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Abstract—The field of deep clustering combines deep learning
and clustering to learn representations that improve both the
learned representation and the performance of the considered
clustering method. Most existing deep clustering methods are
designed for a single clustering method, e.g., k-means, spectral
clustering, or Gaussian mixture models, but it is well known
that no clustering algorithm works best in all circumstances.
Consensus clustering tries to alleviate the individual weaknesses
of clustering algorithms by building a consensus between mem-
bers of a clustering ensemble. Currently, there is no deep
clustering method that can include multiple heterogeneous clus-
tering algorithms in an ensemble to update representations and
clusterings together. To close this gap, we introduce the idea
of a consensus representation that maximizes the agreement
between ensemble members. Further, we propose DECCS (Deep
Embedded Clustering with Consensus representationS), a deep
consensus clustering method that learns a consensus represen-
tation by enhancing the embedded space to such a degree that
all ensemble members agree on a common clustering result. Our
contributions are the following: (1) We introduce the idea of
learning consensus representations for heterogeneous clusterings,
a novel notion to approach consensus clustering. (2) We propose
DECCS, the first deep clustering method that jointly improves the
representation and clustering results of multiple heterogeneous
clustering algorithms. (3) We show in experiments that learning
a consensus representation with DECCS is outperforming several
relevant baselines from deep clustering and consensus clustering.

Index Terms—Deep Clustering, Representation Learning, Con-
sensus Clustering

I. INTRODUCTION

Clustering is the task of unsupervised classification, where
we infer cluster labels from the data.1 Deep clustering (DC)
combines unsupervised deep learning and clustering to learn
representations (embeddings) that improve clustering perfor-
mance. Current DC methods are designed with only a single
clustering model in mind, e.g., DEC [1] which improves the
representation for k-means [2], VaDE [3] for Gaussian mixture
models [4], DeepECT [5] for hierarchical clustering [6], and
SpectralNet [7] for spectral clustering [8]. Relying on the
assumptions of a single clustering model leads to poor results
if the assumptions are not met by the data.

Consensus clustering (CC) can alleviate the limitations of
individual clusterings by combining a clustering ensemble
into a single robust clustering [9]. Unfortunately, applying

1Our code is available at https://gitlab.cs.univie.ac.at/lukas/deccs.

(a) Original (b) Initial AE (c) Update (d) Final CR

Fig. 1. A synthetic data set (a) containing four clusters is embedded (b) with
an autoencoder (AE). DECCS transforms the initial AE embedding via several
updates (c) to the final consensus representation (CR) in which clusters are
compact and well separated (d).

Fig. 2. Cluster performance on initial AE embedding and learned CR for
an ensemble of k-means (KM), Spectral clustering (SC), Agglomerative
clustering (AGG), and Gaussian mixture model (GMM).

current CC methods to high-dimensional data sets leads to
unsatisfactory results, because they are either limited to linear
transformations [10]–[12], only work for k-means like clus-
terings [13], or only use CC information as input features for
DC without updating the CC in response to improved data
representations [14], [15].

In contrast to that, we propose our novel Deep Embedded
Clustering with Consensus representationS (DECCS) method,
which is a DC method that can be applied to high-dimensional
data, finds non-linearly hidden clusters and works with many
existing clustering algorithms. DECCS learns a consensus
representation (CR) that maximizes the agreement between
ensemble members. The key idea we use for consensus repre-
sentation learning with DECCS is that most clustering methods
can find well-separated clusters in a low-dimensional space
that have a simple shape, e.g., dense, spherical clusters. Using
this idea, DECCS learns a consensus representation by trans-
forming the embedded space such that it is trivial to cluster
and, therefore, all ensemble members naturally agree on one
partitioning into clusters. Fig. 1 illustrates on a synthetic data
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Fig. 3. Existing DC methods are limited by their assumed cluster model.
Here they fail, because the data contains clusters of differing shapes.

set how DECCS transforms an initial embedding that contains
clusters of different shapes to a consensus representation that
consists only of dense, spherical, and well separated clusters.
In Fig. 2, multiple, heterogeneous algorithms with different
assumptions about the cluster structure are applied to the
initial autoencoder (AE) embedding (upper row). Initially, the
clustering algorithms perform poorly, but applied to the con-
sensus representation learned with DECCS all algorithms in
the ensemble reach the same, perfect clustering (bottom row)
as measured with the adjusted rand index (ARI) [16]. In Fig. 3,
we apply existing DC methods to the same synthetic data set
using the same AE and plot their learned embeddings. While
this data set can be clustered by classical clustering techniques,
we see that DC methods fail, because their assumptions are
not met. For example, DEC is performing poorly because the
data set contains non-spherical clusters, which is not suited
for k-means. As a consequence DEC is producing a distorted
embedding (first column).

In this work, we tackle the shortcomings of existing DC
and CC techniques and present the following contributions:
(1) We introduce the idea of a consensus representation,

which is a representation that maximizes the agreement
of the applied clustering algorithms by producing similar
clustering results for all clustering methods included in
the ensemble.

(2) We propose DECCS, the first DC algorithm that can
include multiple heterogeneous clustering methods to
jointly improve the learned embedding and clustering
results by simplifying the representation.

(3) Our method is outperforming several relevant baselines
in terms of cluster performance.

II. BACKGROUND - CONSENSUS CLUSTERING

CC can overcome the limitations of individual clusterings
by combining multiple clustering solutions into a single robust
partitioning [9]. In general, CC algorithms consist of two
stages:

1) Generate a set of base partitions using single clustering
algorithms (e.g., k-means, Spectral Clustering, etc.)

2) Combine the base partitions using a consensus function
to obtain a final partition.

Traditionally, the two stages are independent of each other. The
consensus function does not access the original features of the
data set to find the optimal combination of base partitions.

During the design of the consensus function the goal is to
combine a set Π of |Π| partitions πi into one final clustering
πcc, such that πcc agrees as much as possible with the base
partitions. In their framework, [9] suggested to use the average
pairwise normalized mutual information (ANMI) between the
CC and the base clusterings as an objective function to
measure the agreement:

πcc = argmaxπ̄

|Π|∑
i=1

NMI(πi, π̄) (1)

Using the normalized mutual information (NMI) has the
benefit that it is invariant to the permutation and absolute
values of cluster labels and allows for a different number of
clusters ki in each partition πi. Further, the NMI is symmetric
and is 1 if two clusterings match perfectly and 0 if they are
independent of each other.

Instead of the need to design a consensus function to
optimize Eq. 1 our DECCS algorithm learns a (non-linear)
consensus function to learn the consensus representation as
we explain in the following.

III. OBJECTIVE FUNCTION FOR CONSENSUS
REPRESENTATION LEARNING

For our novel problem setting, we use an encoder encΘ that
maps a data point x ∈ RD to a typically lower-dimensional
embedded vector z ∈ Rd, where Θ are the learnable param-
eters of the encoder. Then, let X be an N × D dimensional
input data matrix and Z = encΘ(X) be an N ×d dimensional
embedded data matrix with d < D. Further, let E be a set of
heterogeneous clustering algorithms with potentially different
number of clusters ki, where each ith member ei produces
a clustering result πi = ei(Z). We define the consensus
representation in the following.

Definition 1 (Consensus representation Zcr). Let Θ, encΘ, X,
Z, and E be defined as above. The consensus representation
Zcr maximizes the following objective function:

fΘ = c

|E|∑
i=1

|E|∑
j>i

NMI(ei(encΘ(X)), ej(encΘ(X))), (2)

with Zcr := encΘcr (X), where encΘcr is the consensus
representation function and c is a normalization constant
c = 2

|E|2−|E| for the equation to sum to one.

The consensus representation maximizes the agreement of
all partitions with each other, where the agreement is measured
using the pairwise NMI [9]. The optimal encoder parameters
for the consensus representation Zcr are then learned with

Θcr = argmaxΘfΘ. (3)

Note that Eq. 2 allows for degenerate solutions, like setting
Zcr to a constant if encΘ is non-linear. To avoid degenerate



solutions in practice we include regularizers in the objective,
like enforcing the invertibility of Zcr back to X by using
the AE reconstruction loss. In the following, we introduce our
DECCS method and illustrate how it approaches the consensus
representation learning problem.

IV. METHOD - DECCS

We motivate our consensus representation learning approach
using the observation that most clustering methods are able to
detect compact and well-separated clusters in low-dimensional
spaces. DECCS uses the cluster information from all ensemble
members to learn such a simplified representation. Decreasing
the ambiguity of the representation during training will in-
crease the similarity of the clusterings that ensemble members
will produce, which subsequently increases the pairwise NMI
(Eq. 2) of clustering results. DECCS works by alternating
between representation and clustering update steps until an
agreement is reached through the consensus representation. In
the following, we explain our approach in more detail.

A. Overview

We use a (non-linear) autoencoder (AE) to learn enc by re-
constructing the original input data x from z using the decoder
dec resulting in x̂ := dec(enc(x)).2 The AE reconstruction x̂
is learned by minimizing a reconstruction loss Lrec = ‖x−x̂‖,
e.g., using the mean squared error. Given the AE, our DECCS
algorithm consists of three main steps that we explain in the
following sections. First, we illustrate how we generate a set
of base partitions by applying the cluster ensemble to a sub-
sample of the embedding in Section IV-B. Second, we show
how to approximate each partition with a classifier to label
the remaining data points in Section IV-C. Third, we state
our consensus objective in Section IV-D and in Section IV-E,
we show how the consensus representation is updated. The
algorithm is presented in Section IV-F.

B. Generating base partitions

At the beginning of each round t of our algorithm, we draw
a small random sample Xt of size n < N from X, because
some clustering algorithms are impractical to be applied to
large data sets and re-sampling can make the CC more robust
[17]. Next, we embed the sample using encΘ(Xt) = Zt and
generate a set of base partitions Πt by applying all ensemble
members to the embedding πi = ei(Zt). The sampling
procedure and the low-dimensional embedded space allow
us to use more run-time and memory expensive algorithms,
such as spectral clustering, in our ensembles. Further, using
the sampling and heterogeneous ensembles, we can achieve a
sufficiently diverse set of base partitions Πt.

C. Approximating base partitions

Since we only have cluster labels for n < N data points
due to the random sampling, but require cluster labels for all
N data points, we use a classifier to approximate the clustering

2We reuse enc here, whether it is vector or matrix-valued should be clear
from the context.

for the remaining N−n points. We approximate the set of base
partitions Πt using a set of classifiers Gt, where classifier gi
is trained to predict the corresponding clustering πi. We train
each classifier by minimizing the cross-entropy loss of cluster
labels πi and its prediction, i.e.,

LCE =

|Πt|∑
i=1

LiCE = − 1

n

n∑
j=1

ki∑
l=1

I[l = πi,j ] log gi(zj), (4)

where πi,j is the cluster label corresponding to the jth data
point and I is the indicator function. While in principle one
can use any classifier for gi we chose linear classifiers with the
Softmax function as output, i.e., gi(x) = softmax(Wix+bi)
with Wi and bi as weights and bias terms respectively. The
linear classifiers can be trained with little overhead, having
only d · ki + ki trainable parameters. Updating the linear
classifiers together with the non-linear encoder allows us then
to approximate non-linear clusterings as well.

D. Consensus Objective

Optimizing Eq. 2 from Definition 1 directly is not possible,
because the cluster ensemble members are not differentiable.
Thus, we learn a low-dimensional representation in which all
clusters are spherical, dense, and well separated, such that
the ensemble members trivially agree on one partition. To
transform non-spherical-shaped clusters into spherical clusters
we ”move” cluster points closer to their cluster representatives.
We choose the mean center of a cluster as the representative
because it is stable across update steps, but other choices like
the median are also possible. In the following, we use the
terms representative and center interchangeably.

Let Cjπi be the set of data points in the jth cluster of
partition πi, then we can calculate its center µj using µj =

1

|Cjπi |

∑
x∈Cjπi

encΘ(x), and subsequently can construct the
ki × d matrix Mi containing ki centers µj as row vectors.
Next, we define our differentiable consensus objective as

Lcons =

|Πt|∑
i=1

Licons =

|Πt|∑
i=1

‖AiMi − encΘ(Xt)‖2F (5)

=

|Πt|∑
i=1

ki∑
l=1

∑
x∈Clπi

‖µl − encΘ(x)‖22,

where Ai is the n × ki one hot encoded cluster assignment
matrix of partition πi, ‖ · ‖22 the squared Euclidean norm, and
‖ · ‖2F the squared Frobenius norm. Here Mi and Ai are
fixed, so the encoder encΘ has to learn parameters Θ that
map embedded data points z = encΘ(x) as close as possible
to their assigned centers across all partitions. Note, that data
points that are close to similar centers across partitions will
receive a higher gradient update due to the summation and
are thus gathering faster than data points that have conflicting
assignments. The centers alone can not capture complex
cluster structures properly, which is why we include the cross-
entropy loss (Eq. 4) in our objective, as we explain in the next
Section.



(a) Original (b) LCE (c) Lcons (d) LCE + Lcons

Fig. 4. Example of how optimizing LCE together with Lcons is able to enhance
the representation even if cluster centers overlap. (a) A data set with two
clusters (red and blue circle) that have the same centers (red dot and blue
cross). (b) Optimizing DECCS only with LCE learns a representation in which
both clusters are separated by the decision boundary (dashed black line), but
cluster shapes are distorted. (c) Only using Lcons merges both clusters. (d)
Optimizing LCE together with Lcons separates the clusters and transforms
them from circles to spheres, a representation that can be easily clustered.

E. Updating consensus representation

Putting everything together the objective of our DECCS
algorithm is

L =

|Πt|∑
i

λi(LiCE + Licons) + λrecLrec, (6)

where λi = 1
|Πt|−1

∑|Πt|
j=1 NMI(πi, πj) is a weighting pa-

rameter based on the agreement of partition πi with all
other partitions measured as average pairwise NMI to exclude
random partitions and downscale outlier partitions. We choose
the commonly used AE reconstruction loss Lrec as data de-
pendent regularizer to avoid degenerate solutions by keeping
Z approximately invertible. The hyperparameter λrec weights
the importance of Lrec.

The cross-entropy loss LiCE of each classifier is included
to make sure that the updated representation is still predictive
for each partition, e.g., by avoiding the merging of clusters if
centers of different clusters are the same, as illustrated in Fig.
4. Additionally, we show in the Appendix in Fig. 9 that this
still works even if half of the ensemble members are no better
than chance.

Eq. 6 can be optimized using stochastic gradient descent for
a fixed amount of update steps. Once the training has stopped,
our algorithm starts again with a new round by applying the
clustering algorithms, which will adjust their clustering results
to the updated embedding. Then it again pretrains classifiers to
approximate them and minimizes L. These steps are repeated
for several rounds until a stable agreement is achieved or
a maximum number of rounds T has been reached. In the
following section, we explain our algorithm in more detail.

F. Algorithm

Given a data set X, the pretrained encoder encΘ, and a
parameterized ensemble of clustering methods E , we learn a
consensus representation Zcr and subsequently a consensus
clustering πcc with our DECCS algorithm in the following
way. We encode the input data using encΘ, generate the
base partitions by applying cluster ensemble members on Zt,
approximate the base partitions using classifiers gi and update
the representation by minimizing L. We repeat these steps

Algorithm 1: DECCS
Param : Agreement function a(·), agreement threshold τ ,

subsample size n, regularization weight λrec,
rampup function w(·), maximum number of rounds
T , number of mini-batch training iterations ITER

Input : data set X
initial representation function encΘ

ensemble of clustering algorithms E
Output: Estimated consensus representation Ẑcr and

corresponding consensus clustering π̂cc

1 t = 0;
2 while t ≤ T do
3 draw sample Xt of size n from X and create

corresponding embedding Zt = encΘ(Xt);
// Generate new base partitions

4 generate new empty list for cluster partitions Πt;
5 foreach ensemble member ei ∈ E do
6 insert cluster prediction πi = ei(Zt) into Πt;

// Approximate base partitions
7 initialize list of classifiers Gt;
8 foreach cluster prediction πi ∈ Πt do
9 pretrain classifier gi by minimizing

Li
CE(gi(Zt), πi);

10 insert pretrained classifier gi into Gt;
// Stop if stable agreement or T is

reached
11 if (t > 0) ∧ ((‖a(Πt)− a(Πt−1)‖1 < τ) ∨ (t == T ))

then
12 Ẑcr := encΘ(X), π̂cc := g0(Ẑcr);
13 break;
14 else

// Update consensus representation
15 while j < ITER do
16 foreach mini-batch B ∈ X do
17 calculate for B loss L:
18

∑|Πt|
i λi(Li

CE + w(t)Li
cons) + λrecLrec;

19 update encΘ and Gt using L;
20 j = j + 1;
21 t = t+ 1;
22 return Ẑcr , π̂cc;

for several rounds until a stable agreement is achieved or
we reached a maximum number of rounds T . As agreement
function a(Πt) we use the average pairwise NMI between all
clusterings in the set of partitions Πt. We measure the stability
of the agreement by calculating ‖a(Πt) − a(Πt−1)‖1 < τ ,
where τ is the cluster agreement threshold, a user-specified
parameter, and ‖ · ‖1 is the absolute distance between the
agreement of two subsequent sets of partitions. After the
algorithm stops, it returns the estimated consensus representa-
tion Ẑcr and it’s corresponding estimated consensus clustering
π̂cc. The consensus clustering π̂cc is obtained by applying a
clustering algorithm from the ensemble, e.g., k-means with
the desired k to Ẑcr. If the number of clusters is the same
in all ensemble members (ki = kj ,∀ei, ej ∈ E), we choose
for π̂cc just the result of one of the ensemble members. The
pseudocode of our algorithm is depicted in Algorithm 1. In
Fig. 5, we have a visual illustration of one round of our
DECCS algorithm applied to a synthetic data set, and Fig.
6 shows its optimization over several rounds.



Fig. 5. Visualisation of one round of DECCS. (1) The encoder is used to embed data points X. (2) Clustering results are generated by applying ensemble
members E = {KM, . . . , SC} to Z. (3) Classifiers gi are trained to predict the corresponding cluster labels πi from Z. (4) Z is updated via minimizing L.

Fig. 6. Consensus representation learning with DECCS over several rounds
for the synthetic data set and E = {KM, SC,AGG,GMM}. Each plot shows
the classification boundaries for each classifier (Clf.) trained on the cluster
partitions. Over several rounds the clusters get better separated and more
compact, leading to the same clustering for all ensemble members.

We use three heuristics for the optimization of DECCS.
First, to speed up convergence we include the predicted
cluster labels of the N − n unclustered data points for each
classifier gi during the computation of Licons. These predictions
are updated during each mini-batch iteration for unclustered
data points in the mini-batch B. Second, to account for the
classifiers’ uncertainty we weight each distance computation
in Licons with αi,l = gi,l(encΘ(x)), which is the lth entry
of the prediction probability vector of classifier gi. Third, to
enforce the consensus over time t, we increase the weight
of the consensus loss until a maximum weight λcons is
reached. We use the sigmoid schedule as rampup function
w, like [18], to increase the weight w(t) from 0 to λcons
over time. In total, our algorithm needs the following user-
specified parameters, an agreement threshold τ that indicates
how small the agreement gap between two subsequent sets of

partitions should be. The data sampling size n, which should
be chosen w.r.t. computational constraints and demands of
clustering algorithms to have a sufficient number of samples.
The maximum consensus weight λcons is a hyperparameter
that together with the regularization weight λrec trades-off
the confidence in the chosen ensemble with the structure
of the underlying data. The maximum number of rounds
T and the maximum number of mini-batch iterations ITER
for the consensus representation update can be set based
on computational constraints. We speed up the training of
classifiers and encoders using early stopping, a heuristic that
stops training once the loss on a held-out evaluation set starts
to increase due to overfitting.

V. RELATED WORK

A. Consensus Clustering

Based on the consensus function (CF) consensus clustering
methods can be broadly categorized into median partition-
and object co-occurrence based methods. Median partition
methods find a partition that is most similar to all the base
partitions. Object co-occurrence based methods utilize the co-
association (CA) matrix to find the ideal partitioning, where
the entries of this matrix reflect how often every two instances
are partitioned together. Fred et al. [19] introduced Evidence
Accumulation (EAC), a hierarchical clustering algorithm that
uses entries of the CA matrix as a similarity measure that
is used to produce the final clustering. More recently, [20]
extended this idea by proposing Locally Weighted Evidence
Accumulation (LWEA), introducing an entropy-based weight-
ing schema, which makes it more robust to outlier partitions.
Strehl et al. [9], and later Fern et al. [21], utilized the CA
matrix to formulate graph-based algorithms as a consensus
function. Li et al. [22] proposed a more efficient Nonnegative
Matrix Factorization (NMF) based algorithm to factorize the
CA matrix as an alternative.

To generate base partitions for high dimensional data, like
images, a line of research follows the idea of random projec-
tions (RP). Inspired by the Johnson–Lindenstrauss (JS) lemma
[23], [10] introduced with Random Projection Expectation
Minimization (RP+EM) the first RP-based CC algorithm,
where the data is projected onto various lower-dimensional
subspaces using random matrices. The entries of the resulting



CA matrix are then used for a hierarchical clustering approach.
Similar to this idea, [11] proposed Random Projection Fuzzy
c-Means (RP+FCM), where each subspace is clustered with
a Fuzzy c-Means (FCM) algorithm. Those partitions are then
combined with an agreement function. However, contrary to
DECCS, RP methods are limited to linear transformations.

B. Deep Clustering

Most, current DC methods are designed with only a single
clustering model in mind, e.g., SpectralNet [7] for spectral
clustering, DEC [1], IDEC [24], DCN [25] for k-means like
clustering, VaDe [3] for Gaussian mixture models, or Deep-
ECT [5] for hierarchical clustering or ENRC [26] for non-
redundant clustering, see [27] for an overview. SpectralNet is a
deep extension of spectral clustering for large data and out-of-
sample generalization. DEC minimizes a soft auxiliary target
distribution using the Kullback-Leibler divergence, which is
related to soft k-means [28]. Improved DEC (IDEC) includes
the AE reconstruction loss in the DEC objective to avoid
arbitrary clustering results. In contrast to the soft clustering
objective of DEC, the DCN algorithm uses hard cluster assign-
ments together with an alternating optimization scheme. It al-
ternates between k-means clustering and representation update
to achieve a k-means friendly embedding. VaDE combines a
Gaussian mixture model prior with a variational autoencoder
(VAE) [29] to learn a deep generative clustering. DeepECT [5]
introduced a deep embedded cluster tree to learn a hierarchical
embedding.

The ConCURL [13] algorithm leverages image augmenta-
tion and RPs to learn a cluster ensemble of Softmax pre-
dictions to improve the overall clustering performance. A
difference between their approach and ours is that they are
limited to data that can be augmented, e.g., images or text.
Further, they create a k-means like ensemble by using the
Softmax, see [30] for the connection between the Softmax and
k-means. In contrast to that, our DECCS algorithm can be used
with a wide range of existing clustering methods and is not
limited to k-means. Liu et al. [14] proposed the IEC algorithm
which embeds multiple clustering results with a marginalized
Denoising AE [31] and clusters the learned embedding with
k-means, without considering the original data. Tao et al. [15]
extended the idea of [14] and proposed the AGAE method.
Instead of embedding the clustering results, AGAE uses a
consensus graph constructed from the CA matrix of the base
partitions as an input to a DC method, which together with
the original data produces an enriched embedding. In contrast
to our approach, AGAE does not learn a consensus with
the neural network but uses initial clusterings to construct
a consensus graph as input for their DC algorithm, without
updating the graph during training. Importantly and in contrast
to ConCURL [13] and DECCS, both IEC and AGAE are not
jointly updating the consensus clusterings and representation,
a key feature of DC [27] to improve cluster performance.

VI. EXPERIMENTS

We evaluate our DECCS algorithm with respect to several
aspects. In Section VI-A, we evaluate DECCS w.r.t. its most
important hyperparameters for MNIST [32] as it is usually
done in DC [1], [3], [24], [25] and show that our objective
increases the agreement and cluster performance for all en-
semble members across data sets. Additionally, we perform an
ablation study across data sets. In Section VI-B, we compare
DECCS to several CC and DC methods.
Evaluation Metrics: We evaluate the performance using
normalized mutual information (NMI) [33] and adjusted rand
index (ARI) [16]. Both range between 0 and 1, where 0 indi-
cates no match and 1 a perfect match with the ground-truth.
We evaluate the agreement within an ensemble by calculating
the average pairwise NMI [9] between all clusterings.
Data sets: The synthetic data set (SYNTH) consists of four
clusters and is depicted in Fig. 1a. The real-world data
sets consist of commonly used DC image data sets like
MNIST, Fashion-MNIST (FMNIST) [34], Kuzushiji-MNIST
(KMNIST) [35], and USPS [36] and three UCI [37] data
sets PENDIGITS, HAR and MICE. We provide a detailed
description of the data sets in Appendix A. All data sets are
preprocessed using a z-transformation.
Experimental Setup: For all data sets that have more than
2,000 data points, we use a feed-forward AE architecture with
layers D-500-500-2000-10 for the encoder and a correspond-
ing mirrored decoder, which is the same setting as used in [1].
For the MICE and SYNTH data sets, we have used smaller
networks, with D-256-128-64 and D-20-20-2 for the encoders
and mirrored decoders respectively. We use these architectures
for DECCS, DEC, IDEC, DCN, and VaDE. For SpectralNet3

and ConCURL4, we used the settings that are available in
their public implementations. IEC and AGAE have no publicly
available code, which is why we only show the NMI results
reported in their papers5.

For hyperparameters that are specific to DECCS, we set
λcons to 0.1 for the image data sets and to 10.0 for the UCI
and SYNTH data sets, where the higher weight leads to better
results for all data sets. The sampling size n is set to 0.08 ·N
for data sets with N > 11,000 and to 0.5 ·N for the others.
We let our algorithm run for T = 10 rounds and report the
result with the highest agreement between ensemble members,
thus not needing to specify τ . We train the classifiers and
encoder of DECCS with mini-batch SGD and momentum [38]
set to 0.9 for all data sets and |B| = 256. The classifiers are
pretrained with a learning rate of 0.01 and the representation
updates are done with a learning rate of 0.001, which is
reduced by a factor of 0.9 after each round t. We set the
number of maximum mini-batch iterations to ITER = 20,000
for all data sets. We used the early stopping heuristic during
the classifier pretraining and consensus representation learning

3https://github.com/KlugerLab/SpectralNet
4https://github.com/JayanthRR/ConCURL NCE
5Symbol † indicates results are taken from [14] and ‡ from [15]

https://github.com/KlugerLab/SpectralNet
https://github.com/JayanthRR/ConCURL_NCE


TABLE I
ABLATION STUDY FOR COMBINATIONS OF LOSS TERMS OF DECCS. BEST RESULTS ARE MARKED AS BOLD AND RUNNER-UP IS UNDERLINED. ALL

RESULTS ARE GIVEN IN NMI AS MEAN ± STD OVER 10 RUNS.

Lcons LCE Lrec SYNTH MICE PENDIGITS HAR MNIST FMNIST KMNIST USPS

X 0.17± 0.21 0.44± 0.05 0.12± 0.07 0.01± 0.01 0.45± 0.03 0.42± 0.02 0.27± 0.01 0.52± 0.04
X 0.79± 0.08 0.42± 0.02 0.72± 0.02 0.68± 0.04 0.81± 0.04 0.58± 0.01 0.54± 0.01 0.77± 0.01

X 0.53± 0.03 0.43± 0.02 0.68± 0.01 0.55± 0.05 0.75± 0.01 0.61± 0.01 0.49± 0.01 0.67± 0.02

X X 0.41± 0.02 0.50± 0.04 0.74± 0.02 0.60± 0.03 0.79± 0.01 0.64± 0.01 0.52± 0.02 0.71± 0.01
X X 0.82± 0.09 0.43± 0.04 0.73± 0.02 0.65± 0.06 0.83± 0.02 0.63± 0.02 0.56± 0.01 0.79± 0.01

X X 0.99± 0.01 0.55± 0.03 0.82± 0.02 0.73± 0.03 0.87± 0.02 0.64± 0.01 0.60± 0.01 0.84± 0.02

X X X 0.99± 0.02 0.57± 0.03 0.82± 0.02 0.75± 0.02 0.88± 0.02 0.65± 0.01 0.61± 0.01 0.85± 0.01

Fig. 7. DECCS parameter analysis for MNIST. (Left) Average agreement
(thick lines) and 95% confidence intervals for ten runs of DECCS show that in-
creasing the consensus weight λcons leads to an increased agreement between
ensemble members during training. (Right) Average cluster performance for
different values of λcons and λrec over ten runs.

and decreased the learning rate by 0.9 when a loss plateau was
reached.

DEC, IDEC, and DCN are learning k-means friendly em-
beddings, SpectralNet extends spectral clustering, DeepECT
learns hierarchical embeddings, and VaDE is a deep version
of Gaussian mixture models. We, therefore, choose a het-
erogeneous ensemble of k-means (KM), spectral clustering
(SC), agglomerative clustering (AGG), and Gaussian mixture
models (GMM), based on the correspondence of the chosen
DC methods, i.e., E = {KM,SC,AGG,GMM}.

For the CC approaches, we compare against eight methods
(six classical methods, two utilizing RPs). We evaluate the CC
methods on the raw and the AE embedded data sets using the
same ensemble E as DECCS. For all methods, we assume the
number of clusters k to be known. We provide hyperparameter
settings and further details for all methods in Appendix B. We
uploaded the used data sets, our code and further results at
https://gitlab.cs.univie.ac.at/lukas/deccs.

A. Algorithm Evaluation

Ablation study: We evaluate the impact of the individual
components of DECCS’ loss function in Table I. We see that
the combination of consensus loss (Lcons) and cross-entropy
loss (LCE), with and without reconstruction loss (Lrec) perform
best (last two rows) for all data sets. Using only Lcons without
LCE leads to worse results because the classifiers are not
preventing the merging of clusters (first row), as we have
discussed in Fig. 4.
Impact of ensemble size: We evaluated the impact of the
ensemble size by increasing its original size |E| = 4 by

Fig. 8. Average agreement (thick lines) and 95% confidence intervals for ten
runs of DECCS show the increase in agreement between ensemble members
over training across data sets on the left side and the corresponding increase
in cluster performance of DECCS on the right side.

doubling and tripling each member in the ensemble E , leading
to |E×2| = 8 and |E×3| = 16. We evaluated the results by
averaging the cluster performance of DECCS over ten runs on
MNIST, where we achieved the same average NMI of 0.87 for
each ensemble. We believe that we cannot see a benefit here
because we use strong clustering methods, which do not add
more diversity to the ensemble.
Impact of sampling size n: To evaluate the effect of the sam-
pling size n, we varied it for ratios {0.02, 0.04, 0.06, 0.08} of
MNIST (N = 70,000) and averaged the performance over ten
runs. DECCS achieved the same performance (NMI = 0.87)
for all ratios. We chose 0.08 for the remaining experiments as
this was also stable for the other large data sets.
Impact of λcons and λrec: To demonstrate that the objective
of DECCS increases the agreement between cluster ensemble
members, we vary the consensus weight λcons for values in
{0.1, 1.0, 10.0, 100.0} for the MNIST data set while keeping
λrec = 0. We see on the left side of Fig. 7 that a higher value
for λcons leads to a corresponding higher agreement. This
is expected because we enforce the consensus with a higher
weight. The right side of Fig. 7 shows the corresponding aver-
age cluster performance for λrec ∈ {0.0,1.0}. The trend with
and without the reconstruction loss is similarly downwards
trending for very high values because a very highly weighted
consensus loss disregards the underlying structure of the data.
Increase of agreement and NMI during training: On the left
side of Fig. 8, we show how DECCS increases the ensemble
agreement over training for three UCI data sets respectively,
and for MNIST as the behavior for the image data sets was
very similar. This experiment gives additional evidence that
our algorithm can effectively maximize the pairwise NMI

https://gitlab.cs.univie.ac.at/lukas/deccs


TABLE II
CLUSTER PERFORMANCE RESULTS MEASURED IN NMI. CORRESPONDING ARI VALUES ARE SHOWN IN TABLEIII.

Method SYNTH MICE PENDIGITS HAR MNIST FMNIST KMNIST USPS

DECCS 0.99± 0.02 0.57± 0.03 0.82± 0.02 0.75± 0.02 0.88± 0.02 0.65± 0.01 0.61± 0.01 0.85± 0.01

CSPA [9] 0.75± 0.00 0.35± 0.02 0.73± 0.02 0.49± 0.02 0.59± 0.04 0.53± 0.03 0.46± 0.02 0.65± 0.02
HGPA [9] 0.75± 0.00 0.37± 0.01 0.61± 0.05 0.49± 0.04 0.47± 0.02 0.46± 0.02 0.35± 0.02 0.56± 0.03
MCLA [9] 0.57± 0.08 0.34± 0.01 0.73± 0.04 0.59± 0.03 0.55± 0.05 0.53± 0.02 0.49± 0.02 0.60± 0.08
HBGF [21] 0.62± 0.02 0.33± 0.03 0.72± 0.03 0.48± 0.03 0.58± 0.03 0.51± 0.04 0.46± 0.02 0.64± 0.01
NMF [22] 0.46± 0.05 0.34± 0.01 0.75± 0.03 0.59± 0.03 0.59± 0.03 0.52± 0.03 0.49± 0.03 0.72± 0.03
LWEA [20] 0.60± 0.02 0.37± 0.03 0.76± 0.02 0.59± 0.00 0.62± 0.03 0.56± 0.01 0.51± 0.01 0.72± 0.01
RP+EM [10] 0.61± 0.00 0.46± 0.04 0.67± 0.05 0.46± 0.06 0.48± 0.05 0.50± 0.05 0.44± 0.04 0.64± 0.04
RP+FCM [11] 0.64± 0.05 0.28± 0.08 0.63± 0.01 0.51± 0.01 0.22± 0.02 0.40± 0.01 0.25± 0.01 0.38± 0.02

AE+CSPA [9] 0.76± 0.05 0.41± 0.03 0.73± 0.02 0.53± 0.01 0.84± 0.02 0.59± 0.02 0.54± 0.02 0.74± 0.03
AE+HGPA [9] 0.75± 0.00 0.41± 0.03 0.64± 0.07 0.49± 0.05 0.61± 0.02 0.50± 0.03 0.43± 0.03 0.60± 0.02
AE+MCLA [9] 0.53± 0.11 0.43± 0.02 0.73± 0.05 0.59± 0.06 0.83± 0.01 0.62± 0.03 0.59± 0.02 0.75± 0.06
AE+HBGF [21] 0.65± 0.08 0.40± 0.03 0.71± 0.04 0.53± 0.03 0.83± 0.02 0.58± 0.02 0.54± 0.02 0.72± 0.02
AE+NMF [22] 0.50± 0.13 0.44± 0.04 0.76± 0.04 0.60± 0.01 0.82± 0.04 0.61± 0.02 0.59± 0.03 0.82± 0.04
AE+LWEA [20] 0.61± 0.04 0.46± 0.04 0.75± 0.03 0.58± 0.06 0.86± 0.02 0.65± 0.01 0.61± 0.03 0.83± 0.03
AE+RP+EM [10] 0.62± 0.03 0.51± 0.04 0.67± 0.04 0.48± 0.04 0.77± 0.04 0.59± 0.02 0.58± 0.03 0.65± 0.03
AE+RP+FCM [11] 0.63± 0.10 0.41± 0.03 0.54± 0.05 0.48± 0.03 0.45± 0.07 0.49± 0.03 0.31± 0.04 0.37± 0.03

SpectralNet [7] 0.72± 0.06 0.27± 0.06 0.82± 0.04 0.61± 0.06 0.92± 0.00 0.64± 0.01 0.61± 0.02 0.83± 0.02
DEC [1] 0.65± 0.03 0.49± 0.02 0.75± 0.02 0.54± 0.09 0.84± 0.01 0.60± 0.01 0.52± 0.01 0.80± 0.01
IDEC [24] 0.64± 0.03 0.50± 0.03 0.76± 0.02 0.53± 0.09 0.85± 0.02 0.62± 0.02 0.55± 0.03 0.81± 0.01
DCN [25] 0.59± 0.08 0.48± 0.04 0.75± 0.02 0.51± 0.08 0.84± 0.03 0.62± 0.02 0.54± 0.04 0.78± 0.04
VaDE [29] 0.62± 0.10 0.45± 0.06 0.75± 0.02 0.54± 0.09 0.83± 0.03 0.65± 0.01 0.56± 0.01 0.79± 0.03
DeepECT [5] 0.61± 0.10 0.47± 0.06 0.74± 0.02 0.56± 0.10 0.82± 0.03 0.62± 0.03 0.52± 0.04 0.76± 0.06
ConCURL [13] n.a. n.a. n.a. n.a. 0.60± 0.04 0.48± 0.02 0.30± 0.03 0.49± 0.02
IEC [14] - - 0.72‡ - 0.54† - - 0.64†

AGAE [15] - - 0.74‡ - - - - 0.74‡

between ensemble members (Eq. 2) by learning a consensus
representation. The agreement is stabilizing for all data sets at
round 8, except for MICE which fluctuates at a high agreement
level due to the smaller data set size. The right side of Fig. 8
shows the corresponding increase in cluster performance. We
see that DECCS reaches stable cluster performance already
after round five for all data sets.

B. Cluster performance

In Table II, we show the clustering results of all methods
w.r.t. NMI over ten runs. We see in Table II that for the
SYNTH, MICE and HAR data set DECCS clearly outperforms
the next best method. For the PENDIGITS data set, we
perform similar to SpectralNet in NMI and outperform it w.r.t.
ARI (0.73 vs 0.67). For the MICE data set, we see that all CC
methods improve when applied to the AE embedded space,
but DECCS is still outperforming them, showing that updating
the representation can increase the cluster performance even
further. The highest improvement for the real-world data sets
can be seen for the HAR data set, where we outperform the
next best clustering method (NMI=0.61) by 0.14. The results
on the image data sets show that DECCS outperforms all
comparison methods on USPS. DECCS performs similar to the
DC methods for MNIST, FMNIST, and KMNIST. For MNIST,
we are only outperformed by SpectralNet. Interestingly, the
CC algorithms that are applied to the embedded space for
the image data sets serve as strong baselines, e.g., reaching
0.65 and 0.61 NMI for FMNIST and KMNIST respectively.
DECCS outperforms the deep consensus clustering method

ConCURL for all image data sets. ConCURL heavily relies on
image augmentation and for small, greyscale images there are
fewer augmentation invariances available, which might be the
reason for ConCurl’s poor performance. Further, ConCURL
cannot be applied to non-augmentable data, which is why these
results are marked as not applicable (n.a.).

VII. DISCUSSION AND CONCLUSION

Noise and outlier points: Currently, we have not considered
noise-aware clustering methods, like DBSCAN [39], in our
ensembles. DECCS could be extended to include methods like
DBSCAN, e.g., by excluding noise and outlier points during
the representation update, such that a consensus representation
is learned only for inlier clusters.
Consensus representation learning: With DECCS we have
introduced the first algorithm to learn consensus represen-
tations for CC. In future work, we would like to explore
alternative approaches for optimizing the proposed objective
in Eq. 2, which could lead to novel approaches to CC.

We have proposed the idea of consensus representations, a
novel way of learning a CC by maximizing the agreement
between ensemble members using representation learning.
Additionally, we have introduced the DECCS algorithm, to
the best of our knowledge, it is the first DC algorithm that
can use multiple heterogeneous clustering methods to jointly
improve the learned representation and clustering results.
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APPENDIX

A. DATA SETS

Mice Protein Expression (MICE) [37]: Data set consisting
of 552 vectors with 77 dimensions and 8 ground-truth clusters.
Each vector represents the expression levels of 77 proteins of
the mice’s cortex.
Pendigits [37]: Data set consisting of 10,992 vectors with 16
dimensions, representing 8 coordinates. The coordinates were
gathered during the writing of digits (0 to 9) on a tablet.
Human Activity Recognition (HAR) [37]: Data set con-
sisting of 10,299 vectors with 561 dimensions with records
from smartphones and smartwatches. The data set contains
six clusters corresponding to different human activities.
MNIST [32]: Data set consisting of 70,000 hand-written digits
(0 to 9) with a size of 28× 28 pixels.
FMNIST [34]: Data set consisting of 70,000 goods from
the Zalando online store. Each sample belongs to one of 10
products and has a size of 28× 28 pixels.
KMNIST [35]: Data set consisting of 70,000 Kanji characters
(10 different characters) with a size of 28× 28 pixels.
USPS [36]: Data set consisting of 9,298 hand-written digits
(0 to 9) with a size of 16× 16 pixels.

Fig. 9. Consensus representation (CR) learned with DECCS for two not lin-
early separable clusters. Upper row: Initial clustering results on an autoencoder
(AE) embedding. Two ensemble members (SC, AGG) can perfectly discover
the ground-truth clustering, but the two others (KM, GMM) do not perform
better than chance. Lower row: Clustering results on a CR learned with
DECCS leads to the same, perfect performance for all clustering algorithms

B. EXPERIMENT SETUP

Hardware setup: We trained all DC algorithms on a machine
with a single NVIDIA RTX 2080TI GPU (11GB onboard
memory), 96 GB RAM, and an Intel(R) Xeon(R) Gold 6130
CPU. All other comparison methods were run on the same
machine using only the CPU.
Implementation: We implemented DECCS in PyTorch (https:
//pytorch.org/). Currently, the generation and approximation of
base partitions is done sequentially, but could be further op-
timized using parallelization. One run of DECCS for MNIST
took about one hour, which is in the same order of magnitude
as other DC methods, e.g. DCN needed about 40 minutes.
Parameters of cluster ensemble: For the clustering algo-
rithms in the ensemble E = {KM, SC, AGG, GMM}, we
used the implementations of the sklearn [40] package. For the
real-world data sets, we parameterized them using this setting:

KMeans(n_clusters=k)

SpectralClustering(n_clusters=k,
affinity=’nearest_neighbors’,
n_neighbors=10,
assign_labels=’kmeans’)

AgglomerativeClustering(n_clusters=k,
linkage=’ward’)

GaussianMixture(n_components=k,
covariance_type=’full’,
reg_covar=1e-5)

For the synthetic data sets, we set linkage = ’single’ for
agglomerative clustering.
Consensus Clustering: For the classical methods, we used
the same parameterization as suggested by the authors in
the original papers ( [9], [22], [21], [20]). For the RP-based
methods, we determined the subspace dimension with a grid
search and report the value with the best average NMI over 10
runs. We evaluated the RP algorithms with an ensemble size
of four (size of our ensemble) and 30 (ensemble size used
in [11]) and again picked the run with the highest NMI. The
parameters of the Expectation Maximization (EM) and FCM
algorithms were set according to [10] and [11] respectively.
[11] proposed two versions of their RP-based algorithm, we
run our experiments with both versions and only report the
run with the highest NMI. Aligned with [11], we performed a
grid search for q in [5, 100] for both RP-based methods and
picked the run with the highest NMI. For LWEA, we set the
hyperparameter θ to 0.4, as [20] do for all their experiments.
Except for LWEA, other classical methods are implemented
using the cluster ensemble package.6

Deep Clustering: For the UCI data sets, we determined the
learning rate and other AE parameters, like dropout rate [41],
using a grid search during the AE pretraining taking the
parameters with lowest reconstruction loss. All other AEs were
pretrained with a learning rate of 0.001. All AEs were trained
using early stopping and the learning rate was reduced by 0.5 if
the reconstruction loss reached a plateau. We use for DECCS,
VaDE, DEC, IDEC, and DCN a batch size of |B| = 256. For
VaDE, DEC, IDEC, and DCN, we use a constant learning rate
of 0.0001 for the joint clustering. We train the DC algorithms
for 100,000 mini-batch iterations for all data sets using the
Adam optimizer [42] as was done in the original papers. For
SpectralNet [7], we used for the SYNTH and MICE data set
the same parameters as suggested for small data sets. For the
other data sets (PENDIGITS, HAR, and image data), we used
the same parameters as [7] used for MNIST.
ConCURL [13]: For ConCURL, we used the author’s repos-
itory. For all data sets, we performed ten runs each. In each
run, we trained the algorithm for 300 epochs. To change
the basic architecture as little as possible, we transformed
gray images into three dimensions by copying the gray color
channel. In our experiment, we used PyTorch’s resnet18 with
a hidden MLP of 2048. We chose SGD as the optimizer with a

6https://github.com/827916600/ClusterEnsembles

https://pytorch.org/
https://pytorch.org/
https://github.com/827916600/ClusterEnsembles


TABLE III
CLUSTER PERFORMANCE RESULTS MEASURED IN ARI. BEST RESULTS ARE MARKED AS BOLD AND RUNNER-UP IS UNDERLINED. ALL RESULTS ARE

GIVEN IN ARI AS MEAN ± STD OVER 10 RUNS. DECCS λREC = 1 INDICATES THAT LREC WAS USED, WHILE λREC = 0 ARE THE RESULTS WITHOUT LREC .

Method SYNTH MICE PENDIGITS HAR MNIST FMNIST KMNIST USPS

DECCS (λrec = 1) 0.99± 0.02 0.36± 0.04 0.73± 0.03 0.65± 0.03 0.85± 0.05 0.47± 0.01 0.45± 0.01 0.78± 0.01
DECCS (λrec = 0) 1.00± 0.01 0.33± 0.03 0.72± 0.04 0.62± 0.03 0.85± 0.04 0.47± 0.01 0.44± 0.02 0.77± 0.02

CSPA [9] 0.67± 0.00 0.19± 0.02 0.64± 0.04 0.37± 0.02 0.49± 0.05 0.40± 0.04 0.36± 0.02 0.54± 0.02
HGPA [9] 0.67± 0.00 0.20± 0.01 0.47± 0.08 0.36± 0.05 0.34± 0.03 0.30± 0.03 0.23± 0.03 0.42± 0.04
MCLA [9] 0.43± 0.08 0.17± 0.01 0.61± 0.06 0.46± 0.03 0.42± 0.04 0.36± 0.02 0.35± 0.02 0.52± 0.08
HBGF [21] 0.56± 0.02 0.17± 0.03 0.64± 0.03 0.37± 0.04 0.49± 0.03 0.39± 0.05 0.37± 0.03 0.54± 0.02
NMF [22] 0.37± 0.04 0.19± 0.02 0.63± 0.05 0.46± 0.06 0.47± 0.05 0.37± 0.03 0.37± 0.02 0.59± 0.05
LWEA [20] 0.44± 0.02 0.18± 0.02 0.62± 0.03 0.46± 0.00 0.50± 0.05 0.40± 0.02 0.35± 0.03 0.63± 0.01
RP+EM [10] 0.44± 0.00 0.26± 0.04 0.42± 0.11 0.31± 0.07 0.22± 0.04 0.29± 0.07 0.24± 0.05 0.45± 0.07
RP+FCM [11] 0.53± 0.10 0.15± 0.05 0.47± 0.02 0.32± 0.00 0.12± 0.02 0.25± 0.01 0.14± 0.01 0.20± 0.06

AE+CSPA [9] 0.69± 0.07 0.23± 0.03 0.65± 0.02 0.40± 0.02 0.82± 0.03 0.46± 0.02 0.43± 0.02 0.64± 0.04
AE+HGPA [9] 0.67± 0.01 0.23± 0.02 0.51± 0.08 0.36± 0.05 0.47± 0.04 0.34± 0.04 0.29± 0.03 0.45± 0.03
AE+MCLA [9] 0.42± 0.10 0.23± 0.03 0.62± 0.07 0.43± 0.08 0.78± 0.03 0.46± 0.02 0.45± 0.03 0.68± 0.07
AE+HBGF [21] 0.59± 0.10 0.22± 0.03 0.62± 0.05 0.41± 0.03 0.80± 0.03 0.44± 0.02 0.44± 0.02 0.64± 0.03
AE+NMF [22] 0.41± 0.15 0.25± 0.04 0.66± 0.07 0.41± 0.03 0.75± 0.08 0.48± 0.03 0.44± 0.05 0.74± 0.09
AE+LWEA [20] 0.45± 0.04 0.25± 0.04 0.62± 0.05 0.41± 0.09 0.81± 0.02 0.47± 0.01 0.45± 0.05 0.77± 0.06
AE+RP+EM [10] 0.46± 0.04 0.31± 0.05 0.38± 0.08 0.38± 0.03 0.68± 0.09 0.42± 0.03 0.40± 0.04 0.48± 0.03
AE+RP+FCM [11] 0.54± 0.16 0.22± 0.03 0.37± 0.04 0.35± 0.04 0.29± 0.08 0.30± 0.03 0.18± 0.04 0.21± 0.05

SpectralNet [7] 0.53± 0.08 0.15± 0.04 0.67± 0.08 0.46± 0.09 0.93± 0.00 0.47± 0.00 0.42± 0.04 0.67± 0.05
DEC [1] 0.50± 0.03 0.27± 0.03 0.61± 0.04 0.39± 0.11 0.81± 0.02 0.44± 0.02 0.39± 0.01 0.73± 0.01
IDEC [24] 0.49± 0.03 0.29± 0.03 0.62± 0.04 0.40± 0.11 0.82± 0.03 0.46± 0.03 0.41± 0.03 0.74± 0.01
DCN [25] 0.44± 0.08 0.27± 0.04 0.60± 0.04 0.36± 0.11 0.79± 0.06 0.45± 0.03 0.38± 0.05 0.70± 0.07
VaDE [29] 0.49± 0.13 0.25± 0.05 0.61± 0.04 0.38± 0.10 0.78± 0.06 0.48± 0.02 0.40± 0.02 0.70± 0.06
DeepECT [5] 0.47± 0.12 0.27± 0.06 0.60± 0.04 0.41± 0.12 0.76± 0.06 0.44± 0.05 0.36± 0.05 0.67± 0.09
ConCURL [13] n.a. n.a. n.a. n.a. 0.48± 0.05 0.34± 0.02 0.20± 0.03 0.33± 0.02

learning rate of 0.015 and set the batch size to 128. The alpha
parameter was set to 0, and the beta and gamma parameters
were set to 1. In the experiment, we set NCE-temp to 0.085
and NCE-k to 4096. For the hyperparameters, we followed
the hyperparameters of CIFAR-10 available in their repository.
For image augmentation, we used random rotations between
-10 and 10 degrees, translations between 0 and 0.1, scaling
between 0.6 and 1.2, and shearing between -10 and 10.
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