
The Impact of Batch Learning in
Stochastic Linear Bandits

Danil Provodin1,2, Pratik Gajane1, Mykola Pechenizkiy1,4, Maurits Kaptein2,3

1Eindhoven University of Technology Eindhoven, The Netherlands
2Jheronimus Academy of Data Science, ‘s-Hertogenbosch, The Netherlands

3Tilburg University, Tilburg, The Netherlands
4University of Jyväskylä, Jyväskylä, Finland

{d.provodin,p.gajane,m.pechenizkiy}@tue.nl, M.C.Kaptein@tilburguniversity.edu

Abstract—We consider a special case of bandit problems,
named batched bandits, in which an agent observes batches
of responses over a certain time period. Unlike previous work,
we consider a more practically relevant batch-centric scenario
of batch learning. That is to say, we provide a policy-agnostic
regret analysis and demonstrate upper and lower bounds for the
regret of a candidate policy. Our main theoretical results show
that the impact of batch learning is a multiplicative factor of
batch size relative to the regret of online behavior. Primarily, we
study two settings of the stochastic linear bandits: bandits with
finitely and infinitely many arms. While the regret bounds are
the same for both settings, the former setting results hold under
milder assumptions. Also, we provide a more robust result for
the 2-armed bandit problem as an important insight. Finally, we
demonstrate the consistency of theoretical results by conducting
empirical experiments and reflect on optimal batch size choice.

Index Terms—batch learning, linear bandits

I. INTRODUCTION

The stochastic bandit problem is one of the central topics
of modern literature on sequential decision making, which
aims to determine policies that maximize the expected reward.
These policies are often learned either online (sequentially)
(see, e.g., [1, 2, 3]) or offline (statically) (see, e.g., [4, 5, 6, 7].
In online problems, the agent learns through sequential inter-
action with the environment, adjusting the behavior for every
single response. In offline learning, on the other hand, the
agent learns from fixed historical data without the possibility to
interact with the environment. Therefore, the agent’s goal is to
maximally exploit the static data to determine the best policy.
However, in many application domains, batched feedback is
an intrinsic characteristic of the problem, and neither setting
provides a close approximation of the underlying reality [8, 9,
10, 11]. While the offline setting is not conducive to sequential
learning, online learning is often curtailed by the limitations
of practical applications. For example, in recommender sys-
tems and ad placement engines, treating users one at a time
can become a formidable computational and/or engineering
burden; in online marketing and clinical trials, environments
design (campaigns/trials) and the presence of delayed feedback
result in treating patients/customers organized into groups. In
all of these applied cases, it is infeasible to learn truly one
by one due to computational complexity or the impact of
delay. In such cases, an online approach that acts on groups

of observations is much more appealing from a practical point
of view.

Because of the practical restrictions described above, we
consider sequential batch learning in bandit problems – se-
quential interaction with the environment when responses are
grouped in batches and observed by the agent only at the end
of each batch. Generally speaking, sequential batch learning is
a more generalized way of learning which covers both offline
and online settings as special cases bringing together their
advantages:

• Unlike offline learning, sequential batch learning retains
the sequential nature of the problem.

• Unlike online learning, it is often appealing to implement
batch learning in large-scale bandit problems as

– it does not require much engineering effort and
resources, as experimental control over the system
is unessential; and

– it does not need resources to shorten the feedback
loop in time-delayed bandit problems.

Unfortunately, a comprehensive understanding of the ef-
fects of the batch setting is still missing. Withdrawing the
assumptions of online learning that have dominated much of
the bandit literature raises fundamental questions as how to
benchmark performance of candidate policies, and how one
should choose the batch size for a given policy in order to
achieve the rate-optimal regret bounds. As a consequence, it is
now frequently a case in practice when the batch size is chosen
for the purpose of computational accessibility rather than
statistical evidence [9, 11]. Moreover, while the asymptotics
of batched policies is known (see, e.g., [12, 13]), the relatively
small horizon performance of batch policies is much less
understood while simultaneously being much more practically
relevant. Thus, in this work, we make a significant step in these
directions by providing a systematic study of the sequential
batch learning problem.

In this work, we focus on the batch learning problem with
respect to the batch size b. That is to say, we provide upper
and lower regret bounds of a batch policy relative to its online
behavior as a function of b; specifically, we establish that the
impact of the batch learning is a multiplicative factor of batch
size. The distinctive feature of our work, relative to previous

ar
X

iv
:2

20
2.

06
65

7v
2

 [
cs

.L
G

]
 1

 S
ep

 2
02

2

batch learning literature, is that we provide a policy-agnostic
analysis, which holds for a certain set of policies.
In summary, this paper makes the following contributions 1.:

1) we formulate a more practically relevant batch-centric
problem (Section II) and establish upper and lower
bounds on the performance for an arbitrary candidate
policy (Section III);

2) we demonstrate the validity of the theoretical results
experimentally and reflect on the optimal batch size
choice (Section V);

3) we provide insight and guidance to the development of
novel batch policies (Section VI).

A. Related work

Our setting lies in the intersection of batched bandits and
bandits with delayed feedback. The origin of the batched
bandit constituent can be traced back to [15], which proposes
an explicit batched algorithm based on explore-then-commit
policy for a two-armed batch bandit problem and explore its
upper and lower regret bounds, giving rise to a rich line of
work [16, 17, 18, 19]. However, regret bounds in prior batched
bandit literature are incomparable to ours because those are
with respect to the number of batches M , whereas we consider
regret bounds with respect to batch size b.

The problem of batched bandits also relates to learning
from delayed feedback (see, e.g., [20, 21, 22, 23, 24]). The
delayed setting focuses on similar regret bounds as we do
in our study – with respect to the size of delay d (which is
comparable with the batch size b). The closest works to ours
are [20, 23, 24]. Similar to our work, reference [20] provides
a policy-agnostic analysis of stochastic bandits. Specifically,
they establish that delay increases regret in an additive way
in stochastic problems. However, we provide a more general
analysis of stochastic linear bandits in our study. References
[23, 24] show that in linear bandits, the increase in regret due
to rewards being delayed is a multiplicative

√
d and d factor,

respectively. From the mathematical point of view, the main
difference with our approach is that they propose a specific
policy and analyze it, whereas we provide a more general
policy-agnostic analysis. In that sense, their problem is easier
than ours because policy behavior is completely known; yet,
we make stronger assumptions on the batch size b.

II. PROBLEM FORMULATION

We consider a general model of sequential batch learning
in which, unlike classical online learning, we assume that the
responses are grouped in batches and observed only at the end
of each batch. For building up the formal notion of the batch
learning setting in Section II-B, we first introduce the basic
notions of the classical setting in Section II-A.

1Some preliminary results have been presented at NeurIPS 2021 Workshop
on Ecological Theory of Reinforcement Learning [14].

A. Decision Procedure and Reward Structures

We consider a general setting of the stochastic linear bandit
problem. In this problem, the decision-maker (agent) has to
make a sequence of decisions, possibly based on some side
information, and for each decision it incurs a stochastic, al-
though not necessarily immediately observed, reward. 2 More
formally, given a decision set At ⊂ Rd (for d < ∞) and a
time horizon n <∞, at each time step t ∈ {1, 2, . . . , n}, the
agent chooses an action At ∈ At and reveals reward

Xt = 〈θ∗, At〉+ ηt

where ηt is the noise, and θ∗ is the instance unknown for the
agent. For simplicity, we assume each ηt is 1-subGaussian:
E[eληt] ≤ eλ

2/2,∀t ∈ [n],∀λ ∈ R. Although restrictive, this
is a classical assumption for bandit literature, as it covers
most reasonable noise distributions. Further, without loss of
generality (since d <∞), we assume ‖θ∗‖2 ≤ 1.

The goal of the agent is to maximize the total reward
Sn =

∑n
t=1Xt. To assess the performance of a policy π, we

consider regret – difference between the agent’s total reward
and cumulative reward obtained by an optimal policy:

Rn(π) = E

[
n∑
t=1

max
a∈At
〈θ∗, a〉 − Sn

]
.

The generality of this setting lies in the choice of the
decision set At: different choices of At lead to different
settings.

a) Stochastic bandit.: If (e)i are the unit vectors and
At = {e1, ..., eK} then the resulting stochastic linear bandit
problem reduces to the finite-armed stochastic setting. We can
think of the problem as an interaction between the agent and
environment ν = (Pa : a ∈ A), where A := {1, ...,K} and
Pa is the distribution of rewards for action a. At each time step
t, the agent chooses an action At ∈ A and receives a reward
Xt ∼ PAt . In this case θ∗ = (µa)a, where µa =

∫
R xdPa(x)

is the expected reward of action a ∈ A, and regret is the
difference between the agents’ total reward after n rounds and
the best reward possible given a strategy of choosing single
action:

Rn(π) = nmax
a∈A

µa − E
[
Sn
]
. (1)

b) Contextual linear bandit.: If At = {ψ(Ct, i) : i ∈
[K]}, where ψ : C × [K] −→ R is a feature map and Ct ∈ C
is a context observed by the agent at timestep t, then we
have a contextual linear bandit. To illustrate how the above
quantities arise in practice we give an example. Suppose, at
the beginning of round t, a customer characterized by context
Ct visits a website selling books. When the agent applies
action At (recommends a book) to the customer, a reward
rt(Ct, At) is obtained. The contextual linear bandit settings
assumes that the expected reward E[rt(c, a)] is a parametrized
mean reward function gθ(·) of feature vector ψ(·, ·), formally,

2We borrow notations and problem formulation for online setting from [25].

E[rt(c, a) | Ct, At] = gθ(ψ(Ct, At)). Note that the linear
contextual bandits setting then corresponds to gθ(·) = 〈θ, ·〉.

B. Sequential batch learning

In the standard online learning setting, the decision maker
immediately observes the reward Xt after selecting action At
at time step t. Consequently, in selecting At+1, the decision
maker can base his decision on the current decision set At+1

and past history. Here, the past at time step t is defined as

Ht = (A1, X1, ..., At, Xt) ∈ R(d+1)t ≡ Ht

which is the sequence of action-reward pairs leading up to
the state of the process at the previous time step t. Note that
H0 = ∅. Let M1(X) be a set of all probability distributions
over a set X . As such, a policy is a finite sequence π =
(πt)1≤t≤n of maps of histories to distributions over actions
(decision rules), formally, πt : Ht−1 −→ M1(At). Intuitively,
following a policy π means that in timestep t, the distribution
of the action At to be chosen for that timestep is πt(Ht−1): the
probability that At = a is πt(a|Ht−1). Thus, when following
a policy π, in timestep t we get that

P(At = a|Ht−1) = πt(a|Ht−1).

In contrast to conventional approaches that require the
reward to be observable after each choice of the action, our
setting assumes only that rewards are released at specific
predefined timesteps. Denote by T = t1, ..., tM a grid, which
is a division of the time horizon n to M batches of equal size
b, 1 = t1 < ... < tM = n, tj − tj−1 = b for all j = 1, ...,M .
Without loss of generality we assume that n = bM , otherwise
we can take n :=

⌊
n
b

⌋
b. Recall that in the batch setting the

agent receives the rewards after each batch ends, meaning that
the agent operates with the same amount of information within
a single batch. For simplicity, we assume that as long as the
history remains the same the decision rule does not change as
well. Note that this assumption does not impose any significant
restrictions. Indeed, instead of applying a policy once, one
can always do it b times until the history updates. Thus, a
batch policy is also a finite sequence of π = (πt)1≤t≤n of
decision rules: πt : Ht−1 −→M1(At). However, not the whole
past history is available for the agent in timestep t, formally,
Ht = Htj for any tj < t ≤ tj+1.

In practice, sequential batch learning is usually considered
as a limitation of the environment. However, for notation con-
venience, we consider this limitation from a policy perspective,
i.e., we assume that it is not the online agent who works with
the batch environment, but the batch policy interacts with the
online environment. To distinguish between online and batch
policies we will denote the last as πb = (πbt)1≤t≤n.

We now are ready to formulate the goal of the paper for-
mally. That is, given an arbitrary policy π, we aim to establish
upper and lower regret bounds of its batch specification πb.

C. Preliminaries

Before proceeding, we will need to distinguish between
“good” and “bad” policies on the basis of some properties.
Accordingly, we first define a binary relation on a set of
policies. We say that the decision rule πt = πt(·|Ht−1) is
not worse than the decision rule π′t = π′t(·|Ht−1) (and write
πt ≥ π′t) if the expected reward under πt is not less than the
expected reward under π′t:

∑
a∈At

〈θ∗, a〉πt(a|Ht−1) ≥
∑
a∈At

〈θ∗, a〉π′t(a|Ht−1). (2)

If ≥ can be replaced by >, we say that the decision rule πt
is better than the decision rule π′t (and write πt > π′t).

Define the informativeness of history by the number of times
the optimal actions were chosen in it. Formally, let Ta∗(π, t) =∑t
s=1 I{At = A∗t } be the number of times policy π made

optimal decisions in history Ht. Then, we require that the
decision rule based on a more informative history is at least as
good as the decision rule based on a less informative history:

Assumption II.1 (Informativeness). Let Ta∗(π, t) and
T ′a∗(π, t) be numbers of times the optimal actions were chosen
in histories Ht and H ′t, correspondingly. If Ta∗(t) ≥ T ′a∗(t),
then πt+1(·|Ht) ≥ πt+1(·|H ′t).

Next, we assume that policy π = (πt)1≤t≤n improves over
time if the “rate” of increasing of the regret decreases.

Assumption II.2 (Subliniarity). Rn1
(π)

n1
>

Rn2 (π)

n2
for all

n1, n2, 1 ≤ n1 < n2 ≤ n.

Finally, we impose a monotonic lower bound on the prob-
ability of choosing the optimal action at timestep t. Here we
consider two assumptions: instance-independent monotonicity
and instance-dependent. That is, in the former case, we assume
the existence of the lower bound f(t), no matter what instance
θ is given; while in the latter case – the existence of the lower
bound depends on a specific instance of actions θ: f := fθ.
Since instance-independent monotonicity requires a bound for
every possible instance θ, it is a stricter assumption.

Assumption II.3 (Instance-independent monotonicity). For
any suboptimal action a, a ∈ At and a /∈ arg maxAt〈θ∗, a〉,
there exists a function fa : [0,∞) −→ [0, 1] such that: (i) fa
is nonincreasing; (ii) πt(a|Ht−1) ≤ fa(t) for all t > 0; and
(iii) f(t) := 1−

∑
a fa(t) is a strictly increasing function for

all t > 0 unless f(t) = 1. 3

Assumption II.4 (Instance-dependent monotonicity). For any
suboptimal action a, a ∈ At and a /∈ arg maxAt〈θ∗, a〉, there
exists a function fθ,a : [0,∞) −→ [0, 1], depending on θ, such
that: (i) fθ,a is nonincreasing; (ii) πt(a|Ht−1) ≤ fθ,a(t) for
all t > 0; (iii) fθ(t) := 1−

∑
a fθ,a(t) is a strictly increasing

function for all t > 0 unless fθ(t) = 1; and (iv) fθ(t)
is nondecreasing in its instance argument in the following
sense: fθ1(t) < fθ2(t) for all t > 0 if mina∈At ∆θ1(a) <

3Note that from (ii) and (iii) it follows that for all t, πt(a∗|Ht−1) ≥ f(t).

mina∈At ∆θ2(a), where ∆θ(a) = maxb∈At〈θ, b − a〉 is sub-
optimality gap.

The validity discussion of the imposed assumptions can be
found in Section IV-A - IV-D.

III. BATCH LEARNING FOR STOCHASTIC LINEAR BANDITS

In this section, we provide lower and upper bounds on the
best achievable performance for different linear bandit settings,
namely: 2-armed bandits, bandits with finitely many arms, and
bandits with infinitely many arms.

A. Stochastic linear bandits with 2 arms
We start with a more restricted analysis of 2-armed problem

because, first, it allows to derive a stronger result, and, second,
it gives insight into the analysis of more difficult settings.

Theorem III.1. Let πb be a batch specification of a given
policy π, K = 2, and M = n

b . Suppose that assumptions II.1
and II.2 hold. Then, for b > 1,

Rn(π) < Rn(πb) ≤ bRM (π). (3)

Proof. We can consider the term bRM (π) as b similar online
independent agents operating in the same environment by
following policy π but over a shorter horizon M . However,
we can also think of it as the performance of a batch policy.
Indeed, imagine a naı̈ve agent that deliberately repeats each
step b times instead of immediately updating its beliefs and
proceeding to the next round as in an online manner. Then,
after b repetitions (after a batch ends), it updates its beliefs
using only the first reward from the previous batch. So, while
this policy could perform as an online policy within these
repetitions, it pretends that rewards are not observable and acts
using the outdated history (just like a batch policy does). For
notational simplicity, we refer to this policy as online “short”
policy and denote it by π′.

Step 1 (Within batch). Fix j ≥ 1. Let πtj ≥ πbtj ≥ π′tj .
Define an average decision rule between timesteps t1 and t2

as π̄t1,t2 =
∑t2−1
s=t1

πs

t2−1−t1 ; and an average decision rule in batch j

as π̄j =

∑tj+1−1

s=tj
πs

b . By the end of batch j, we have:

π̄tj ,t
(a)
> π̄tj ,tj+1 = πtj ≥πbtj

(b)
= πbt , and

πbtj ≥ π
′
tj

(c)
= π′t,

for any timestep tj < t < tj+1, where (a) follows from
Lemma IV.1 (1); and (b) and (c) hold by the definition of batch
policy. Thus, starting with πtj ≥ πbtj ≥ π′tj at the beginning
of batch j leads us to π̄j > π̄bj ≥ π̄′j . Moreover, by Lemma
IV.1 (2), we have πtj+1−1 > πbtj+1−1 ≥ π′tj+1−1.

Step 2 (Between batches). Fix j ≥ 1. Let π̄l > π̄bl ≥ π̄′l for
any batch 1 ≤ l < j. Let Htj−1, Hb

tj−1, H ′tj−1 be histories
collected by policies π, πb, π′ by the timestep tj , correspond-
ingly. Let a∗ = arg maxa〈θ∗, a〉 be an optimal action. 4 Define

4Since we have just 2 actions, we automatically assume that the optimal
action is independent of t.

a number of times we have received a reward from action a
5 in batch j by policy π as Ta(π, j) =

∑tj+1−1
s=tj

I{At = a}.
Note that E[Ta(π, j)] = b · π̄j(a). Since K = 2, π̄l > π̄bl ≥ π̄′l
implies π̄l(a

∗) > π̄bl (a
∗) ≥ π̄′l(a

∗) for 1 ≤ l < j.
Hence, E[Ta∗(π, l)] > E[Ta∗(π

b, l)] ≥ E[Ta∗(π
′, l)] for 1 ≤

l < j and, therefore,
∑
l E[Ta∗(π, l)] >

∑
l E[Ta∗(π

b, l)] ≥∑
l E[Ta∗(π

′, l)]. By applying Assumption II.1, we have that
πtj > πbtj ≥ π

′
tj .

Step 3 (Regret throughout the horizon). We assume that
the interaction begins with the online policy, batch policy, and
“short” online policy being equal to each other: π1 = πb1 = π′1.
Then, from Step 1, by the end of the first batch, we have
π̄1 > π̄b1 ≥ π̄′1 and πt2−1 > πbt2−1 ≥ π′t2−1. Next, from Step 2,
the transition to the second batch retains the relation between
policies: πt2 > πbt2 ≥ π′t2 ; and so on. Finally, summing over
M = n

b batches, we have:

Rn(π) = E

[
n∑
t=1

〈θ∗, a∗〉 − Sn

]
= E

[∑
t

〈θ∗, a∗ −At〉

]
=
∑
t

∑
a

〈θ∗, a∗ − a〉πt(a)

= b

M∑
j=1

∑
a

〈θ∗, a∗ − a〉π̄j(a)

< b

M∑
j=1

∑
a

〈θ∗, a∗ − a〉π̄bj(a) = Rn(πb)

≤ b
M∑
j=1

∑
a

〈θ∗, a∗ − a〉π̄′j(a) = bRM (π).

B. Stochastic linear bandits with finitely many arms

As we mentioned in the proof of Theorem III.1, in the
case of K = 2, it immediately follows that the more often
a decision rule chooses the optimal action, the better it is. In
contrast, this is not generally true when K > 2. Indeed, some
decision rules might value the optimal and the worst actions
so that another decision rule that puts less weight on optimal
action is better (because it chooses interim actions more often
at the expense of worst action). Consequently, the case of
K > 2 introduces a new subtlety and requires a number of
additional steps in the analysis. Specifically, in order to derive
result similar to Theorem III.1, we utilize Assumption II.4 and
introduce a meta-algorithm (Algrotihm 1).

From Assumption II.4, it follows that after timestep τθ∗ :=
min{t : fθ∗(t) > 1/K} policy π in the worst-case scenario: (i)
behaves better than the policy that acts uniformly at random;
and (ii) acts more optimally within each consequent timestep.
As such, while batch and online “short” policies (πb and π′)
remain the same, online policy π gets better in the worst case

5Usually, it is defined as a number of times action a has been played but,
since the policy π′ plays more actions than receives rewards, we define it that
way.

Algorithm 1 Approximate learning with delayed start
Input: horizon n ≥ 0, candidate policy π, number of actions
K, monotonic lower bound f·, confidence level δ
π0 ← Unif(K)
phase1← False
t← 1
H0 ← ∅
repeat
At ← π0(·)
Ht ← UPDATEHISTORY
phase1← CHECKPHASE(Ht, δ)
t← t+ 1

until (phase1 is False and t /∈ T) or t ≤ n
repeat
At ← π(·|Ht−1)
Ht ← UPDATEHISTORY
t← t+ 1

until t ≤ n

and, therefore, chooses optimal action more often, providing
lower regret. Thus, it would be enough to split the horizon
n into two phases: before and after timestep τθ∗ , and ensure
that all three policy specifications behave similarly during the
first phase. That is to say, some naı̈ve policy π0 operates
independently of history Ht during phase 1.

However, τθ∗ depends on vector of rewards θ∗, which is
unknown for policy π, and, as a consequence, we do not know
where we should stop phase 1 to bring the reasoning above to
life. But what if one could find an estimate τ̂ of true τθ∗ such
that fθ∗(τ̂) is greater than 1/K with high probability for some
confidence level δ (i.e., P(fθ∗(τ̂) > 1/K) > 1− δ)? Then we
could split the original horizon n into two parts (phases) and:
(i) run a uniform random policy in phase 1 (before timestep
τ̂); and (ii) apply policy π in phase 2 (after timestep τ̂).

To capture the logic above, we adjust the learning process,
which can be represented as a meta-algorithm built upon a
given policy π (see Algorithm 1). As the name suggests,
while performing randomly during phase 1, Algorithm 1 keeps
all three specifications’ regrets similar and, therefore, allows
formulating the following result.

Theorem III.2. Let πb be a batch specification of a given
policy π, K < ∞, M = n

b , and CHECKPHASE be with the
failure probability δ (Theorem III.3). Suppose that assumptions
II.1, II.2, and II.4 hold. Also, assume that policy π̃ represents a
policy constructed following Algorithm 1 for a given candidate
policy π. Then, for b > 1,

Rn(π̃) <Rn(π̃b) ≤ bRM (π̃)

with probability 1− δ, where Rn(π) is the worst-case regret.

Proof. First, we split the total regret into two terms (repre-
senting phase 1 and phase 2) and notice that the first term is
the same for both policies (π̃ and π̃b), as the same uniform
random policy π0 operates during the first phase.

Rn(π̃) = R1:τ̂−1(π0) +Rτ̂ :n(π), (4)

Rn(π̃b) = R1:τ̂−1(π0) +Rτ̂ :n(πb), (5)

where R1:s(π) = E [
∑s
t=1 maxa∈At〈θ∗, a〉 − Sn]. Note that

Algorithm 1 is implemented in such a way that phase 1 can
only be ended with the end of the batch and therefore:

Rn(π̃′) = R1:τ̂−1(π0) +Rτ̂ :n(π′)

= R1:τ̂−1(π0) + bRτ̂ :n(π) = bRM (π̃).

Next, we express the second term as a sum of instantaneous
regrets and exploit Assumption II.4:

Rτ̂ :n(π) = E

(∑
t

〈θ∗, A∗t −At〉

)

= E

(∑
t

∑
a

〈θ∗, A∗t − a〉I{At = a}

)
=
∑
t

∑
a

〈θ∗, A∗t − a〉P (At = a|Ht−1)

=
∑
t

∑
a

〈θ∗, A∗t − a〉πt (a|Ht−1)

≤
∑
t

∑
a6=A∗t

〈θ∗, A∗t − a〉fθ,a (t) = Rτ̂ :n(π).

Next we reproduce Theorem III.1 for Rτ̂ :n(π), Rτ̂ :n(πb),
and Rτ̂ :n(π′). Specifically, Step 1 remains the same, as it only
involves the general notion of decision rules. Step 3 retains the
same semantic and is only to be rewritten in a general setting;
the only semantic change is expected in Step 2, as we need to
release the assumption of 2 actions. Note that in this part, we
abuse notation a bit and by πt, πbt , π

′
t, π̄j , π̄

b
j , π̄
′
j we assume its

lower and upper bounds provided by Assumption II.4.
Step 1 (Within batch). See Step 1 from Theorem III.1.
Step 2 (Between batches). Fix j ≥ 1. Let π̄l > π̄bl ≥ π̄′l

for any batch 1 ≤ l < j. Let Htj−1, Hb
tj−1, H ′tj−1 be

histories collected by policies π, πb, π′ by the timestep tj ,
correspondingly. Let A∗t = arg maxAt〈θ∗, a〉 be an opti-
mal action for round t, and, unlike Theorem III.1, denote
Ta∗(π, j) =

∑tj+1−1
s=tj

I{At = A∗t } – number of times policy
π made optimal choice in batch j.

Recall that fθ̂ is strictly increasing with probability 1 − δ
for all t > τ̂ . As a consequence, using the fact that: (i)
fθ̂,a is nonincreasing for any suboptimal action a and (ii) fθ̂
is increasing with high probability, π̄l > π̄bl ≥ π̄′l implies
π̄l(A

∗
t) > π̄bl (A

∗
t) ≥ π̄′l(A

∗
t) for 1 ≤ l < j and for

0 < t < tj with probability 1 − δ. Hence, E[Ta∗(π, l)] >
E[Ta∗(π

b, l)] ≥ E[Ta∗(π
′, l)] for 1 ≤ l < j and, therefore,∑

l E[Ta∗(π, l)] >
∑
l E[Ta∗(π

b, l)] ≥
∑
l E[Ta∗(π

′, l)]. By
applying Assumption II.1, we have that πtj > πbtj ≥ π

′
tj .

Step 3 (Regret throughout the horizon). Applying Step 3
from Theorem III.1 to Rτ̂ :n(π), Rτ̂ :n(πb), and Rτ̂ :n(π′) gives:

Algorithm 2 CHECKPHASE

Input: history Ht, confidence level δ
phase1 = True
i = arg maxj µ̂j(t)

LCBi,t = µ̂i(t)−
√

ln t
Ti(t)

l = arg maxj 6=i µ̂j(t)
for l 6= i do
UCBl,t = µ̂l(t) +

√
ln t
Tl(t)

end for
θ̂ =

(
LCBi,t,

⋃
l 6=i UCBl,t

)
if fθ̂(t) > 1/K and 2K/t2 < δ then
phase1 = False

end if
return phase1

Rτ̂ :n(π) < Rτ̂ :n(πb) ≤ bRτ̂ :n(π′). (6)

Putting (4)-(5) and (6) together, with probability 1−δ, we get:

Rn(π̃) := R1:τ̂−1(π0) +Rτ̂ :n(π)

< R1:τ̂−1(π0) +Rτ̂ :n(πb) =: Rn(π̃b)

≤ R1:τ̂−1(π0) + bRτ̂ :n(π) =: bRM (π̃).

CHECKPHASE procedure. Since function fθ decreases in
its instance argument in a certain sense (point (iv), Assumption
II.4), it suffices to find a more “difficult” environment with
instance θ̂ (and corresponding τ̂ := min{t : fθ̂(t) > 1/K}),
such that P(fθ∗(τ̂) > 1/K) > 1 − δ). Intuitively, the smaller
the difference between a suboptimal and the optimal actions
(∆θ(a) = maxb∈At〈θ, b − a〉), the more difficult it is to
distinguish the optimal action and, therefore, the probability of
choosing the optimal action should be smaller. Imagine now
that after timestep t, we have some estimate θ̃t of the unknown
parameter vector θ∗ and confidence set Ct that contains θ∗ with
high probability. Then, we can choose θ̂ that underestimates
the true reward along the current best action and overestimates
the true rewards along all other actions, making the minimal
suboptimal gap smaller. Algorithm 2 formalizes this logic.

Theorem III.3. CHECKPHASE procedure presented in Algo-
rithm 2 is with the failure probability δ.

Proof. Since K < ∞, we can compose an auxiliary reward
vector (µi)1≤i≤K , where µi = 〈θ∗, ai〉 is true reward of action
ai. For simplicity, we consider the case K = 2 first. Without
loss of generality, assume that action 1 is optimal. Following
Algorithm 2, at timestep t the agent computes estimates µ̂i(t)
and their confidence intervals LCBi,t, UCBi,t for i ∈ [1, 2]
and then constructs a new instance with lower bound for action
1 and upper bound for action 2:

θ̂ = (LCB1,t, UCB2,t) .

There may be two situations, that we will consider separately:
1) Confidence intervals do not cover true rewards for

actions 1 or 2: µ1 /∈ [LCB1,t, UCB1,t] or µ2 /∈
[LCB2,t, UCB2,t];

2) Confidence intervals cover true rewards for actions
1 and 2: µ1 ∈ [LCB1,t, UCB1,t] and µ2 ∈
[LCB2,t, UCB2,t].

First note that under option 2 the following holds

LCBa∗θ∗ ,t − UCBa,t < µa∗θ∗ − µa (7)

for all a 6= a∗θ∗ , where a∗θ∗ is the best action in the original
environment, a∗θ∗ = maxa∈A〈θ∗, a〉. By (7) we have:

〈θ̂, a∗θ∗ − a〉 = 〈θ̂, a∗θ∗〉 − 〈θ̂, a〉 = LCBa∗θ∗ ,t − UCBa,t (8)
(7)
< µa∗θ∗ − µ = 〈θ∗, a∗θ∗〉 − 〈θ∗, a〉 = 〈θ∗, a∗θ∗ − a〉

for all a 6= a∗θ∗ . Therefore, due to the point (iv) of Assumption
II.4, fθ̂(t) < fθ∗(t) for all t > 0. As such, τ̂ := min{t :
fθ̂(t) > 1/K} is greater than true τ and, therefore, is a valid
estimate of the beginning of phase2 in Algorithm 1.

According to Hoeffding’s inequality, the first option arises
with probability at most δ := 4/t2. Thus, P(fθ∗(τ̂) > 1/K) >
1− δ.

To extend this result to the case K > 2, one needs to note
that we are interested in pairwise comparisons of the best
action a∗ and a suboptimal action a. Thus, reproducing the
logic above for each action a 6= a∗ and assigning δ := 2K/t2,
one can observe the same result for an arbitrary number of
actions K.

C. Stochastic linear bandits with infinitely many arms

So far, we have focused on the stochastic linear bandit
problem with finite number of actions K. We now provide
an analysis for the most general setting – stochastic linear
bandit problem with At ⊂ Rd. Intuitively, if |At| = ∞ (e.g.,
At = {a : ‖a‖2 ≤ t}), there is the unique optimal action A∗t
for each timestep t and any instance θ∗, but no second best
action. In that sense, each environment instance would be of
the same “difficulty” for the agent. As such, we leverage a
more strict assumption of monotonicity (Assumption II.3) and
provide instance-independent analysis in this section.

Similarly to the intuition prior to Theorem III.2, after
timestep τ := min{t : f(t) > 0} policy π in the worst-
case: (i) chooses the optimal action with non-zero probability;
and (ii) acts more optimally within each consequent timestep.
Except in this case, we do not need to estimate τ , as it is
given by stronger Assumption II.3. Thus, it is enough to split
the horizon n into two phases: before and after timestep τ ,
and ensure that all three policy specifications behave similarly
during the first phase. That is to say, some naı̈ve policy π0

operates independently of history Ht during phase 1.
As previously, to capture the logic above, we present a

meta-algorithm built upon a given policy π (see Algorithm
3). Except in this case, we replace the random uniform policy

Algorithm 3 Learning with delayed start
Input: horizon n ≥ 0, candidate policy π, naı̈ve policy π0,
monotonic lower bound f
t← 1
H0 ← ∅
τ = minj{tj : f(tj) > 0}
repeat
At ← π0(·)
Ht ← UPDATEHISTORY
t← t+ 1

until t < min{τ, n}
repeat
At ← π(·|Ht−1)
Ht ← UPDATEHISTORY
t← t+ 1

until t ≤ n

π0 with some naı̈ve policy, that would keep the regrets during
the phase 1 at the same level.

Theorem III.4. Let πb be a batch specification of a given
policy π, M = n

b . Suppose that assumptions II.1, II.2, and
II.3 hold. Also, assume that policy π̃ represents a policy
constructed following Algorithm 3 for a given candidate policy
π. Then, for b > 1,

Rn(π̃) <Rn(π̃b) ≤ bRM (π̃),

where Rn(π) is the worst case-regret.

Proof. The proof of the theorem immediately follows from
the Theorem III.2 by replacing τ̂ and fθ with τ and f
correspondingly.

IV. SUPPLEMENTARY DISCUSSIONS

A. Intuition behind Assumption II.1

The exploration-exploitation trade-off is a fundamental
dilemma between choosing an action that reveals the most
information and provides the highest immediate reward. In
a nutshell, policies that satisfy Assumption II.1 are good
in leveraging exploration and exploitation decisions in the
following sense:
• if the policy gets to a situation when the optimal action

has a smaller confidence interval on average (i.e., it chose
the optimal action more often) , and the past choices were
reasonable (i.e., history Ht brought either the highest
reward or the most information), then this policy will
make a better consequent decision;

• if another history H ′t were fed to the policy, that would
imply not optimal leveraging of exploration and exploita-
tion decisions and, as a result, lead to (i) fewer choices
of optimal actions (or higher uncertainty); and (ii) worse
subsequent decisions.

In other words, a policy with history Ht will be ahead of any
different history H ′t from exploration-exploitation perspective.

And in combination with Assumption II.2 that would lead to
better subsequent decisions.

B. Intuition behind Assumption II.2

We provide some properties of a policy with sublinear regret
that we use in the proof of the main result.

Lemma IV.1. Let π = (πt)1≤t≤n be a policy such that
Assumption II.2 holds. Then,

1) π̄n2
> π̄n1

, where π̄t =
∑t
s=1 πs
t is an average decision

rule;
2) πt > π̄t ∀t such that 1 ≤ t ≤ n,

where πt + πs is an elementwise addition of two probability
vectors for some t, s.

Proof. 1. First, we need to show that π̄t is a decision rule for
some t, i.e.,

∑
a∈At π̄t(a) = 1 and π̄t(a) ≥ 0 for all a ∈ At.

Indeed,∑
a∈At

π̄t(a) =
∑
a∈At

∑t
s=1 πs(a)

t
=

∑t
s=1

∑
a∈At πs(a)

t
=

∑t
s=1 1

t
= 1.

Since πs(a) ≥ 0 for all a ∈ At and for all 1 ≤ s ≤ t,
π̄t(a) ≥ 0 for all a ∈ At. Next, we convert E[Sn] into the
sum over timesteps and actions:

E[Sn] = E

[∑
t

Xt

]
= E

[∑
t

∑
a

XtI{At = a}

]

= E

[∑
t

∑
a

E[XtI{At = a}|At]

]

= E

[∑
t

∑
a

〈θ∗, a〉I{At = a}

]
=
∑
t

∑
a

〈θ∗, a〉Pν,π(At = a)

=
∑
t

∑
a

〈θ∗, a〉πt(a|Ht−1).

Fix n1, n2 : n1 < n2. From Assumption II.2, we have
Rn1 (π)

n1
>

Rn2 (π)

n2
. Expressing the regret by its definition, one

can get

E [
∑n1

t=1 maxa∈At〈θ∗, a〉 − Sn1
]

n1
>

E [
∑n2

t=1 maxa∈At〈θ∗, a〉 − Sn2
]

n2
,

and hence E[Sn2
]

n2
− E[Sn1

]

n1
> 0.

Finally,

E[Sn2
]

n2
− E[Sn1

]

n1

=

∑n2

t=1

∑
a〈θ∗, a〉πt(a|Ht−1)

n2
−
∑n1

t=1

∑
a〈θ∗, a〉πt(a|Ht−1)

n1
> 0.

The result is completed by rearranging the sums and using the
definition of π̄n1 , π̄n2 .

2. For t < n we have Rt(π)
t > Rt+1(π)

t+1 . By subtracting Rt+1(π)
t

from both sides we get:

Rt(π)−Rt+1(π)

t
>
tRt+1(π)− (t+ 1)Rt+1(π)

t(t+ 1)
,

−(maxa∈At〈θ∗, a〉 −Xt+1)

t
>
−Rt+1(π)

(t+ 1)t
,

max
a∈At
〈θ∗, a〉 −Xt+1 <

Rt+1(π)

t+ 1
,∑

a

〈θ∗, a〉πt+1(a) >
∑
a

〈θ∗, a〉π̄t+1(a).

Here, in forth step we used that
∑
a∈At

∑t+1
s=1 πs(a)

t+1 =∑
a∈At π̄t+1(a).

In what follows, we show that Assumption II.2 is essential
because if it does not hold, then the lower bounds in Theorems
III.1, III.4, and III.2 is greater than the upper bound: Rn(π) >
bRM (π).

Lemma IV.2. Suppose that the opposite to Assumption II.2
holds for a given policy π. Then

Rn(π) > bRM (π).

Proof. Suppose Assumption II.2 does not hold for π (e.g., it
makes a lot of suboptimal choices). In that case, an online
“short” policy could perform better as it omits these subop-
timal choices. Indeed, using Assumption II.2 for horizons M
and n, we have

RM (π)

M
≥ Rn(π)

n
,

and, therefore, multiplying by n, and M respectively and
using n = Mb, we get

bMRM (π) > MRn(π).

Finally, dividing by M , we get

bRM (π) > Rn(π).

C. Equivalence of Assumptions II.2 and II.3

Here, we discuss a link between Assumptions II.2 and
II.3. Generally, neither of the assumptions implies another.
Nevertheless, there is a strong connection between these
assumptions.

On the one hand, Assumption II.3 may seem more re-
strictive, as it imposes the strictly increasing lower bound
on the probability of choosing the optimal action, whereas
Assumption II.2 is satisfied as long as the ”rate” of increasing
of the total regret decreases (which does not necessarily re-
quire the strictly increasing probability of choosing the optimal
action over time). In contrast, Assumption II.3 only requires
increasing lower bound, while II.2 requires the decreasing
rate of the actual total regret. In fact, the strictly increasing
lower bound on the probability of choosing the optimal action

(Assumption II.3) is equivalent to the decreasing rate of the
worst-case total regret (adjusted Assumption II.2):

f – strictly increasing ⇔
(
Rn1(π)

)
/n1 >

(
Rn2(π)

)
/n2.

Moreover, these assumptions are equivalent under certain
conditions, summarized in the following lemma.

Lemma IV.3. Consider a stochastic bandit problem with K =
2 arms, then Assumptions II.2 and II.3 are equivalent.

Proof. Recall that in 2-armed stochastic bandit θ∗ =
(µa)a∈[1,2] - a vector of true rewards for each action (arm).
Without loss of generality, assume that arm 1 is optimal.
Define a number of times policy π has played an arm a by
timestep t as Ta(t) =

∑t
s=1 I{At = a}. Using the regret

decomposition lemma (Lemma 4.5, [25]), we can derive:

Rn1
(π)

n1
>
Rn2

(π)

n2
⇔ E [T2(n1)]

n1
>

E [T2(n2)]

n2

From frequentist probability perspective, E[T2(n1)]
n1

can be
interpreted as probability of choosing arm 2: P (An1 = 2).
As such, f2(t) := P (At = 2) is an decreasing function
and f(t) := 1 − f2(t) is an increasing function. Clearly,
πt(2|Ht−1) ≤ f2(t). Thus, all the conditions of Assumption
II.3 are satisfied.

While everything we discussed here holds for Assumption
II.4 as well, we provide a more concrete discussion of As-
sumption II.4 in the next section.

D. Illustration of Assumptions II.4

Here, we provide a specific example of a policy that satis-
fies Assumption II.4. We consider the stochastic multi-armed
bandit problem and examine the UCB family of algorithms.

Lemma IV.4 (Lemma 1.2, [26]). Let Ta(t) be the number
action a is chosen by UCB algorithm run on instance θ∗ =
(µ1, ..., µK) of the stochastic multi-armed bandit problem.
Then, for any action a 6= arg maxa µa,

E [Ta(t)] ≤ 4 ln t

∆2
a

+ 8,

where ∆a = maxa µa − µa.

From frequentist probability perspective, we can think of
E[Ta(t)]

t as probability of choosing arm a and, thus, we can
set fθ∗,a(t) = 4 ln(t+1)

t∆2
a

+ 8/t which is a nondecreasing upper
bound of the probability of choosing suboptimal arm a (i.e.,
points (i) and (ii) are satisfied). As Assumption II.4 suggests,
define fθ∗ as fθ∗,a(t) = 1−

∑
a 6=arg maxµa

fθ∗,a(t). Note that
fθ∗(t) satisfies points (iii) and (iv) of Assumption II.4, as (iii)
fθ∗,a(t) is actually decreasing function for all a and all t > 0;
and (iv) fθ∗,a(t) is increasing in the instance argument (as
described in Assumption II.4). Thus, we get a monotonical
lower bound of the probability of choosing the optimal arm.

V. EMPIRICAL ANALYSIS

Our theoretical results posit that algorithms 1 and 3 are
run optimally, i.e, utilizing monotonic lower bound f , which
can be indeed achieved (see Sections IV-A - IV-D). However
in our experiments it suffices to use a general batch learning
specification described in Section II-B. In fact, the analysis we
conduct in this section provides even stronger as the bounds
depicted in figures 1, 2 hold for the actual values rather than
the worst-case values.

We perform experiments on two different applications:
simulated stochastic bandit environments; and a contextual
bandit environment, learned from the logged data in an online
marketing campaign. We examine the effect of batch learning
on Thompson Sampling (TS) and Upper Confidence Bound
(UCB) policies for the stochastic problems, and linear Thomp-
son Sampling (LinTS) [9] and linear Upper Confidence Bound
(LinUCB) [1] for the contextual problem.

Simulated environments. We present some simulation re-
sults for the Bernoulli bandit problem. In this simulation, the
best action has a reward probability of 0.5 and K − 1 have a
probability of 0.5−∆. In total, we consider six environments
for K ∈ {2, 5, 10} and ∆ ∈ {0.1, 0.02}. Figure 1 shows the
regret as a function of the batch size b for various settings and
policies.

Real data. We also consider batch learning in a marketing
campaign on the logged dataset from our industrial partner.
The company has recently used three different campaigns to
sell an extra broadband subscription to their customers. In the
current dataset, a randomly selected set of customers received
randomly one of the three campaigns. The data contains a
sample of a campaign selection from October 2019 until
June 2020 combined with customer information. We adopt an
unbiased offline evaluation method [27] to compare various
bandit algorithms and batch size values. We use conversion
rate (CR) as the metric of interest, defined as the ratio between
the number of successful interactions and the total number
of interactions. To protect business-sensitive information, we
only report relative conversion rate; therefore, Figure 2 demon-
strates the CR returned by the off-policy evaluation algorithm
relatively to the online performance.

Results. 6 Figure 1 represents the effect of batch size across
three dimensions: number of action K, suboptimal gap value
∆, and the policy. As expected, the regret has an upward trend
as batch size increases for all settings. Taking a look at the
environment parameters, K and ∆, we see that the lower the
difficulty of the environment (i.e., the higher the suboptimality
gap or number of actions), the stronger the impact of batching.

While the exact behavior of the batch learning depends
majorly on the exact policy, we still can see a clear difference
between randomized policies (TS and LinTS) and determin-

6The source code of the experiments can be found in https://github.com/
danilprov/batch-bandits.

(a) TS, ∆ = 0.1 (b) UCB, ∆ = 0.1

(c) TS, ∆ = 0.02 (d) UCB, ∆ = 0.02

Fig. 1. Empirical regret performance by TS and UCB policies by batches
for K ∈ {2, 5, 10} and ∆ ∈ {0.1, 0.02}. The plots are averaged over 100
repetitions. The black line is the upper bound from (3) shifted such that it
goes through the origin.

(a) LinTS (b) LinUCB

Fig. 2. Empirical conversion rate of LinTS and LinUCB policies by batches
for the real dataset. The plots are averaged over 20 repetitions. The black line
is the lower 9bound from (3) normalized relatively to the online behavior.

istic ones (UCB and LinUCB). 7 Indeed, figure 1 shows that
TS is much more robust to the impact of batching, whereas
the UCB algorithm suffers notable deterioration. The results
for the real data also confirm this fact: from Figure 2 we
observe that the impact of batching is milder for LinTS than
for LinUCB in the contextual problem.

It is important to note that both experiments demonstrate
results consistent with the theoretical analysis conducted in
Sections III. As the upper bound in Theorem III.1 suggests,
the performance metric (i) reacts evenly to the increas-
ing/decreasing batch size and (ii) doesn’t violate the imposed
bounds.

7A randomized policy returns a distribution over actions as an output, and
the action to take is then to be chosen from this distribution. A deterministic
policy returns a degenerate distribution over actions, i.e., an action to take is
defined deterministically.

9Note, since the regret is unknown for the real life data as it measures
the performance relatively to the oracle behavior, we plot reward (conversion
rate). As such, the upper bound from (3) for regret becomes the lower bound
for reward.

https://github.com/danilprov/batch-bandits
https://github.com/danilprov/batch-bandits

VI. CONCLUSION

We have presented a systematic approach for batch learning
in stochastic linear bandits. The contribution of this paper
is twofold. First, we have introduced a new perspective of
batched bandits emphasizing the importance of the batch size
effect. In contrast, most of the work on batched bandits
assumes that the batch size is a parameter to be optimized.
Second, we have shown the actual effect of batch learning
by conducting a comprehensive theoretical analysis, which is
confirmed by our strong empirical results. Practically speak-
ing, we have investigated one component of the performance-
computational cost trade-off and demonstrated that it deteri-
orates gradually depending on the batch size. Thus, to find
a suitable batch size, practitioners should take the necessary
steps to estimate the second component (engineering costs)
based on computational capabilities.

An interesting direction concerning future work would be
to consider batch learning with varying decision rules within
batches. That is, even though the agent does not receive
any information within a batch, it might leverage two kinds
of information to make more intelligent decisions. The first
and natural recourse of information is the actual experience
from the past batches. The second source of information is
simulated experience: experience simulated by a model of the
environment and combined with the agent’s behavior in the
current batch. Studying how to integrate actual knowledge and
simulated experience to perform more optimally within a batch
would potentially lead to tighter bounds between batch and
online learning.

VII. ACKNOWLEDGEMENTS

This project is partially financed by the Dutch Research
Council (NWO) and the ICAI initiative in collaboration with
KPN, the Netherlands.

REFERENCES
[1] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit

approach to personalized news article recommendation,” Proceedings of
the 19th international conference on World wide web - WWW ’10, 2010.

[2] K.-S. Jun, A. Bhargava, R. Nowak, and R. Willett, “Scalable generalized
linear bandits: Online computation and hashing,” in Advances in Neural
Information Processing Systems, 2017.

[3] M. Dimakopoulou, Z. Zhou, S. Athey, and G. Imbens, “Estimation
considerations in contextual bandits,” 2018.

[4] A. Swaminathan and T. Joachims, “Batch learning from logged bandit
feedback through counterfactual risk minimization,” Journal of Machine
Learning Research, 2015.

[5] Z. Zhou, S. Athey, and S. Wager, “Offline multi-action policy learning:
Generalization and optimization,” 2018.

[6] T. Joachims, A. Swaminathan, and M. d. Rijke, “Deep learning with
logged bandit feedback,” in International Conference on Learning
Representations, 2018.

[7] S. Athey and S. Wager, “Policy learning with observational data,” 2020.
[8] D. Bertsimas and A. Mersereau, “A learning approach for interactive

marketing to a customer segment,” Operations Research, 2007.
[9] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”

in Advances in Neural Information Processing Systems, J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, Eds., 2011.

[10] E. Schwartz, E. Bradlow, and P. Fader, “Customer acquisition via display
advertising using multi-armed bandit experiments,” SSRN Electronic
Journal, 2013.

[11] D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan, “An efficient
bandit algorithm for realtime multivariate optimization,” Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017.

[12] P. Auer and R. Ortner, “Ucb revisited: Improved regret bounds for
the stochastic multi-armed bandit problem,” Periodica Mathematica
Hungarica, 2010.

[13] N. Cesa-Bianchi, O. Dekel, and O. Shamir, “Online learning with
switching costs and other adaptive adversaries,” in Advances in Neural
Information Processing Systems, 2013.

[14] D. Provodin, P. Gajane, M. Pechenizkiy, and M. Kaptein, “The impact
of batch learning in stochastic bandits,” in NeurIPS Workshop on
Ecological Theory of Reinforcement Learning, 2021.

[15] V. Perchet, P. Rigollet, S. Chassang, and E. Snowberg, “Batched bandit
problems,” The Annals of Statistics, 2016.

[16] Z. Gao, Y. Han, Z. Ren, and Z. Zhou, “Batched multi-armed bandits
problem,” in Advances in Neural Information Processing Systems, 2019.

[17] Y. Han, Z. Zhou, Z. Zhou, J. Blanchet, P. W. Glynn, and Y. Ye,
“Sequential batch learning in finite-action linear contextual bandits,”
2020.

[18] H. Esfandiari, A. Karbasi, A. Mehrabian, and V. Mirrokni, “Regret
bounds for batched bandits,” Proceedings of the AAAI Conference on
Artificial Intelligence, 2021.

[19] C. Kalkanli and A. Ozgur, “Batched thompson sampling,” 2021.
[20] P. Joulani, A. György, and C. Szepesvari, “Online learning under delayed

feedback,” in ICML, 2013.
[21] C. Vernade, O. Cappé, and V. Perchet, “Stochastic Bandit Models

for Delayed Conversions,” in Conference on Uncertainty in Artificial
Intelligence, 2017.

[22] C. Pike-Burke, S. Agrawal, C. Szepesvari, and S. Grünewälder, “Bandits
with delayed, aggregated anonymous feedback,” in ICML, 2018.

[23] Z. Zhou, R. Xu, and J. Blanchet, “Learning in generalized linear
contextual bandits with stochastic delays,” in Advances in Neural Infor-
mation Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019.

[24] C. Vernade, A. Carpentier, T. Lattimore, G. Zappella, B. Ermis, and
M. Brueckner, “Linear bandits with stochastic delayed feedback,” in
ICML 2020, 2020.

[25] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge
University Press, 2020.

[26] S. Agrawal, K. Stratos, and L. J. Sun, “Lecture: Ucb algorithm,” https:
//ieor8100.github.io/mab/Lecture%203.pdf, 2016.

[27] L. Li, W. Chu, J. Langford, and X. Wang, “Unbiased offline evaluation
of contextual-bandit-based news article recommendation algorithms,”
Proceedings of the fourth ACM international conference on Web search
and data mining - WSDM ’11, 2011.

https://ieor8100.github.io/mab/Lecture%203.pdf
https://ieor8100.github.io/mab/Lecture%203.pdf

	I Introduction
	I-A Related work

	II Problem formulation
	II-A Decision Procedure and Reward Structures
	II-B Sequential batch learning
	II-C Preliminaries

	III Batch learning for stochastic linear bandits
	III-A Stochastic linear bandits with 2 arms
	III-B Stochastic linear bandits with finitely many arms
	III-C Stochastic linear bandits with infinitely many arms

	IV Supplementary Discussions
	IV-A Intuition behind Assumption II.1
	IV-B Intuition behind Assumption II.2
	IV-C Equivalence of Assumptions II.2 and II.3
	IV-D Illustration of Assumptions II.4

	V Empirical analysis
	VI Conclusion
	VII Acknowledgements

