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Abstract—Analogical reasoning is the process of discover-
ing and mapping correspondences from a target subject to a
base subject. As the most well-known computational method
of analogical reasoning, Structure-Mapping Theory (SMT) ab-
stracts both target and base subjects into relational graphs
and forms the cognitive process of analogical reasoning by
finding a corresponding subgraph (i.e., correspondence) in the
target graph that is aligned with the base graph. However,
incorporating deep learning for SMT is still under-explored
due to several obstacles: 1) the combinatorial complexity of
searching for the correspondence in the target graph; 2) the
correspondence mining is restricted by various cognitive theory-
driven constraints. To address both challenges, we propose a
novel framework for Analogical Reasoning (DeepGAR) that
identifies the correspondence between source and target domains
by assuring cognitive theory-driven constraints. Specifically, we
design a geometric constraint embedding space to induce sub-
graph relation from node embeddings for efficient subgraph
search. Furthermore, we develop novel learning and optimization
strategies that could end-to-end identify correspondences that are
strictly consistent with constraints driven by the cognitive theory.
Extensive experiments are conducted on synthetic and real-
world datasets to demonstrate the effectiveness of the proposed
DeepGAR over existing methods. The code and data are available
at: https://github.com/triplej0079/DeepGAR.

Index Terms—Analogical Reasoning, Graph Representation
Learning

I. INTRODUCTION

Analogical reasoning is a cognitive process of transferring
information from a particular subject (the analog or source)
to another (the target). Over the last two decades, analogical
reasoning has gained prominence in artificial intelligence
research for both practical and theoretical reasons [1]. In
solving and learning new problems, analogical reasoning is
capable of overcoming the immense search complexity of
finding solutions to novel problems or inducing generalized
knowledge from experience [2], [3]. Furthermore, analogical
reasoning may provide theoretical justification for the shift
from low-level visual processing to abstract conceptual change
in domains like natural language understanding and visual
perception [4], [5].

Interests in analogical reasoning have spawned extensive
computational approaches [6], [7], [8], [9], each of which
instantiated different cognitive theories of analogical reason-
ing. These theories’ standard methodology involves transform-

ing target and base subjects into symbolic representations
and identifying conceptually related elements subject to cer-
tain constraints. However, these conventional methods require
human-crafted rule templates in advance, resulting in the
provably NP-Hard computational complexity [10] and thereby
indicating the inability to generalize new rules. Therefore,
several works [11], [12], [13] have been proposed to employ
learning-based methods to enhance inference in analogical rea-
soning. However, these methods’ reasoning still needs to rely
on manually designed templates or exploiting database rules.
Furthermore, based on the structure-mapping theory (SMT)
[7], a recent work [14] is proposed to abstract the target and
base subjects into graph representations and decompose the
graph into local relational paths for discovering analogically
similar paths in the other graph. However, for the ease of
computation, this approach simplifies the whole analogical
reasoning problem into individual reasoning problems unaware
of each other, which hence degrades the reasoning capability.

As a high-end human-exclusive intelligence, analogical rea-
soning is still quite an open area for artificial intelligence,
with several critical obstacles in the way of its advancement.
1) Difficulty in locating structural alignment between the
base and target subjects. Analogical reasoning first requires
determining a mapping between two relational representa-
tions (referred to as the base and target), which is denoted
as structural alignment. This mapping must be structurally
consistent and include as many element-wise correspondences
as possible between two relational representations. Following
the setting in SMT by representing both base and target as
vertex-labeled Directed Acyclic Graphs (DAGs), analogical
reasoning is conceptually similar to discovering a subgraph in
the target DAG that is isomorphic to the base DAG. However,
identifying isomorphic subgraphs could be problematic since
it is a provably NP-Complete problem [15]. 2) Difficulty in
considering unique constraints throughout the correspondence
inference. Within the analogy derivation framework of SMT,
several hard constraints ought to be considered in order to
keep the analogical validity of the identified mapping between
the base and target DAGs, and these constraints are denoted
as relational alignment. For example, SMT regulates each
element of the base and target DAGs can only exist at most
in one correspondence, and a pair of nodes from the base and
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Fig. 1: The illustration of analogical reasoning regulated by Structure-Mapping Theory (SMT): two graph representations of
the Rutherford model of the atom (left) and the solar system (right).

target DAG must form a correspondence if their descendant
nodes are in correspondence, etc. Without hand-crafted rules or
node-wise selection procedures, it is hard to design a learning-
based approach to identify suitable correspondence pairs.

In coping with these challenges, we propose an end-to-
end inference framework, namely Deep Graph learning for
Analogical Reasoning (DeepGAR), to identify the set of cor-
respondences between the base and target subjects in an end-
to-end optimization manner. Notably, we employ a directed
acyclic graph structure to represent target and base subjects as
formulated in SMT. To deal with the first challenge, DeepGAR
constructs a node embedding space to incorporate geometric
ordering constraints corresponding to subgraph relations to
guide the inference objective for effectively identifying the
structure alignment. To tackle the second challenge, DeepGAR
derives a unified objective that is capable of locating analogical
correspondences with constraints to ensure structural and
relational alignments. We summarize contributions as follows:
• We propose a deep graph representation learning-based

framework DeepGAR to address the analogical reason-
ing problem. DeepGAR leverages deep graph embedding
to simplify the combinatorial complexity of searching struc-
tural alignments and derives an end-to-end objective func-
tion to locate correspondence satisfying all SMT regulations.

• We develop a new method for constructing a node
embedding space for easy structural alignment. The
embedding space can directly induce subgraph relations by
comparing the root node embeddings of two DAGs, enabling
the efficient identification of structural alignment during the
correspondence inference phase.

• We conduct extensive experiments on both synthetic and
real-world analogical matching datasets. Compared with
existing approaches, DeepGAR achieves superior results
in predicting analogical correspondence by outperforming
others by on average 15% in the F1 score.

II. PROBLEM FORMULATION

Structure-Mapping Theory (SMT) [7] provides a graph-
theoretic notion that naturally represents both target and base
subjects in the form of directed-acyclic graphs (DAG), where
each node represents some logical expressions and directed
edges carry the hypotactic relations between each expression.
We visually demonstrate the SMT in Fig. 1. Specifically, given
a target-directed acyclic graph GT = (VT , ET ) and a base
DAG GB = (VB , EB), where the node set size |VT | ≥ |VB |,

each node vi in VT or VB is associated with a label ψ(vi). We
use ψ(vi) to indicate the expression of the node (i.e., an entity,
an attribute/function, or a relation as exemplified in Fig. 1).
In addition, each node is also attached to a unique signature
information ω(vi) to further clarify the semantic meaning of
vi (e.g., vi is an entity with meaning ω(vi) = “sun”, or vi is
an attribute with meaning ω(vi) = “Mass”).
Problem Formulation. The problem of analogical matching
aims to identify a subgraph GS = (VS , ES), GS ⊆ GT in
the target DAG GT where each element (i.e., node) vS ∈ VS
can form a bijective correspondence to an element vB ∈ VB .
Specifically, a correspondence should satisfy the pairwise-
disjunctive constraint imposed by the structural alignment and
relational alignment. The structural alignment requires the
subgraph GS to be isomorphic to GB : ∃ bijection f : VS 7→
VB such that (f(uB), f(vB)) ∈ EB if (uS , vS) ∈ ES . The
relational alignment further regulates the bijection f to satisfy
φ(f(uB)) = φ(uT ),∀uB ∈ VB and ∀uT ∈ VT as well as the
following rules regulated by SMT [7]:

1) Parallel Connectivity: Two expressions can be in corre-
spondence with each other only if their arguments are
also in correspondence with each other.

2) One-to-One: Each element (i.e., node) of the base and
target DAG can be a part of at most one correspondence.

3) Tiered Identicality: Relations of expressions in a cor-
respondence must match identically between GS and
GB , but function-typed expressions need not if their
correspondence supports parallel connectivity.

4) Systematicity: Preference should be given to mappings
with more deeply nested expressions.

Definition 1 (Analogical Reasoning). In all, the problem can
be mathematically stated as follows: Given any base DAG GB

and target DAG GT , we aim at finding an alignment matrix
X ∈ {0, 1}|VB |×|VT |: Xij = 1 that matches any node in GB

with a node in GT , following the structural alignment and
relational alignment defined above. Here, Xij = 1 denotes
vi ∈ GB matches vj ∈ GB; and Xij = 0, otherwise.

To understand the SMT, we provide an example of SMT-
regulated analogical matching between the Rutherford model
of the atom and the solar system in Fig. 1. As illustrated
in the figure, a subgraph in the solar system can be located
to form an analogical matching to the atom system, where
each element (i.e., node) in the atom system can have a



correspondence with another node in the solar system (e.g.,
([1], [10]) and ([2], [11])). The one-to-one regulates
each element is added up to one correspondence. The parallel
connectivity restricts correspondence between elements if their
parents are in correspondence. For example, ([9], [18]) is
one correspondence, and their child nodes ([3], [12]) and
([4], [13]) are also in correspondence. The Tiered Iden-
ticality further ensures two semantically similar elements can
form a correspondence. In this example, mass and weight are
similar signatures for [12], and both labels could allow the
correspondence ([3], [12]). Finally, systematicity would
favor the matched subgraph that has a relatively large node
depth since it could result in a larger correspondence set. For
example, both [18] and [19] are candidates to form the
correspondence with [9], but the systematicity would select
[18] since it could derive more relations: e.g., [20].

However, identifying the analogical correspondences is not
a trivial task due to the following challenges. Firstly, searching
for structural alignments in GT that matches GB is extremely
complex. This problem is known as NP-Complete [15] and is
equivalent to the subgraph isomorphism problem (i.e., finding
a bijection f : VS 7→ VB). Secondly, SMT has more rigorous
criteria (i.e., parallel connectivity, one-to-one, tiered identical-
ity, and systematicity) regulated by SMT for mining analogical
correspondences. Thus, designing an objective function to
identify the analogical correspondence between GT and GB

further imposes novel challenges.

III. MODEL

This section focuses on describing our proposed DeepGAR
approach to tackle all challenges mentioned above, which
1) constructs an embedding space that directly captures the
subgraph relation by node embeddings in latent embedding
space, 2) designs a novel inference objective to search for
relational alignments that satisfy the constraints of SMT and
fulfill both structural and relational alignment requirements.

A. Embedding Space Construction with Geometric Constraint

Overview. To avoid exhaustively searching for graph isomor-
phism on GT , we aim to learn graph embedding to handle the
original problem in continuous space. The embedding space
preserves the geometric ordering and provides guidance in
locating structural matching.
Geometric Ordering Preserved Embedding Space. We first
leverage the GNN model to obtain the embedding of each
node. Specifically, we adopt a K-layer GNN that aggregates
each node information within K-hop neighbors through sum
pooling. Specifically, the k-th layer transformation is:

h(k)
v = ξ(h(k−1)

v , g({h(k−1)
u : u ∈ N (v)})), k ∈ [1,K], (1)

where hkv is the k-th layer feature of node v, and h0
v =

[φ(v);ω(v)] is the concatenation of the label φ(v) and the
signature ω(v) of each node. More specifically, φ(v) is the
one-hot vector describing the node label (e.g., entity or rela-
tion) and ω(v) is the vectorized word embedding obtained by
pre-trained language models (e.g., BERT [16]). Both ξ(·) and

F

H I

G

Target GraphBase Graph

F G

F

H I

2-depth DAG 
with root node A

2-depth DAG 
with root node D

Embedding Space
built by 2-layer GNN

Fig. 2: Subgraph-relation between node embeddings in the
latent space: the embedding of each node is calculated by a k-
layer GNN model, and the subgraph relation can be reflected
through node embeddings by a designed ordering constraint.

g(·) are aggregation function (i.e., sum pooling) to aggregate
information from the node v and its K-hop neighbors. Deep-
GAR then constructs an embedding space that could preserve
a geometric ordering over subgraphs from node embeddings.
Specifically, given a DAG with root node u, by using a K-
layer GNN to embed u, we are essentially condensing the K-
layer neighborhood information of Gu around the root node u.
Thus, embedding u is equivalent to embedding Gu (a K-hop
subgraph rooted at node u), and by comparing embeddings of
two nodes u and v, we are essentially comparing the structure
of subgraphs Gu and Gv . We demonstrate an example in Fig.
2, where the target DAG can be decomposed into many 2-
hop subgraphs with different root nodes. If node A is the
parent of node C, then the 2-hop DAG rooted at node C is
the subgraph of the 2-hop DAG rooted at node A. We aim to
reflect such geometric ordering information directly through
node embedding. Specifically, if node A is the parent of node
C, the embedding hC is constrained to be on the “lower-left”
of hA in the embedding space:

hA − hC � 0, if GA ⊆ GC . (2)

Such a well-structured embedding space allows efficiently
navigating to the most suitable structural alignments in GT

by directly comparing their root node embeddings without
enumerating local DAG structures.

Training Strategy. During the training phase of constructing
the constrained embedding space, we decompose the target
DAG GT as well as the base DAG GB into many small over-
lapping DAGs with the depth K (K-hop). We denote Γ as the
set of positive pairs that contains graph pairs (Gu, Gv) has the
subgraph relation, and N is denoted as the negative example
set. We train the Graph Isomorphism Network (GIN) [17]
that produces the ordering-constrained embeddings hu and hv
using the max-margin loss:

Le =
∑

(hu,hv)∈Γ

D(hu, hv) +
∑

(hu,hv)∈N

max{0, α−D(hu, hv)},

s.t. D(hu, hv) =‖max{0, hu − hv}‖22, (3)



where D(hu, hv) denotes the magnitude to constrain the
subgraph relation violation. For positive pairs, we want to
minimize D(hu, hv) such that all the elements in the node
embedding hu are less than the corresponding elements in the
node embedding hv if Gu ⊆ Gv . For negative pairs, we utilize
a regularizer to regulate the amount of violation D(hu, hv) to
be at least α to avoid zero loss.

B. Unified Objective for Locating Analogical Matching

The embedding space constructed in Section III-A has
enabled us to locate structural alignment by only comparing
the root nodes’ embedding of two DAGs, which addresses
the structural alignment required for the analogical matching
problem defined in Definition 1. In this section, we aim to
propose the objective function of analogical matching that
searches for the alignment matrix X , by further handling
the relational alignment that consists of the requirements
of parallel connectivity, one-to-one, tiered identicality, and
systematicity.
Parallel Connectivity. The first requirement enforces the
correspondence between nodes should exist if their parents
are also in correspondence, which implies the structural cor-
respondence between GT and GB . In other words, if we could
locate a subgraph GS ⊆ GT that is isomorphic to GB , this
requirement can naturally be satisfied. Therefore, we optimize
the following objective:

minX ‖XATX
ᵀ −AB‖2F ,

where ‖·‖F stands for the Frobenius norm. We minimize the
empirical loss to make sure the identified subgraph GS ⊆ GT

has the same structure of GB . In addition, by employing
the constructed embedding space as guidance, we add a
constraint X · hvT � hvB on the objective to transform the
structural alignment problem as a node-level task by using
node embeddings to predict whether the set of nodes X · hvT
selected in GT can match be matched to the hvB . Note that
both hvB and hvT are root node embedding of GB and GT

with vB and vT being the root nodes, respectively.
One-to-one. The second requirement in SMT restricts each
element in the alignment matrix to be a member of at most
one correspondence. In other words, the alignment matrix X
needs to have one and only one matching on each element in
GB (i.e., ‖Xi,∗‖1 = 1). In this work, we propose to impose
the orthogonal constraint (i.e., XᵀX = I) on the alignment
matrix, to add the restriction of ensuring there is one and only
one matching on each row to meet the one-to-one requirement.
Tiered Identicality. The third requirement suggests that a
correspondence between two nodes is also allowed in GT if
their parent node has the semantically similar meaning as the
corresponding parent node in GB . Each node is attached to
a signature and a label, and we leverage word embedding to
obtain latent representation for each node. If two nodes are
semantically similar, their latent representations would also be
close. The GNN model would naturally consider projecting se-
mantically similar nodes closely in the constructed embedding

space. Therefore, this constraint can also be fulfilled by the
constraint X · hvT

� hvB during the optimization.
Systematicity. The last property of SMT favors larger corre-
spondence sets over smaller ones in order to look for larger
and deeper matches. Therefore, if there are multiple valid
subgraphs on the target DAG GT , SMT would prefer the
subgraph that has the relatively higher average node depth.
Therefore, the regularization term −‖X ·dT ‖22 could be added
to make the alignment selection be aware of the node depth.
Note that dT ∈ R|VT |

≥0 is the vector of node depth in GT .
Therefore, we derive the following objective function L as

well as its augmented Lagrangian form that relaxes the hard
constraints in the objective.

L = minX ‖XATX
ᵀ −AB‖2F−‖X · dT ‖22 (4)

s.t. X · hvT � hvB , XᵀX = I,

= minX ‖XATX
ᵀ −AB‖22 + λ1‖J · dT −X · dT ‖2

+ λ2‖max(0, hvB −X · hvT ))‖22 + λ3‖I −XᵀX‖2,

where we minimize ‖XATX
ᵀ − AB‖2F and additional con-

straints to ensure the selection satisfies the relational alignment
regulated by the SMT. Furthermore, λ1, λ2, and λ3 are non-
negative regularization hyperparameters. When the optimiza-
tion is done, we apply the sigmoid function to allow the value
in each cell Xi,j ∈ [0, 1] to represent the node selection
probability. We then output the most likely nodes to form the
final correspondence matrix X .

IV. EXPERIMENT

To investigate the effectiveness of DeepGAR, we compare
its performance with existing approaches in both synthetic and
real-world datasets.

A. Experiment Setup

Comparison Methods. We compare the performance of Deep-
GAR on various experiments against two sets of methods.
• Analogical Matching Approaches. AMN [14] is the first and

only method that applies deep learning in identifying analog-
ical correspondences that are consistent with the principles
of SMT. It learns the node embedding by LSTM-based
encoder, and use node embeddings to iteratively search for
correspondence and available candidates.

• Subgraph Matching Approaches. NeuroMatch [18] is the
first and STOA work applying deep learning and graph
neural network to impose a geometric ordering between
node embeddings to attain efficiency in solving subgraph
isomorphism, which is conceptually similar to analogical
reasoning in terms of structural alignment.

Data. We demonstrate the performance of our proposed
DeepGAR over both synthetic data and real-world data. 1)
Synthetic. The synthetic analogical examples are constructed
based on DAG generation, and we follow the procedure
described in [14] to generate synthetic DAGs with depth k
sampled from [2, 7]. Analogical pairs are sampled from each
generated DAG. 2) Visual Oddity. There are 3, 405 analogi-
cal comparisons to explore cultural differences in geometric



Synthetic Oddity Moral Geometric

Methods ACC RE PR F1 AUC ACC RE PR F1 AUC ACC RE PR F1 AUC ACC RE PR F1 AUC

NeuroMatch 0.903 0.346 0.533 0.419 0.803 0.914 0.433 0.502 0.465 0.685 0.902 0.513 0.548 0.529 0.765 0.896 0.334 0.462 0.388 0.701

AMN 0.923 0.281 0.763 0.411 0.844 0.917 0.231 0.632 0.338 0.725 0.919 0.335 0.746 0.462 0.813 0.897 0.316 0.694 0.434 0.774

DeepGAR 0.931 0.623 0.585 0.603 0.846 0.937 0.454 0.497 0.475 0.729 0.916 0.577 0.609 0.593 0.821 0.933 0.429 0.474 0.450 0.747

TABLE I: Performance of correspondence prediction over comparison methods. (Best is highlighted with bold.)
Synthetic Oddity Moral Geometric

Methods ACC RE PR F1 AUC ACC RE PR F1 AUC ACC RE PR F1 AUC ACC RE PR F1 AUC

AMN 0.845 0.902 0.843 0.872 0.405 0.932 0.933 0.904 0.918 0.514 0.862 0.764 0.913 0.832 0.461 0.936 0.911 0.884 0.897 0.497

DeepGAR 0.851 0.913 0.866 0.889 0.432 0.936 0.926 0.910 0.919 0.508 0.884 0.812 0.896 0.852 0.493 0.892 0.903 0.865 0.884 0.502

TABLE II: Performance of candidate inference over comparison methods. (Best is highlighted with bold.)

reasoning in [19]. 3) Moral Decision Making. This dataset
[20] aims to understand moral decision-making and compare
previously solved cases to novel situations with 420 analogical
comparisons. 4) Geometric Analogies. The object of this
dataset is to select a geometric figure that best completes the
analogy from an encoded set of possible answers. We follow
the processing steps in [21], [14] and extract 866 pairs. In
order to test each model’s generalization capability and its
usage in real-world analogical reasoning tasks, we only train
each comparison method on the synthetic dataset. The trained
models are then deployed to make predictions on each dataset
without fine-tuning. Due to the limited space, more detailed
explanations of each dataset can be found along with the code.
Implementation Details and Evaluation. DeepGAR is flexi-
ble in terms of the GNN model used for the embedding step,
and we particularly choose K-layer GIN [17] model with skip
layers to encode DAG information. We choose Adam with
learning rate 0.001 for optimizing the Equation (4), and hyper-
parameters are set to be λ1 = 1e−3, λ2 = 1e−1, λ3 = 1e−3.
We uniformly sample 50% of the graphs in the synthetic
dataset to train the GIN model. The analogical matching prob-
lem is a classification task to distinguish whether the identified
subgraph GS ∈ GT is the correct analogical matching to GB .
We thus adopt Accuracy (ACC), Recall (RE), Precision (PR),
F1-Score (F1), and ROC-AUC (AUC) to evaluate whether the
identified subgraph is the correct matching to the base.

B. Correspondence Prediction

We first demonstrate the performance of the correspon-
dence prediction among all approaches, and the results are
described in Table I. Note that the data generator generates
ground truth analogical correspondences when evaluating the
synthetic data. For all real-world datasets, the comparison set
of correspondences is computed by a rule-based algorithm:
structure mapping engine (SME) [22], which is built on SMT
and is the most widely accepted computational model of SMT.

As shown in the table, DeepGAR performs the best among
all comparison methods except for the precision score, and
the F-1 excels other methods by, on average 15%. We draw a
couple of interesting observations. Firstly, the subgraph match-
ing algorithm - NeuroMatch performs the worst among all
comparison methods since it is not designed for the analogical
reasoning task. During the inference phase, NeuroMatch can

only identify structural matching between the base DAG and
target DAG. Without considering all the constraints regulated
by the SMT, NeuroMatch cannot handle scenarios: 1) there
exist multiple valid structural matchings but only one satisfies
the SMT; 2) there is only a part of the base DAG can be
matched to the target DAG (i.e., partial matching). In addition,
though AMN and DeepGAR have similar performance in
ACC and AUC, the imbalance between the PR and RE
further demonstrates that AMN tends to generate less but
accurate correspondences, which results in the imbalanced
PR and RE. Moreover, the AMN-generated correspondences
are not organized into a graph structure, which prevents us
from learning the identified analogy’s latent and potentially
hierarchical structure.

C. Candidate Inference Prediction

Candidate inferences are statements from the base projected
into the target to fill in missing structure [14], [9]. Given a
set of correspondences, candidate inferences are constructed
from statements in the base supported by expressions in the
correspondence set but are not included in the correspondence
set. In many real-world analogical reasoning problems, every
non-correspondence node can become a candidate inference
(which can lead to inflated precision and recall values). Thus,
we utilize the correspondences that are accurate but not
formed in a graph structure as the ground truth and report the
classification performance. Due to the designed pairwise node
selection process, AMN could naturally output candidate cor-
respondence. In DeepGAR, after we make the correspondence
selection, we output the most likely correspondence as candi-
dates. Since NeuroMatch is not designed for handling such a
task, we only compare the performance between DeepGAR
and AMN, and report results in Table II. As exhibited in the
table, DeepGAR is still effective in mining candidates. Due to
its design, AMN has advantages in determining the candidates
since it tends to produce fewer correspondences. Compared to
AMN, DeepGAR provides consistently competitive and, most
of the time, better performance across all datasets.

D. Scalability Analysis

To analyze the scalability of the proposed model, we record
the average runtime for the training of all comparison methods.
We repeat the experiments 10 times until convergence and



Training
Runtme

Inference Runtime

Synthetic Oddity Moral Geometric

NeuroMatch 2547.62 3414.71 5618.22 1336.23 2671.56
AMN 18655.31 54142.31 121743.62 22354.47 34142.17

DeepGAR 1435.71 20344.12 43462.51 8679.41 15634.22

TABLE III: We separately record the training runtime and
inference runtime on each dataset.
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Fig. 3: The comparison of generated analogical alignment
matrix in the Moral dataset.
report the average runtime of training and inference on each
dataset in Table III, respectively.

As depicted in Table III, AMN takes more than 7 times
of the runtime against DeepGAR and NeuroMatch in train-
ing, which is mainly due to its Transformer-based neural
network and LSTM-based graph encoder. DeepGAR has the
overall lowest training time and excels over other methods
by an evident margin. Furthermore, DeepGAR only needs to
construct a geometric ordering constrained embedding space,
which saves a significant amount of time and computational
resources compared to other methods. In terms of the inference
runtime, NeuroMatch has the generally fastest runtime since it
does not involve any optimization steps. AMN still exhibits the
longest inference runtime since it leverages the Transformer-
based node-wise correspondence predictor, which requires a
lot more reasoning time due to the need to enumerate the
graph structure of both GT and GB .

E. Visualization

In addition to our main results, we provide qualitative
examples of DeepGAR’s outputs on real analogy problems.
We randomly choose one analogical matching case from
the Moral dataset (i.e., the largest dataset) and visualize
the identified analogical matching matrices. We illustrate the
comparison between DeepGAR, AMN, and the ground truth in
Fig. 3. The results in the visualization align with the analysis
we draw on the correspondence prediction. The alignment
matrix generated by AMN contains isolated correspondences,
while DeepGAR consistently generates structurally similar
alignment matrices to real ones across different real-world
scenarios.

V. CONCLUSION

In this paper, we propose an end-to-end learning framework
- DeepGAR, to produce analogical correspondences consistent
with constraints regulated by SMT. Specifically, DeepGAR
firstly uses graph neural networks and geometric embeddings

to learn subgraph relationships. We then derive a unified
objective that can locate analogically similar representation in
the target with the guidance of constraints regulated by SMT
and the constructed embedding space. Extensive experiments
and analyzes are conducted to demonstrate the strength of
DeepGAR in various synthetic and real-world scenarios.
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