddings zAi and zXi ,

respectively. Then we normalize them via softmax function to
get the final weight:

αj
i = softmax(ωj

i ) =
exp(ωj

i )

exp(ωA
i ) + exp(ωX

i )
, j ∈ {A,X}

(5)
Larger attention weight αi implies that the corresponding
embeddings is more important, and it is determined by specific
dataset. Then the final output embedding zi can be combined
by two view-specific embeddings with its corresponding at-
tention weight as:

zi = αA
i · zAi + αX

i · zXi . (6)
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Fig. 2. The overview of our proposed DIGNN. The attributed fraud network is disentangled into topological structure and node attributes. DIGNN processes
these two views in parallel and fuses them by attention mechanism. In addition, in order to further reduce the entanglement between two views, DIGNN
minimizes the mutual information between topology embeddings and attribute embeddings, and maximizes the mutual information between embeddings and
input data respectively.

And we put it into a linear classifier, while training by a cross-
entropy loss function:

Lce =
∑

vi∈Vtrain

− log(yi · σ(W′ · zi + b′)) (7)

in which W′ and b′ is the weight matrix and bias vector
of linear classifier, σ is a softmax function, and Vtrain is the
training node set.

C. Mutual Information Optimization

Up to now, we have discussed how to get view-specific em-
beddings and fuse them with attention mechanism. However,
as mentioned in [13], the representative GNN models tend to
deteriorate their expressive power due to interference between
attribute and topology. In spite of decoupling operation, it is
still impractical to look forward to injecting mutual-exclusive
learning ability to our model simply equipped with attention
mechanism. In other words, we need to seek some principles
to guide the training procedure. By leveraging the information
theory, we propose a novel optimization objective to allevi-
ate the aforementioned problem. Furthermore, we derive the
variational bound of our optimization objective and discuss the
intrinsic effect and intuitive insight. Without loss of generality,
we let X1,X2 to represent original views and Z1,Z2 to
represent view-specific embeddings for ease of reading.

1) Optimization principles: The first principle aims to
induce model to learn mutual-exclusive embeddings, which
ameliorates the compromise problem between attribute and
topology. Considering that mutual information measures the
mutual dependence of variables, we introduce the constraint
term min I(Z1,Z2) to our optimization objective. In this way,
model is able to reduce the redundancy and enhance the ability
on exploiting sufficient semantic information in embedding
space with limited dimensionality.

Nevertheless, mutual-exclusive constraint is prone to impair
the helpful shared information. For instance, in Amazon
dataset, handcrafted features are highly correlated to social
networks (topology), thus mutual-exclusive constraint will
injure attribute semantics during training. The second principle
builds the relationship between view-specific embeddings and
their original inputs. In virtue of rich but distinct semantics
inherent in the attribute and topology, it is necessary to extract
useful features and meanwhile maintain respective information
from input data space. We further introduce the constraint term
max I(Zi,Xi) to our optimization objective to encode inputs
with more view-specific information available. To sum up, our
mutual information optimization objective can be summarized
as follow:

min I(Z1,Z2)−
2∑

i=1

I(Zi,Xi) (8)

2) Theoretical Analysis: Recall that the optimization ob-
jective has the form min I(Z1,Z2) −

∑2
i=1 I(Zi,Xi). How-

ever, it is intractable to directly calculate the mutual informa-
tion for high dimensional variables [28]. We alternatively sort
to derive variational bounds of the mutual information to find
an approximate solution to original objective function. In this
work, X,Y,Z denote random variables, and x, y, z denote
corresponding instances.

Lower bound of I(Z,X). For conciseness, we use term
I(Z,X) to represent I(Zi, Xi)(i ∈ {1, 2}). According to the
definition of mutual information, we have

I(Z,X) = Ep(x,z) log
p(x|z)
p(x)

(9)

≥ Ep(x,z) log q(x|z) +H(X) (10)

where H(X) is the entropy of X; q(x|z) is the variational
approximation of conditional distribution p(x|z). Notice that
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Fig. 3. A demonstration of original optimization objective (left) and lower
bound target (right).

the entropy of random variable X is independent of our
optimization procedure. Therefore, maximization of I(Z,X)
is equivalent to maximize Ep(x,z)log q(x|z).

Upper bound of I(Z1,Z2). The overall optimization trans-
formation is demonstrated as Figure 3. At the beginning, we
introduce some basic properties in information theory [29]:

I(·; ·) ≥ 0 (11)
I(XY;Z) = I(Y;Z) + I(X;Z|Y) (12)

Following [25], we have

I(Z1,Z2) ≤ I(Z1,Z2) + I(Z1;X2|Z2)

= I(Z1;Z2X2)

= I(Z1;Z2X2)− I(Z1;Z2|X2)

= I(Z1,X2)

Here we assume that Z2 is a sufficient representation of
X2, which means I(Z1;Z2|X2) = 0 holds. According to
symmetry of mutual information, we can follow the same
formulation and derive an equivalent form of I(Z1,Z2).

I(Z2,Z1) ≤ I(Z2,X1) (13)

Then, we take the mutual information I(Z1,X2) as an
example and derive the upper bound. We have:

I(Z1,X2) = Ep(z1,x2) log
px1

(z1|x2)
p(z1)

(14)

= Ep(z1,x2)log
px1(z1|x2)
r(z1)

r(z1)

p(z1)
(15)

= Ep(z1,x2)log
px1

(z1|x2)
r(z1)

−KL [r(z1)‖p(z1)]

(16)

≤ Ep(z1,x2) log
px1

(z1|x2)
r(z1)

(17)

= Ep(z1,x2) log
px1

(z1|x2)
px2

(z2|x2)
(18)

+ Ep(z1,x2) log
px2

(z2|x2)
r(z1)

(19)

where px1
and px2

represent encoders that encode information
from original feature space. The upper bound will become
tighter as the marginal distribution r(z1) approaches the priors
p(z1). By observing the two terms in the upper bound. The

first term measures the difference of two latent representations
from px1

and px2
but with the same input x2, while the second

term measures the difference between encoder px2 with the
approximated margin r(z1). According to [26], the two terms
has the same optimization directions, thus we simplify the
upper bound to

I(Z1,X2) ≤ Ep(z1,x2) log
px2(z2|x2)
r(z1)

(20)

Again, we take into consideration the symmetry of the
mutual information and take average of the two form to
formulate the final upper bound.

I(Z1,Z2) ≤
1

2

[
Ep(z1,x2) log

px2
(z2|x2)
r(z1)

+ Ep(z2,x1) log
px1

(z1|x1)
r(z2)

] (21)

In practice, we minimize the reconstruction loss to equiv-
alently minimize the lower bound of I(Z,X), as done in
auto-encoder models [30]. According to the type of input
x, q(x|z) can be any appropriate distribution with known
probability density function. Here we let the q(x|z) be the
Gaussian distribution N (x;µ(z), σ2I) with given variance σ2

and deterministic mean function µ(·) which is parameterized
by neural networks, we have

Lrec = −
2∑

i=1

Ep(xi,zi) log q(xi|zi) (22)

∝
2∑

i=1

Ep(xi,zi)

[
‖xi − µi(zi)‖22

]
(23)

To maximize the upper bound of I(Z1,Z2), we de-
fine pxi(zi|xi) and r(zi) as the Gaussian distribution
N (zi;µ(xi), σ

2
i I) and N (zi;µi, σ

2
i I) respectively, where µi

and σi are given expectation and variance. Then we employ
the reparameterization trick [31] to rewrite pxi

(zi|xi) = p(εi),
where zi = µ(xi)+εiσ, εi ∼ N (0, I) and our mutual-exclusive
loss Lexc is defined as

Lexc =
1

2

[
Ep(z1,x2) log

px2(z2|x2)
r(z1)

+ Ep(z2,x1) log
px1(z1|x1)
r(z2)

]
(24)

Eventually, the overall optimization objective is formulated
as follow

L = Lce + α · Lrec + β · Lexc (25)

where α and β are scalar factors. Moreover, it is worth
noting that the second term reconstruction loss is equivalent to
graph signal denoising but without signal smoothness, which
is reasonable considering the inconsistency problem of graph
anomaly detection. Intuitively, our loss function denoises the
original graph signal and achieves mutual exclusion between
attribute and topology together with supervised information.
The training procedure is presented in Algorithm. 1.



Algorithm 1: DIGNN: Disentangled Information
Graph Neural Network

Input: G = (V,A,X): A fraud network, Vtrain: Set of
training nodes, Nepoch: Number of total training
epochs, Nbatch: Number of training batch size,
d: Dimension of hidden embeddings, α and β:
hyperparameters of loss balance factors.

Output: The vector representations for each node in V
1 Initialization v ∈ Vtrain;
2 for e = 1, . . . , Nepoch do
3 Calculate the number of training batches

B = d |Vtrain|
Nbatch
e;

4 Down-sample negative samples according to the
number of positive samples;

5 for b = 1, . . . , B do
6 Gather nodes of batch b along with edges

between them to construct sub-graph
Gb = (Vb,Ab,Xb);

7 ZA,ZX ← Eq. 3;
8 Z← fuse two view-specific embeddings ZA

and ZX w.r.t. Eq. 6;
9 Lce ← Eq. 7 // Cross-Entropy Loss

10 Lrec ← Eq. 22; // Reconstruction
Loss

11 Lexc ← Eq. 24; // Mutual-exclusive
Loss

12 L ← computer final loss w.r.t. Eq. 25;
13 Back-propagation to update parameters;
14 end
15 end

V. EXPERIMENTS

In this section, we investigate the effectiveness of DIGNN,
and aim to answer the following research questions:
• RQ1: Does disentangle operation benefit to inconsistency

problem?
• RQ2: Does DIGNN outperform the state-of-the-art meth-

ods for graph-based fraud detection?
• RQ3: How do different components of DIGNN con-

tributes to performance improvement in graph-based
fraud detection task?

• RQ4: What is the performance of DIGNN with respect
to different hyperparameters?

A. Experiment Setup

1) Datasets.: Our proposed DIGNN model is evaluated
on two real-world opinion fraud network datasets: YelpChi
and Amazon. The YelpChi dataset [32] collects hotel and
restaurant reviews on Yelp.com online platform. The nodes of
YelpChi dataset are reviews with 32 handcrafted features and
the dataset includes three relations: 1) R-U-R that connects
reviews posted by the same user, 2) R-S-R that connects
reviews under the same product with the same star rating,
3) R-T-R that connects two reviews under the same product

TABLE I
THE STATISTIC OF DATASETS.

dataset Nodes
(fraud%) Relation #Edges Class #Class

YelpChi 45,954
(14.53%)

R-U-R
R-T-R
R-S-R
ALL

49,315
573,616

3,402,743
3,846,979

Fraudster
Benign

6,677
39,277

Amazon 11,944
(6.87%)

U-P-U
U-S-U
U-V-U
ALL

175,608
3,566,479
1,036,737
4,398,392

Fraudster
Benign

Unlabeled

821
7,818
3,305

posted in the same month. The Amazon dataset [33] includes
product reviews under the Musical Instrument category. The
nodes in the graph of Amazon dataset are users with 25
handcrafted features and also contain three relations: 1) U-
P-U that connects users reviewing at least one same product,
2) U-S-U that connects users having at least one same star
rating within one week, 3) U-V-U that connects users with
top 5% mutual review text similarities (measured by TF-IDF)
among all users. The statistic of datasets is shown in Table I.

2) Baselines.: We compare with several representative
state-of-the-art models to verify the effectiveness of DIGNN
in graph-based fraud detection.
• GCN [7]: graph convolutional network achieved by ag-

gregating features in the neighborhood to generate node
embeddings.

• GAT [9]: graph attention network aggregates the neigh-
bors with different aggregation weights calculated by
attention mechanism.

• GraphSAGE [8]: an inductive GNN model samples
the neighbor by connection information and aggregates
features by stacking layers.

• DR-GCN [34]: a dual-regularized graph convolutional
network to handle multi-class imbalanced graph repre-
sentation learning.

• CARE-GNN [15]: a fraud detection GNN model utilizes
a similarity measure to enhance aggregation and rein-
forcement learning to obtain optimal selection count.

• FRAUDRE [21]: a GNN model aggregates difference
between neighbors and tackles with class imbalance.

• PC-GNN [6]: a state-of-the-art graph-based fraud detec-
tion method, which proposed pick and choose operations
to alleviate inconsistency and class imbalance.

• DIGNN\S : a variant of DIGNN, which is trained on node
feature and adjacency matrix directly without mini-batch
sampling.

• DIGNN\M : a variant of DIGNN, which removed the
mutual information optimization from DIGNN.

3) Settings.: The parameters of DIGNN are optimized with
Adam [35] optimizer, the learning rate is set to 0.001, and
weight decay is 0.0005, the training epochs are set to 50, the
hidden dimension of node feature is set to 32, the scales of
reconstruction learning rate of both topology and attribute are
0.05, the layer number of encoders are set to 2. The train, valid,
and test ratio are set to be 40%, 20%, and 40% respectively.



TABLE II
PERFORMANCE COMPARISON ON YELPCHI AND AMAZON.

Method
Dataset Yelpchi Amazon
Metric F1-macro AUC GMean F1-macro AUC GMean

Baselines

GCN 0.4929±0.0025 0.6274±0.0034 0.1886±0.0063 0.5461±0.0363 0.8328±0.0111 0.2570±0.0789
GAT 0.4879±0.0230 0.5715±0.0029 0.1659±0.0789 0.6464±0.0387 0.8102±0.0179 0.6675±0.1345

GraphSAGE 0.4405±0.1066 0.5439± 0.0025 0.2589±0.1864 0.6416±0.0079 0.7589±0.0046 0.5949±0.0349
DR-GCN 0.5523±0.0231 0.5921±0.0195 0.4038±0.0742 0.6488±0.0364 0.8295±0.0079 0.5357±0.1077

CARE-GNN 0.6075±0.0128 0.7713±0.0015 0.7023±0.0044 0.8875±0.0040 0.9398±0.0032 0.8848±0.0012
FRAUDRE 0.5841±0.0365 0.7427±0.0084 0.6654±0.0210 0.8806±0.0320 0.9272±0.0021 0.8808±0.0049
PC-GNN 0.6130±0.0083 0.7715±0.0005 0.7068±0.0015 0.8557± 0.0227 0.9482±0.0034 0.8952±0.0044

Ablation
DIGNN\S 0.5120±0.0027 0.6120±0.0067 0.5895±0.0010 0.7308±0.0064 0.8913±0.0020 0.8088±0.0042
DIGNN\M 0.6994±0.0149 0.8389±0.0128 0.7348±0.0173 0.9186±0.0029 0.9645±0.0019 0.9195±0.0013

Ours DIGNN 0.7092±0.0025 0.8526±0.0067 0.7596±0.0105 0.9189±0.0045 0.9729±0.0039 0.9281±0.0038
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Fig. 4. The attention changing trends w.r.t epochs.

We use Scikit-learn [36] to implement train-test split, and the
imbalance ratio is consistent in three sets. It is worth noting
that to alleviate the influence of class imbalance, we employ
down-sampling to train DIGNN.

For GCN, GAT, and GraphSage, they suffer from the class
imbalance and inconsistency problem, and will always predict
normal (negative) samples. Therefor, we follow PC-GNN to
utilize threshold-moving strategy, and the classification thresh-
old is set to be 0.2 for YelpChi and Amazon. For CARE-GNN,
FRAUDRE, PC-GNN, we use the parameters introduced by
authors.

4) Implementation.: Our model DIGNN is implemented in
Pytorch 1.7.0 [37]. For DIGNN, GCN, GAT, and GraphSage,
we all implement them based on Pytorch Geometric 2.0.3 [38].
For CARE-GNN, FRAUDRE and PC-GNN, we carry out the
source code provide by authors. All models are running on
Python 3.8.12, 1 NVIDIA GeForce RTX 2080 GPU and 3.20
GHz Intel Xeon E5-2660 CPU.

5) Metrics.: The fraud detection datasets display a skewed
class distribution, so accuracy is not suitable to evaluate the
effectiveness of fraud detection models. The evaluation metrics
should have no bias to any class. Therefore, we use three
common metrics, namely F1-macro, AUC and GMean. F1-
macro is the unweighted mean of the F1-score of each class.

AUC is the area under the ROC Curve.

AUC =

∑
u∈U+ ranku − |U

+|×(|U+|+1)
2

|U+| × |U−|

Here, U+ and U− denotes the minority and majority class set
in the testing set, respectively. And ranku indicates the rank
of node u via the score of prediction. And GMean calculated
the geometric mean of True Positive Rate (TPR) and True
Negative Rate (TNR), it can be defined as,

GMean =
√

TPR · TNR =

√
TP

TP + FN
· TN

TN + FP
.

The higher scores of this three metrics indicate the higher
performance of the approaches.

B. Analysis of Attention Mechanism (RQ1)

To answer the RQ1, we analyze the attention values and
visualize them for investigating whether the attention values
learned by our model is meaningful. The attention changing
trends are shown in Figure 4. The x-axis is the number of
training epochs and y-axis is the average attention value.
With the training epoch increasing, the difference between
the corresponding attention values of topology and attribute
begin to be striking. We can observe that DIGNN pays more
attention on attribute and topology on YelpChi and Amazon
datasets respectively. It demonstrates our model has a strong
capability to extract the task-relevant information from these
two views.

C. Performance Comparison (RQ2)

To answer the RQ2, we compare the performance of
DIGNN with state-of-the-art methods. The corresponding F1-
macro, AUC and GMean scores are shown in Table II, we
have the following two observations.

First, DIGNN significantly boosts the performance for all
metrics on YelpChi and Amazon datasets than other SOTA
baseline methods. In YelpChi dataset, our model obtains
9.62%, 8.11%, and 5.28% improvement respectively in F1-
macro, AUC and GMean. We can observe that PC-GNN



10 20 30 40 50
Training Ratio (%)

0.550

0.575

0.600

0.625

0.650

0.675

0.700
F1-macro

10 20 30 40 50
Training Ratio (%)

0.76

0.78

0.80

0.82

0.84

AUC

10 20 30 40 50
Training Ratio (%)

0.64

0.66

0.68

0.70

0.72

0.74

0.76
GMean

PC-GNN CARE-GNN DIGNN

Fig. 5. Sensitivity analysis with respect to different training ratio on YelpChi dataset. The solid line represents the average score of 3 runs and the shadow
indicates the standard deviation.

8 16 32 64
0.60

0.65

0.70

0.75

0.80

0.85

0.90
YelpChi

8 16 32 64
0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00
Amazon

F1-macro AUC GMean

Fig. 6. Analysis of hidden dimension d.

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

76

78

80

82

84

86

88

90

YelpChi

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

86

88

90

92

94

96

98

100

Amazon

Fig. 7. AUC as the two hyper-parameters α and β varying from 0 to 1.

outperforms other baselines in most metrics, but our model
can still surpass it by a significant margin. In Amazon dataset,
graph-based fraud detection methods have already achieved
high performance and the increasing room is limited. But our
model can still get improvements, with 3.14% improvement
in F1-macro, 2.47% improvement in AUC and 3.29% im-
provement in GMean. In addition, the relatively low standard
deviation of DIGNN shows that our model is stable.

Second, the compared baseline methods can be divided
into two groups, traditional MP-GNNs and graph-based fraud

detection methods. GCN, GAT, GraphSAGE are tradition
GNN models, and DR-GCN is designed for imbalanced node
classes. They do not consider the inconsistency problem so
that we can observe these models get poor performance on
YelpChi and Amazon datasets. Because Amazon dataset has
a more skewed label distribution (fraudsters only occupy
6.87% of all samples), more intra-class edges which are
beneficial to traditional MP-GNNs are appeared in graph. Thus
these methods have a relatively satisfactory performance on
Amazon. CARE-GNN and PC-GNN are graph-based fraud
detection methods, they both sample neighbors according to
similarity measure, which can alleviate inconsistency problem
to a certain degree. Therefore, they can perform better on
these two datasets. However, sampling neighbor strategy may
discard a lot of information, and it can lead to sub-optimal
results. Instead, our DIGNN model abandons this practice, and
disentangles original graph into topological structure and node
attributes, then processes them in parallel.

In general, DIGNN outperforms all baselines in F1-macro,
AUC and GMean on YelpChi and Amazon datasets, which can
demonstrate the effectiveness of our model.

D. Ablation Study (RQ3)

To answer the RQ3, we compare DIGNN with two cor-
responding variants DIGNN\S and DIGNN\M . The results
of two datasets are shown in Table II. We can observe
that DIGNN surpasses its variants in most of metrics. For
DIGNN\M , its overall performance on Yelpchi and Amazon
is inferior to complete model, which verifies the effectiveness
of our proposed mutual information objective. It is noting that
the DIGNN\M is on-par with DIGNN on Amazon dataset eval-
uated by F1-macro. This could attribute to smaller fraud rate
of Amazon, thus DIGNN\M pay more attention to majority
class without the guidance of mutual information compared
with DIGNN. For DIGNN\S , we can observe that DIGNN
is evidently better than model without sampling strategy. We
suppose it is caused by the noise information of the structure
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Fig. 8. Visualization of the learned node embeddings on YelpChi dataset.

view. Sampling strategy play a denoising effect on structural
information to some extent.

E. Sensitive Analysis (RQ4)

To answer RQ4, we further evaluate the performance of
DIGNN with respect to the training ratio, hidden dimension
d and hyperparameters α, β. For training ratio, we vary the
percentage of training nodes from 10% to 50%, and compare
DIGNN with other two baselines, CARE-GNN and PC-GNN.
Figure 5 shows the performance of F1-macro, AUC and
GMean on YelpChi dataset. We can observe that DIGNN
always achieves best performance among the three models.
When the training ratio is 10%, DIGNN still performs better
than PC-GNN training on 50% samples. And DIGNN sur-
passes CARE-GNN and PC-GNN by a large margin in AUC.

For hidden dimension d, we study the performance of
DIGNN with various hidden dimension number d from 8 to 64.
And the results are presented in Figure 6. With the increase
of hidden dimension d, the performances improve first, but
then start to grow slowly. It is relatively stable with respect to
hidden dimension d.

For hyperparameters α and β, we vary these two hyper-
parameters from 0 to 1, and the corresponding results are
shown in Figure 7. Considering the limit space, we only
present AUC performance on YelpChi and Amazon datasets.
It can be observed that the optimal selection of these two
hyper-parameters varies greatly on the different datasets. In
the YelpChi dataset, higher AUC performance can be achieved
by selecting larger β (β ≥ 0.8). And in the Amazon dataset,
larger α (α ≥ 0.6) and smaller β (β ≤ 0.4) can get a better
result.

F. Visualization

In order to show the effectiveness of different models
more intuitively, we visualize the learned node embeddings on
YelpChi dataset. Specifically, we compare our DIGNN model
with the other three models. We select one traditional MP-
GNN, GCN, and two graph-based fraud detection models,
CARE-GNN and PC-GNN. Firstly, we use the 32-dimensional
output embedding on the last layer of these models before

softmax function. And then we employ the t-SNE [39] to map
the 32-dimensional embedding into 2-dimensional space for
visualization. Because of the imbalanced class distribution,
we randomly sample the same number of benign samples as
fraudster samples for better visibility. The results of YelpChi
are showed in Figure 8, and orange dots represent fraudsters,
blue dots represent benign entities.

We can observe that due to the strong inductive bias of
homophilic, GCN is disable to learn discriminative node
embeddings. For CARE-GNN and PC-GNN, although they
alleviate the inconsistency problem, they still fail to seperate
the embeddings of fraudsters from that of the benign entities.
Conversely, DIGNN achieves inter-class separation obviously,
the overlap of the two kinds of nodes is relatively small.
Consequently, it can verify the effectiveness of our proposed
DIGNN model.

VI. CONCLUSION

In this paper, we suggest that disentangling operation is
beneficial to alleviate the inconsistency problem in fraud
network. In order to decrease the conflict between topological
structure and node attribute, we propose a simple yet effective
model named DIGNN. It firstly disentangles the attribute fraud
network into topology and attribute two views. Then DIGNN
fuses two kinds of view information adaptively by attention
mechanism, which can effectively extract task-relevant infor-
mation. Moreover, we design a novel optimization objective
to further reduce the entanglement between these two view-
specific embeddings and maintain their semantic informa-
tion. Experiment results demonstrate that DIGNN outperforms
state-of-the-art methods on two real-world graph fraud detec-
tion datasets.
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