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Detecting Irregular Network Activity with Adversarial Learning and
Expert Feedback

Gopikrishna Rathinavel

(ABSTRACT)

Anomaly detection is a ubiquitous and challenging task relevant across many disciplines.

With the vital role communication networks play in our daily lives, the security of these

networks is imperative for smooth functioning of society. This thesis proposes a novel self-

supervised deep learning framework CAAD for anomaly detection in wireless communication

systems. Specifically, CAAD employs powerful adversarial learning and contrastive learning

techniques to learn effective representations of normal and anomalous behavior in wireless

networks. Rigorous performance comparisons of CAAD with several state-of-the-art anomaly

detection techniques has been conducted and verified that CAAD yields a mean performance

improvement of 92.84%. Additionally, CAAD is augmented with the ability to systemati-

cally incorporate expert feedback through a novel contrastive learning feedback loop to im-

prove the learned representations and thereby reduce prediction uncertainty (CAAD-EF ).

CAAD-EF is a novel, holistic and widely applicable solution to anomaly detection.



Detecting Irregular Network Activity with Adversarial Learning and
Expert Feedback

Gopikrishna Rathinavel

(GENERAL AUDIENCE ABSTRACT)

Anomaly detection is a technique that can be used to detect if there is any abnormal behavior

in data. It is a ubiquitous and a challenging task relevant across many disciplines. With

the vital role communication networks play in our daily lives, the security of these networks

is imperative for smooth functioning of society. Anomaly detection in such communication

networks is essential in ensuring security. This thesis proposes a novel framework CAAD for

anomaly detection in wireless communication systems. Rigorous performance comparisons

of CAAD with several state-of-the-art anomaly detection techniques has been conducted

and verified that CAAD yields a mean performance improvement of 92.84% over state-of-

the-art anomaly detection models. Additionally, CAAD is augmented with the ability to

incorporate feedback from experts about whether a sample is normal or anomalous through

a novel feedback loop (CAAD-EF ). CAAD-EF is a novel, holistic and a widely applicable

solution to anomaly detection.
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Chapter 1

Introduction

Wireless systems are pervasive in the modern world, and the radio access network has been

expanding in both density and numbers of bands used throughout 4G, 5G and candidate

5G Advanced and 6G systems of the future. These wireless communication systems and

networks enable us to access the internet, connect with others remotely, thereby serving as a

vital means for human interaction. Further, they connect hundreds or thousands of sensors,

applications, industrial networks, critical communications systems, and other infrastructure.

Inter-operation of wireless devices across these bands is critical to quality of service and safe

operation of communications, broadcast, telemetry, localization, emergency respond and

numerous other wireless systems. Therefore, intelligent monitoring of this spectrum access

is viewed as one key enabler of the next generation air interface to intelligently coordinate

and optimize spectrum among users and applications.

The electromagnetic spectrum (simply referred to as ‘the spectrum’) is the information high-

way through which most modern forms of electronic communication occur. Parts of the

spectrum are grouped into ‘bands’ (based on the wavelength) which can be thought of as

analogous to lanes on the highway. Specific regions (i.e., lanes) of the spectrum are reserved

for specific types of communication (e.g., radio communication, broadcast television) based

on frequency. The entire spectrum ranges from 3 Hertz (Hz) to 300 EHz. The part used for

wireless communication ranges from 20 KHz to 300 GHz and the typical range in use today

is 30Khz to 28GHz.
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2 CHAPTER 1. INTRODUCTION

Spectrum access activity in wireless systems carries rich information which can indicate

underlying activity of physical device presence, activity and behaviors corresponding to

security threats and intrusions, jamming attempts, device malfunctioning, interference, illicit

transmissions and a host of other activities (see Fig. 1.1). Disruptions or changes to systems

within the spectrum today can reflect a wide range of physical world activities, and therefore

hold significant value for analysis, safety, optimization, and a range of other applications.

Data corresponding to spectrum access activity information has been explored in wireless

intrusion detection systems (WIDS) in a very limited context and most of the systems in

use today for detecting anomalous network activity, are highly application specific and focus

on specialized feature engineering, detector engineering, and signal-specific digital signal

processing (DSP) engineering. The widely deployed tools for spectrum sensing focus largely

in changes in network level key performance indicators (KPIs) such as BLER, or focus

on very narrow applications of RF sensing, such as energy sensing, protocol-specific sensing

algorithms, etc. Further, there have been several works [26] [35] looking at ML based sensing

of the air-interface, but they largely all rely on high rate radio time-series sample data which

is large and cumbersome to store and/or transmit. Such systems are not generalizable, are

highly sensitive to minor variations in system characteristics and are costly to maintain

due to requirements of rich feature engineering. Another challenge with respect to anomaly

detection in wireless signals is that, there is a plethora of possible anomalies and it would be

impossible to emulate all such anomalies. Hence, there is a need for an unsupervised model

which is capable of detecting any signal that is not normal.

This work focuses on a generic, powerful, scalable and an unsupervised anomaly detection

framework which demonstrates its prowess in the context of wireless network anomalies.

Specifically, a novel solution to anomaly detection (AD), Contrastive Adversarial Anomaly

Detection ( CAAD ) which combines the powerful paradigms of adversarial learning (Gen-
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Figure 1.1: Irregular Activity in Wireless Communication Systems.

erative Adversarial Networks - GAN) and contrastive learning (CL) is proposed. CAAD is

also augmented with the ability to incorporate expert feedback (EF) to improve the quality

of its learned representations for AD. This model is named CAAD-EF (CAAD with expert

feedback). To the best of our knowledge we are the first to propose such a powerful yet

flexible AD framework that combines contrastive and adversarial learning paradigms with

the ability to incorporate expert feedback via contrastive learning to improve its learned

representations and reduce prediction uncertainty.

The contributions are as follows:

• CAAD , a novel method for anomaly detection which utilizes generative adversarial net-

works and contrastive learning is proposed. It is demonstrated that the proposed model

is able to significantly outperform state-of-the-art (SOTA) models on anomaly detection in

wireless networks and standard datasets. To the best of our knowledge, CAAD is the first

model to use a combination of contrastive learning and adversarial learning for anomaly

detection.

• Another novel model CAAD-EF , which is supplemental to CAAD is introduced. This

model further enables us to incorporate expert feedback via contrastive learning and uncer-

tainty quantification using Monte Carlo dropouts. To the best of our knowledge, CAAD-EF is
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the first successful undertaking to utilize contrastive learning to incorporate expert feedback.

• Finally, the importance of various facets of CAAD-EF is highlighted through rigorous

qualitative, quantitative and ablation analyses.



Chapter 2

Review of Literature

This chapter reviews literature of some existing work on anomaly detection in the wireless

domain and also discusses machine learning methods used for anomaly detection.

2.1 Anomaly Detection in Wireless Signals

The previous works of anomaly detection in wireless signals can be broadly be divided

into two segments: 1) anomaly detection on WiFi signals and 2) anomaly detection on raw

spectrum data. Since WiFi has become ubiquitous in the current world, there has been lot of

interest in exploiting this area. Application specific anomaly detection using WiFi data that

have been explored in the recent past includes but not just limited to [42], gesture recognition

[1], smoke detection [40], fall detection [36], direction estimation [38]. Literature on using

raw spectrum data for anomaly detection is not as extensive as the former. In general some

signal processing step is applied to the raw spectrum data before it can be fed into the

anomaly detection model. Examples of such data include spectrogram of time-frequency

or spectral correlation function outputs [21, 34], power spectral density data [25, 27] and

dynamic spectrum access data [15, 20].

Although existing literature addresses anomaly detection in wireless data, they are either

storage or compute intensive, are very application specific, or do not provide means to provide

expert feedback so that new information can be incorporated into the models. The method

5
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proposed in this thesis uses metadata as opposed to the raw RF signals which immensely

reduces storage and compute. Due to this, the proposed method can be used for anomaly

detection in various applications. Also, as opposed to the existing literature, the proposed

human-in-the-loop framework CAAD-EF , provides a means to incorporate expert feedback

into the model. The proposed methods can also be extended outside the scope of wireless

data and to support this claim some results on MNIST data are presented.

2.2 Machine Learning for Anomaly Detection

Many machine learning approaches have been developed for anomaly detection across di-

verse applications. The recent resurgence of deep learning techniques demonstrating their

effectiveness across a wide variety of domains has lead to the development of many novel

and powerful modeling paradigms like generative adversarial networks (GAN) [11], self-

supervised representation learning [17] and contrastive learning (CL) [7].

Contrastive Learning (CL) imposes structure on the latent space by encouraging similar-

ity in representations learned for related instances and dissimilarity in representations for

unrelated instances. Such techniques have proven effective, especially when combined with

self-supervised learning [3, 16] and also with labeled data [18]. CL has demonstrated promis-

ing results in image recognition tasks. However, all these efforts have mostly focused on

improving representation learning performance on traditional classification tasks and do not

specifically focus on anomaly detection. Generative Adversarial Networks (GANs) [11] are a

powerful generative learning paradigm grounded in an adversarial training setup but fraught

with training instability. Recently, improvements have been proposed to stabilize the GAN

training setup by employing Wasserstien distance functions [2] and gradient penalties on the

learned weights.
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2.2.1 Deep Learning for Anomaly Detection

The aforementioned developments of the CL, GAN based paradigms have led to such tech-

niques being employed for the ubiquitous and challenging problem of anomaly detection.

Specifically, in [41], a deep robust autoencoder (Robust AE) model is proposed, inspired by

Robust Principal Component Analysis technique, for anomaly detection with noisy training

data. However, this methodology by design requires knowledge of a subset of anomalies dur-

ing model training and may be considered semi-supervised and is not directly related to our

context of unsupervised AD. Recently, another line of anomaly detection research [30] pro-

poses employing DCGAN [11] for unsupervised anomaly detection. The authors then build

upon their previous work to propose fAnoGAN [31], a two step encoder-decoder architec-

ture based on DCGANs where the encoder (trained separately) learns to invert the mapping

learned by the Generator (i.e., decoder) of the DCGAN model. fAnoGAN is employed as

one of the baselines for empirical comparison.

2.2.2 Contrastive Learning for Anomaly Detection

There are multiple reports of contrastive learning being utilzed for AD. Masked Contrastive

Learning [5] is a supervised method that varies weights of different classes in the contrastive

loss function to produce good representations that separate each class. Even though this

method shows promise, it requires knowledge of anomaly labels. Contrasting Shifted In-

stances (CSI) [33] and Mean Shifted Contrastive Loss [28] are two unsupervised AD meth-

ods based on CL. CSI investigates the power of self-supervised CL for detecting out-of-

distribution (OOD) data by using distributionally shifted variations of input data. CSI

is employed as one of the baselines. Mean Shifted Contrastive Loss applies a contrastive

loss modified using the mean representation on representations generated using models pre-
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trained on ImageNet data. However, this model is not useful for wireless AD as it is pre-

trained on a particular kind of data. Also, none of these methods provide a means to

incorporate expert feedback.

2.2.3 Incorporating Expert Feedback

The solutions presented in [8, 12, 22, 23, 24] all employ human feedback in various ways.

Active Anomaly Discovery (AAD) [8] is designed to operate in an anomaly exploration loop

where the algorithm selects data to be presented to experts and also provides a means to

incorporate feedback into the model. However, its performance is dependent on the num-

ber of feedback loops that can be afforded. Hence, such a method could not be applied

for wireless anomaly detection where the volume of input data is really high. RAMODO

[24], combines representation learning and outlier detection in a single objective function.

It utilizes pseudo labels generated by other state-of-the-art outlier detection methods and

Chebyshev’s inequality. This dependence on other methods to generate pseudo labels can

sometimes be unreliable in cases where state-of-the-art outlier detection methods perform

poorly. SAAD [12], DevNet [22] and DPLAN [23] are semi-supervised methods, all of which

require minimal labelled anomalies and is not suitable for our problem.

The advantage of using contrastive learning for anomaly detection is that it can be utilized in

a self-supervised setup. Hence, the training samples can be augmented to generate anoma-

lous samples that are very close to the training distribution and utilize them as negative

samples in the contrastive loss. Also, the penultimate layer of the GAN discriminators have

recently been shown to act as good representations of the input data [4, 6, 14, 31]. Hence, the

combination of these powerful techniques, CL and GAN serve well for our AD task. None
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of the related approaches outlined above have developed AD techniques that combine the

aforementioned techniques for anomaly detection. Also, none of the state-of-the-art related

AD approaches provide a means to incorporate expert feedback via contrastive learning.



Chapter 3

Background

CAAD-EF employs adversarial learning, contrastive learning (CL) and uncertainty quan-

tification (UQ) techniques. This chapter introduces these concepts before detailing the

full CAAD-EF framework in chapter 4.4.

3.1 Generative Adversarial Networks (GAN)

GANs are a class of generative models where the learning problem is formulated as a game

between two neural networks, namely the generator (G) and the discriminator (D). The

problem setup of GANs comprises of the generator learning to transform inputs sampled from

a noise distribution into a distribution Pf such that it resembles the true data distribution Pr.

Essentially, the generator is trained to fool the discriminator while the discriminator is tasked

with distinguishing between fake samples x̃ ∼ Pf generated by G and real samples x ∼ Pr.

The traditional GAN [11] setup minimizes the Jenson-Shannon (JS) divergence between Pr

and Pf . However, this divergence is not continuous with respect to the parameters of G,

leading to training instabilities. Wasserstein GAN [2] (WGAN) was proposed to address

this issue. WGANs employ the Earth-Mover distance (instead of the JS divergence) which

under mild assumptions does not have discontinuities and is almost universally differentiable.

Consider the discriminator (also termed the critic1 in WGANs) D parameterized by Ω and

1words ‘critic’, ‘discriminator’ are used interchangeably in the paper.

10
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generator G parameterized by θ. Eq. 3.1 depicts the WGAN loss function where D is

parameterized by Ω ∈ B, where B is the set of 1-Lipschitz functions.

Lw = min
θ

max
Ω∈B

E
x∼Pr

[DΩ(x)]− E
x̃∼Pf

[DΩ(x̃)] (3.1)

Enforcing the 1-Lipschitz constraint on DΩ has been found to be challenging. On the basis

of the property that a function is 1-Lipschitz if and only if it has norm no greater than 1

everywhere, [13] proposed a solution of augmenting the WGAN loss with a soft-constraint

enforcing that the norm of the discriminator gradients (w.r.t the inputs) be 1. The objective

function of the WGAN with this updated soft-constraint (termed a gradient penalty) is

shown in Eq. 3.2.

Lgp = Lw + λ E
x̌∼Pi

(∥∇DΩ(x̌)∥2 − 1)2 (3.2)

Each sample x̌ ∼ Pi is generated as a convex combination of points from Pr, Pf (i.e., sampled

from the line connecting points from Pr, Pf ). λ enforces strictness of the gradient penalty.

3.2 Contrastive Learning (CL)

The paradigm of contrastive learning (CL) has recently demonstrated highly effective results

across a diverse set of disciplines and tasks, especially in computer vision [3, 7, 39]. The

goal of CL is to impose structure on latent representations learnt by a model (M). This is

often achieved using soft-penalties (e.g., additional loss terms) that influence representations

generated by M to be structured so representations of related instances are closer together

relative to instances that are known to be unrelated. Most CL losses are set in a self-

supervised context where relatedness is generated via augmentations of an instance and two

distinct instances are considered to be unrelated.
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Recently, [18] proposed supervised contrastive learning (SupCon), which is an extension of

the CL paradigm to supervised (classification) settings. A model trained with SupCon on

a labelled dataset learns latent representations grouped by class labels while also forcing

separation in representations between instances belonging to different classes (i.e., low intra-

class separation and high inter-class separation of latent representations).

Consider a dataset of instances D = {(x1, y1), .., (xm, ym)} such that xi ∈ Rb×l and yi ∈ C

is the label of xi and C is the set of class labels. Then, the supervised contrastive loss is

defined by Eq. 3.3.

Lsup =
∑
xi∈D

−1

|Pos(i)|
∑

xk∈Pos(i)

log exp (zi · zk/τ)∑
j∈Q(i) exp (zi · zj/τ)

(3.3)

Here, zi ∈ Rh×1 is the latent representation of xi generated by model M. Pos(i) = {xk ∈

D|yk == yi∧k ̸= i} is the set of instances that form the ‘positive set’ for xi. Q(i) = {D\xi}.

τ ∈ R+ is a hyperparameter. Eq. 3.3 is employed for CL but with labels generated in a

self-supervised manner.

3.3 Uncertainity Quantification (UQ)

Quantifying decision uncertainty is critical to the success of real-world machine learning (ML)

frameworks. It is of special relevance in the current setting of anomaly detection wherein the

confidence of a model in its decision additionally indicates the urgency of a potential alert

issued by the model. While traditional ML models yield point predictions, Bayesian ML

provides a framework for capturing model uncertainty. One such UQ approach [10], can be

considered to approximate Gaussian Processes with neural network models. This approach

termed Monte-Carlo Dropout entails running a monte-carlo sampling (during inference) of

a trained model by randomly masking a set of learned weights of the model each time
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(i.e., dropout [32]). This is akin to sampling from the approximate posterior which leads to

uncovering the model predictive distribution. Inferring the predictive distribution is one of

the methods to quantify model uncertainty with Bayesian neural networks.



Chapter 4

Problem Formulation

This chapter describes the various facets of our novel human-in-the-loop anomaly detection

framework CAAD-EF . Fig. 4.1 details the overall architecture of CAAD-EF .

4.1 Self Supervised Anomaly Detection with Negative

Transformations

The core of the proposed framework is the Contrastive Adversarial Anomaly Detection

(CAAD ) model. The structure of the CAAD model resembles a WGAN with gradient

penalty (WGAN-GP) as described in chapter 3 comprising a generator Gθ and a discrimina-

tor DΩ. In addition to GAN based training, CAAD discriminator is also trained with CL to

impose explicit structure on the learned latent representations and improve representation

learning. The CL technique employed is similar to supervised contrastive learning (SupCon)

detailed in chapter 3. However, SupCon requires a labeled dataset. To generate a labeled

dataset D, existence of a training set without any anomalies is assumed. Let this set be

denoted Db = {(x1, y1), .., (xm, ym)}, such that yi = 0, ∀(xi, yi) ∈ Db. A negative transforma-

tion T (·) is applied to violate the normalcy of every instance xi ∈ Db to obtain a correspond-

ing set of anomalous instances Da = {(x1, y1), .., (xm, ym)} such that yi = 1, ∀(xi, yi) ∈ Da.

Now let us consider D = {Da,Db} = {(xa
1, y

a
1), .., (x

a
m, y

a
m), (x

b
1, y

b
1), .., (x

b
m, y

b
m)|yai = 0 ∧ ybi =

14
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Figure 4.1: Full architecture of the human-in-the-loop CAAD-EF anomaly detec-
tion framework. (Training): The framework consists of a WGAN-GP with an uncertainty-
aware discriminator trained with supervised contrastive learning (SupCon) to impose struc-
ture in the latent space. Labeled data required for SupCon is obtained by applying ‘negative
transformations’ on a benign set of instances to generate corresponding anomalous instances.
(Inference): During inference, the model yields a prediction (anomaly:red star or benign:blue
star) for every instance, accompanied by the prediction uncertainty. (Expert Feedback):
Uncertain instances (grey stars) are isolated and passed to an expert to uncover their true
labels. (Fine-Tuning): The pre-trained WGAN-GP model is then fine-tuned with this ad-
ditional expert feedback to further improve its representations learned thereby leading to
improved anomaly detection performance and decreased prediction uncertainty.

1 ∀i}. Eq. 3.3 is then leveraged to directly train the CAAD discriminator with CL (specifi-

cally SupCon).

LCAAD = Lgp + αLsup (4.1)
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Eq. 4.1 represents the objective employed to train the CAAD model to learning effective

representations of benign and negatively transformed ‘anomalous’ instances via CL. Here, α

governs the effect of the supervised contrastive loss on the discriminator representations.

4.2 Inferring Decision Uncertainty with CAAD-UQ

In order to maximize the effect of expert feedback on model performance, effective set of

instances should be isolated to solicit feedback. To this end, effective set of instances are

defined as those for which the model is the most uncertain in its prediction. Hence CAAD ,

trained to learn effective representations as defined in section 4.1, is augmented to quan-

tify its prediction uncertainty using the popular Monte-Carlo dropout technique (see sec-

tion 3.3). This variant of CAAD augmented with uncertainty quantification capability is

termed CAAD-UQ . Concretely, the model structure of CAAD discriminator is augmented

by including dropout in each layer of the model to yield CAAD-UQ . Let DL
Ω∗ represent the

first L layers of the discriminator of a trained CAAD-UQ model where training happens

according to Eq. 4.1. Further, let di = DL
Ω∗(xi), then, {dji}j=1...k represents the set of ‘k’

monte-carlo sampled embeddings obtained from DL
Ω∗(xi). CAAD-UQ employs the mean

of the Monte-Carlo embeddings, denoted di as the representation inferred for an instance

xi ∈ D.

Every Monte-Carlo embedding dji generated by DL
Ω∗(xi) is subjected to a scoring mecha-

nism (section 4.4) whereby a prediction ŷji ∈ {0, 1} is obtained. Here ŷji = 0 indicates a

benign classification and ŷji = 1 indicates an anomalous classification of xi at MC sample j.

Prediction uncertainty as quantified by CAAD-UQ for di is outlined in Eq. 4.3

ui,c = |{ŷji |j ∈ {1, 2, ..k} ∧ ŷji = c}| where c ∈ {0, 1} (4.2)
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µi = 1− max(ui,0, ui,1)

k
(4.3)

4.3 Leveraging Expert Feedback

Now, a method to calculate an uncertainty measure µi for any instance xi is formulated. For

{xi} ∈ D for which predictions has to be made, if µi ≈ 1 ∀xi, then the model predictions are

reliable. However, if this is not true, CAAD-UQ is further finetuned using a set of effective

instances determined using µi and their corresponding feedback from an expert on these

instances. This model is called CAAD-EF since this is a contrastive adversarial anomaly

detection model trained from expert feedback.

For a particular class c, the supervised contrastive loss is defined in Eq. 4.4.

Lsupclass(D, c) = Lsup(D) ∀xi : yi = c (4.4)

Lsupclass is used to only bring instances of one class c together and away from all other classes,

in contrast with LSup which brings each instance close to each other instance of the same

class and away from instances of all other classes.

Let X denote a set of benign instances. From the set of inferences yielded by CAAD-UQ ,

the top ‘h’% most uncertain instances are selected XHIL, based on µi (Eq. 4.3) as the

effective set of instances and showcase them to an expert to receive feedback. This feedback

gives {XHIL
anom, X

HIL
ben } where XHIL

anom and XHIL
ben are the set of instances labeled by expert as

anomalous and benign respectively. An additional loss term is then incorporated in the loss

function of CAAD-UQ and finetune the model. Let Xaug = T (X) where T is a class of

transformations, D1 = {XHIL
anom, X}, D2 = {XHIL

ben , Xaug}, D3 = {XHIL
ben , XHIL

anom}. The HIL
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loss LHIL is defined in Eq 4.5.

LHIL = α1L
supclass(D1, c = 1) + α2L

supclass(D2, c = 0)

+ α3L
supclass(D3, c = 0)

(4.5)

where the first term in LHIL helps bring XHIL
anom together while also pushing it far away from

X, the second term helps bring XHIL
ben together while pushing it far away from Xaug and the

third term helps bring XHIL
ben together and pushes it away from XHIL

anom. Hence the overall loss

term for the finetuning model CAAD-EF is given below.

LD = LCAAD + LHIL (4.6)

4.4 Anomaly Detection

Now that we have meaningful embeddings after training the model, we need a method to

determine if a given instance is benign or anomalous. This section explains how embeddings

are used for identifying anomalies.

Scoring function: Since we are employing contrastive loss to create a separation between

benign embeddings and embeddings of anomalous augmentations, we would be able to benefit

from a scoring function that utilizes the distance measure which is used in the contrastive loss.

This distance measure is the Cosine Distance. The scoring mechanism we have used that

uses cosine distance is adopted from [33]. Consider a set of instances used during training.

They are clustered into m different clusters and their cluster centroids are obtained as {xm}.
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For every test instance xi, the score is calculated as below.

sxi
= max(cosine(DL

Ω∗(xi), D
L
Ω∗(xm))) ∀ xm (4.7)

This method of creating clusters of training embeddings and then determining the maximum

cosine distance from the test instance, creates a more refined boundary between the benign

embeddings and possible anomalous embeddings.

Anomaly threshold: Consider a validation set xv and a distribution P of anomaly scores

sxv .

θ = argθ{P (sxv < θ) = ϕ} (4.8)

where, when sxi
exceeds θ, then xi is called an anomaly. ϕ is the strictness parameter which

can be tuned to control the rate of misclassifications. When this parameter is low, there

will be false positives and when it is high, there will be false negatives. Hence, an apt value

should be chosen for the strictness parameter to balance the number of false positives and

false negatives.
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Experimental Setup

Several wireless emission activity datasets as well as the well-known MNIST computer vi-

sion dataset are considered for evaluation. The wireless emission activity datasets consist

of metadata describing detected radio emissions observed over the air in a known radio fre-

quency (RF) environment. Metadata describes a range of aspects including detection time,

frequency, bandwidth, signal type, signal power, and is streamed from an edge sensor into

an Elasticsearch database for archival. Anomalies consist primarily of new emitters coming

online or exhibiting new behavior (e.g. hopping) in a band with otherwise orderly pat-

terned behavior, or the disappearance (e.g. failure) of emitters which are otherwise regularly

present.

5.1 Dataset Description

Using Software Defined Radio (SDR), metadata particular to FM signals were gathered.

This metadata is in the form of JSON with each instance containing information about

packets of signals and a timestamp. Centre frequency and bandwidth are the two useful

features extracted from the metadata. 80x80 bins are created with bandwidth on x-axis and

frequency on y-axis and populate the count of packets falling into each bin for a period of

3 minutes. This gives us a time series of 80x80 images. For context, the maximum count

of packets per pixel in the LTW1 dataset is 98 and maximum count of packets per pixel in

20
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the LTW2 dataset is 201. Also, mean of maximum count of packets per pixel per image is

20.5 for LTW1 and 107.1 for LTW2 . This indicates that LTW2 is more dense compared to

LTW1 . Min-max normalization based on the global min and max of the count of packets per

pixel of training set is performed. Once such normalized images are gathered, the training

set is denoised by masking out pixels that have a probability of having a non-zero value of

0.0005. Below is the detailed description of individual datasets.

LTW1 : Long-term wireless emission metadata in the 800-900MHz band for a span of 2

months between 8 Apr 2021 to 8 Jun 2021 from a first location with a frequency scanning

receiver. 11670, 5002, 7146 are the number of training, validation and test sets respectively.

The test set contains 3894 benign and 3738 anomalies which also includes hopping anomalies.

LTW2 : Long-term wireless emission metadata (similar to LTW1 ) from a second geographi-

cal location. Data spans a time interval of 24 Nov 2020 to 4 Dec 2020. The test set contains

786 benign instances and 724 anomalies.

STW1 : Short-term wireless emission metadata comprising short-time high-rate observa-

tions of 900MHz cellular and ISM bands. Here, input is similar to 80x80 bin density features

of LTW1 but with a 1-second interval. 154, 39, 198 are the number of training, validation

and testing instances respectively. The test set contains of 94 benign instances and 104

anomalies.

MNIST: This is a standard image dataset [9] for machine learning research comprising

images of hand-written digits. The training and validation set consists of 4089 and 1753

images of the number ‘4’ (benign class) respectively. During testing, all other classes of

digits are considered anomalies. The test set contains 982 benign and 9018 anomalous images

leading to an imbalanced evaluation setup. We view our anomaly detection framework as

one which can be extended outside of the wireless anomaly detection setup. Hence, we test
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our model on MNIST to verify generalisability.

5.2 Types of Wireless Anomalies

1. Hopper Anomalies: In this type of anomaly, frequency hopper signals are transmit-

ted. This creates activity in different regions of the 80x80 image. Examples of such

hopper anomalies are shown in Figures 5.1a and 5.1b.

2. Drop Anomalies: In this type of anomaly, on LTE signal in the cellular band goes

offline at around 198 seconds into the dataset. Data until 170 seconds was used for

training and the rest, with anomalies for testing. This removes a region of activity

from the 80x80 image. Examples of a drop anomaly is shown in Figure 5.1c.

3. Naturally occurring anomalies: In the training set, as mentioned in Section 5.1,

pixels that have a probability of having a non-zero value of 0.0001 were masked

out. However this is not done in testing set and such images are instead labelled as

anomalies.

5.3 Anomaly Injection

1. Injection of hopper anomalies: The available number of real world hopper anoma-

lies was 60 packets with different bandwidth and frequencies for each packet. These 60

packets were then grouped into numbers of 6 which effectively produced 10 different

anomaly signatures. Now, every anomaly signature contains 6 anomalies with each

having a count (density) of 1.

These anomaly signatures were used as template anomalies and injected (added) them
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in test instances without anomalies while also keeping a copy of original test instance

without anomalies. Before anomaly injection, the template is min-max normalized

using the global min and max of the count of packets per pixel of the entire training

set. As LTW2 has max of the count of packets per pixel of the entire training set value

as 201 and since our anomalies have a density of 1, during min-max normalization, the

injected anomalies become very subtle. This is one explanation for the relatively low

anomaly F1 scores in LTW2 compared to other datasets. Figure 5.1b shows anomalies

amplified by 30x in-order to be visible to the naked eye.

2. Injection of Drop Anomalies: To inject drop anomalies, LTE signal is manually

turned off.

5.4 Baselines

Isolation Forest [19]: A popular bench mark ensemble method for anomaly detection

wherein partitions are created in data such that each data point is isolated. During such

partitioning, an anomalous data instance isolates itself much easier compared to a benign

instance. 100 base estimators were employed.

One Class SVM (OC-SVM) [37]: Another popular anomaly detection benchmark, OC-

SVM, learns a hypersphere that encompasses points from a single class. Any point that

falls outside of this hypersphere is considered an outlier. The kernel we have used in the

algorithms is a radial basis function kernel.

UNetGAN [29]: GAN model with UNet as generator, and convolutional network used for

the discriminator. The GAN model is trained using Wasserstien loss and gradient penalty.
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fAnoGAN[31]: A state-of-the-art anomaly detection model based on Wasserstien GAN-GP.

Specifically, fAnoGAN comprises a two stage-anomaly detection framework wherein the first

stage involves WGAN-GP being trained to translate samples from a noise distribution to

outputs of the process of interest. The second stage employs the pre-trained WGAN-GP

to train an encoder network to learn an ‘inverse mapping’of WGAN-GP generator. The

anomaly score is calculated as a function of error between intermediate representations of

input data and generator output. This model can serve as a good baseline because it is

similar to our model setup in two ways: 1) this model uses a WGAN for anomaly detection

and 2) this model uses the penultimate layer of the discriminator for anomaly scoring.

Contrasting Shifted Instances (CSI)[33]: A state-of-the-art anomaly detection deep

neural network models which employs traditional self-supervised contrastive learning with

a novel contrastive task comparing an instance to distributionally shifted versions of itself.

Anomaly detection occurs through a novel anomaly scoring mechanism. This model serves

as a good baseline as it employs contrastive learning in the anomaly detection task.

5.5 Evaluation Metrics

Multiple evaluation metrics were used to provide a holistic quantitative evaluation of model

performance on the task of anomaly detection. Specifically, F1 scores were reported for

correctly detecting benign and anomaly instances as well as a weighted average of the two F1

scores. Further, Area Under the Receiver Operating Characteristic (AUROC) metric which

is explicitly dependent on the false positive rates (FPR) of the models are also reported.

AUROC is explicitly reported to investigate whether models have low FPRs (thereby high

AUROC) values which is imperative for an effective anomaly detection model. Finally, as

imbalanced datasets (see section 5.1) are also used, the Area Under the Precision-Recall
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Curve (AUPRC) metric which is known to complement AUROC well by alleviating biases

due to data imbalance is utilized.

5.6 Model & Training Details

Model details: CAAD-EF is a WGAN with gradient penalty (WGAN-GP). The generator

of this WGAN-GP is a UNet autoencoder comprising 5 down convolutional layers (each with

kernel size 4, batch normalization and leaky-ReLU), 5 same convolutional layers (each with

kernel size 3, maxpooling, batch normalization and leaky-ReLU) and 5 up-convolutional

layers (each with kernel size 4 batch normalization and ReLU). Discriminator has five

convolutional layers, each followed by instance normalization, leaky-ReLU (negative slope of

0.2), dropout layer with dropout probability 0.5.

Training details: Our models are trained for 100 epochs with batch size of 32, Adam opti-

mizer (β1 = 0, β2 = 0.9), learning rate of 1e−4 for both the generator and the discriminator.

For gradient penalty, λ value of 10 is used. The weighting coefficients α, α1, α2 and α3 are

set to 1 during training. The negative transformation that is employed is salt noise for the

network datasets (LTW1 ,LTW2 ,STW1 ) and rotations for MNIST. Strictness parameter

ϕ = 0.99 and m = 1 are used during validation. A h value of 5 (corresponding to 5% of the

most uncertain instances) is used during finetuning.
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Figure 5.1: Preprocessed wireless emission activity data. These are examples of
preprocessed wireless emission activity data that are used as inputs to the models. Left fig-
ures indicate benign instances and right figures indicate corresponding anomalous instances.
Anomalies are annotated with dashed yellow circles. Figure (a) is a sample from the LTW1
dataset. Anomalies in the right figure of (a) are 7x amplified in order to improve visibility.
Figure (b) is a sample from the LTW2 dataset. Anomalies in the right figure of (b) are 30x
amplified in order to improve visibility. Figure (c) is a sample from the STW1 dataset. In
the left figure in (c), the orange circle points to the signal that goes missing in the right
figure (Drop anomaly).
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Results and Discussion

The performance of our novel CAAD-EF anomaly detection framework is investigated in this

chapter. A detailed analysis that is performed, entails a rigorous quantitative and qualitative

performance evaluation. The specific research questions that are asked are as follows:

• How does our CAAD model perform relative to the existing state-of-the-art (SOTA) for

anomaly detection?

• Can CAAD be augmented to successfully incorporate expert feedback (CAAD-EF ) to

improve the quality of learned representations?

• How does each facet of our novel CAAD-EF framework contribute towards the overall

performance?

6.1 CAAD Anomaly Detection Performance

At the outset, the anomaly detection capability of the CAAD model which forms the back-

bone of our proposed, novel CAAD-EF framework is evaluated. Specifically, anomaly de-

tection performance of CAAD across four datasets comprising diverse characteristics and

anomalies (see section 5.1) is evaluated.

Table 6.1 details the anomaly detection performance comparison of CAAD with several well

accepted state-of-the-art (SOTA) anomaly detection models. Across all the datasets and

27
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Figure 6.1: Effect of contrastive loss. These figures qualitatively represent the effect
of contrastive loss in CAAD on the LTW1 dataset. They depict the t-SNE embeddings
generated by the discriminator. Figure (a) shows results of CAAD w/o contrastive loss and
figure (b) shows results of CAAD with contrastive loss. Figure (b) clearly shows better
separation between bening and anomalous embeddings.

types of anomalies, CAAD achieves a mean performance improvement of 92.84% as evi-

denced by the anomaly F1 score metric. CAAD also achieves an overall mean performance

improvement of 59.39% across three of the four datasets where CAAD is the best perform-

ing model (i.e., combined performance on benign and anomaly detection) as demonstrated

by the weighted average F1 score metric.

False Positives: An important facet of a robust and practically useful anomaly detection

framework is its ability to minimize ‘false alarms’. To investigate this behavior, AUROC

values (see 5.5), which explicitly is a function of the false positive rate (FPR) are reported.

CAAD yields consistently high AUROC values (indicative of its low FPR i.e., it produces

very few false alarms). CAAD yields the highest AUROC values in three out of the four

datasets. It must be noted that in the case of the MNIST dataset, the AUROC of CAAD (i.e.,

0.93) is competitive and amenable for use in real-world AD applications.
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Due to the variegated nature of data imbalance in our experiments (see section 5.1 for data

support statistics) the AUPRC metric (as a complement to AUROC under data imbalance)

is also evaluated. CAAD is the best performing1 across all datasets (including MNIST) as

per the AUPRC metric.

Finally, the effect of contrastive loss in CAAD can be seen in Figure. 6.1 where the embed-

dings of benign and anomalous samples are more separated when contrastive loss is added.

6.1.1 Network Anomaly Detection

CAAD is able to detect extremely ‘weak’ anomalous signatures associated with activity

in irregular parts of the spectrum being monitored. This is specifically evidenced by the

superior performance of CAAD on datasets LTW1 and LTW2 , both of which contain attack

signatures generated by devices that inappropriately access unused regions of the band being

monitored. The superior performance of CAAD in anomaly detection on the STW1 dataset

which consists of the ‘signal drop’ anomaly (described in section 5.1), also demonstrates the

versatility of the CAAD model to detect different types of irregularities in different bands

across the communication spectrum. The CSI model has a higher benign F1 score but lower

overall wt.Avg. F1 score (as it under performs on the corresponding anomaly detection task)

for the LTW2 dataset. CAAD in contrast yields more stable results for detecting both benign

and anomalous instances across all datasets.

1accompanied by fAnoGAN on MNIST, UNetGAN on STW1
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6.1.2 MNIST Anomaly Detection

Once again CAAD is able to outperform all other SOTA models for anomaly detection on the

MNIST dataset. This result is significant, as it is indicative of the generic nature and flexibil-

ity of the proposed solution in addressing variegated anomaly detection tasks. CAAD yields

the best anomaly detection F1 score (1.04% improvement over next best model OC-SVM)

and the best weighted average F1 score (3.26% improvement over next best model OC-

SVM). CAAD is also the best performing for the benign instance recognition (indicated by

benign F1 score). The inconsistency in model performance across the benign and anomaly

detection tasks is once again evident in the context of skewed results in the OC-SVM (fails

to detect benign instances accurately). Hence, as evidenced by the Wt. Avg. F1 score,

Benign F1 score and Anomaly F1 score CAAD yields the best performance on the MNIST

anomaly detection task.

6.1.3 SOTA Models

Standard anomaly detection models like Isolation Forest and OC-SVM perform poorly es-

pecially for the challenging network anomaly detection task. They are unable to identify

the subtle anomalous patterns of interest. The fAnoGAN variants showcase unstable per-

formance across the two tasks of benign and anomaly detection as evidenced by the large

differences in the F1 scores for each dataset thereby rendering them practically ineffective

for use as real-world anomaly detection frameworks. CSI which is a recent SOTA anomaly

detection model that also employs contrastive learning, significantly under performs relative

to CAAD (avg. performance improvement by Wt. Avg. F1 score 58.78%) across all the

datasets.

Overall, experiments in Table 6.1 indicate the superior representation learning and anomaly
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detection capability of CAAD on small and large, balanced and imbalanced datasets com-

prising multiple different types of anomalies.

6.2 Anomaly Detection with Expert Feedback

Real-world systems can often benefit from incorporating valuable expert knowledge to in-

fluence their representation learning capabilities. In an effort to further improve the per-

formance of CAAD , it is augmented with the capacity to incorporate expert feedback re-

ceived in the form of instance labels for a limited set of instances. The resulting frame-

work CAAD-EF comprises of an augmentation to the discriminator of the CAAD model

enabling it to characterize its prediction uncertainties (see section 4.4). This uncertainty

aware model (CAAD-UQ ) is trained in a similar fashion to CAAD . Once trained, CAAD-

UQ yields inferences on unseen instances accompanied by its prediction uncertainty. ‘h%‘

of the most uncertain instances are selected as inferred by CAAD-UQ to be labeled by an

expert. This labeled set of instances is leveraged in a feedback loop to fine-tune the rep-

resentations learned by CAAD-UQ , thus yielding the holistic human-in-the-loop anomaly

detection CAAD-EF framework.

6.2.1 Effect of Expert Feedback (Quantitative Evaluation)

To investigate the effectiveness of expert feedback in the context of large and small datasets,

LTW1 and STW1 datasets are selected to inspect CAAD-EF performance. Table 6.2 show-

cases the experimental results. Incorporating expert feedback (i.e., CAAD-EF ) yields a

significant performance improvement in the case of large (LTW1 ) and small (STW1 ) train-

ing datasets. Specifically, incorporating expert feedback on a small subset of uncertain
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Figure 6.2: Effect of expert feedback on model performance. Improvement in
Anomaly F1 scores and AUROC values are observed as the percentage of expert feedback
us increased from 0% (CAAD-UQ ) to 25% feedback. The model is able to show noticeable
improvement in F1 score even with 5% expert feedback.

Figure 6.3: Effect of expert feedback on uncertainty values. These figures display box-
plots of uncertainty values of human-in-the-loop (HIL) instances before and after finetuning.
Figure (a) shows results from LTW1 dataset and figure (b) shows results from STW1 dataset.
Figure (b) does not contain values for HIL anomalies as there were no HIL anomalies.
Here, uncertainty value of 1 indicates high certainty of prediction and uncertainty value of
0 indicates low certainty of prediction.

instances (instances corresponding to 5% of the most uncertain test predictions as candi-

dates for expert feedback) yields an average performance improvement of 4.17% over the



6.2. ANOMALY DETECTION WITH EXPERT FEEDBACK 33

next best model on the anomaly detection task (i.e., improvement in Anomaly F1 score)

across both datasets. This indicates that the CAAD-EF benefits significantly from expert

feedback in the context of different anomalies and data sizes. Additionally, CAAD-EF also

showcases a 3.79% performance improvement over CAAD (i.e., the variant without explicit

feedback) in recognizing benign instances (i.e., improvement in Benign F1 score) across both

the datasets showcasing a holistic performance improvement. These results are indicative

of a highly effective, holistic and generic anomaly detection solution. For completeness, the

effect of model performance of CAAD-EF with increase in expert feedback (Fig. 6.2) is fur-

ther characterized. Figure 6.3 shows the values of uncertainty for the 5% most uncertain

instances before finetuning (from CAAD-UQ ) and after finetuning (from CAAD-EF ). The

improvement in uncertainty scores after finetuning can be clearly noticed. This result further

clarifies the improved performance in CAAD-EF .

6.2.2 Effect of Expert Feedback (Qualitative Evaluation)

To further corroborate our claim of improved representation learning of CAAD-EF due to ex-

pert feedback, the evolution of the discriminator embeddings of CAAD-EF before and after

fine-tuning with expert feedback are analysed. Fig 6.4 showcases t-SNE plots of embed-

dings inferred by the CAAD-EF discriminator. Fig. 6.4a shows the representations inferred

by CAAD-UQ before expert feedback; color indicates ground truth labels (red: anomalies,

blue: benign). The effect of the contrastive learning employed to train the discriminator,

leads to clear separation of anomalous and benign regions in the plot. In Fig. 6.4b, it can

be noticed that CAAD-UQ is uncertain about a significant number of points in the infer-

ence set. This region of uncertainty (ROU - indicated by dotted black circle in Fig. 6.4b)

is identified and 5% most uncertain instances (as indicated by CAAD-UQ ) are supplied to
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Figure 6.4: Qualitative effect of expert feedback on model performance. The
figures (a) - (f) qualitatively represent the effect of incorporating human feedback in our
proposed CAAD-EF framework on the LTW1 dataset. (a) Depicts t-SNE embeddings of
our CAAD-UQ model discriminator, colored by the ground truth labels with anomalies col-
ored red and benign points colored blue. (b) Showcases the same t-SNE embeddings
as Fig. 6.4a but colored by the uncertainties obtained from the CAAD-UQ model (yellow:
anomaly with low prediction uncertainty, purple: benign with low prediction uncertainty,
green regions indicate uncertain instances;). Highly focused but sizeable ‘Region of Un-
certainty’ (ROU) indicated by the dotted black circle can be noticed. (c) Ground truth
labels of points in the ROU as specified by the expert (red: anomalous points, blue: benign
points).(d) Depicts (similar to Fig. 6.4a) updated t-SNE embeddings yielded by the CAAD-
UQ discriminator after fine-tuning with expert feedback for 5% most uncertain instances. (e)
Updated uncertainty estimates of CAAD-UQ post fine-tuning, a significant reduction in ROU
can be seen (indicated by dotted black circle) compared to Fig. 6.4b (f) CAAD-UQ model
fine-tuned with expert feedback results in greater separation between benign (blue) and
anomalous instances (red) in ROU. This consequently also leads to the overall decrease in
decision uncertainty as observed in Fig. 6.4e.

the expert for feedback. These expert labeled instances are highlighted as red (expert label:

anomaly) or blue (expert label: benign) points in Fig 6.4c. The model is fine-tuned with

the full training set and the updated sets of points to produce new uncertainty estimates

(Fig. 6.4e) wherein it can be seen that the model is significantly less uncertain in the ROU
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(which has shrunk significantly). Finally, it can be noticed that the instances that were sup-

plied by the expert as feedback have achieved significant separation and gravitated towards

their respective cluster centroids (Fig. 6.4f) thereby leading to improved model performance

in the CAAD-EF framework.

6.3 Ablation Study of CAAD-EF

Thus far, through rigorous qualitative and quantitative experiments, the effectiveness of our

proposed CAAD-EF framework for anomaly detection has been verified. CAAD-EF consists

of multiple facets and it is important to characterize the effect of each. Hence, a detailed

ablation study of the proposed CAAD-EF framework is conducted. Table 6.3 details the

results. From the table it can be noticed that the CAAD-EF model is dependent on each

facet of its pipeline for effective representation learning with the most significant drop in

performance occurring due to the removal of the contrastive learning based model training.

It can also be noticed that the performance of CAAD is a function of the effect of contrastive

learning and adversarial training. The performance is further improved with the inclusion of

expert feedback (CAAD-EF ). Removal of the UNet blocks from the generator also lead to

deterioration in performance, primarily due to decrease in the generator learning capability.

Finally, there is a drop in performance (0.94 to 0.91 Wt. Avg. F1) when expert feedback is

ignored. The results in Table 6.3 further reinforce the effectiveness of CAAD-EF framework

for the task of anomaly detection.
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Table 6.1: Summary of results. This table demonstrates that our proposed CAAD model
is effective across multiple types of anomalies in the communication network data while
also being effective on other standard datasets like MNIST. CAAD also outperforms SOTA
baselines significantly for the anomaly detection task (Anomaly F1. score) across all datasets.

Data Model Benign Anomaly Overall
F1 F1 AUROC AUPRC Wt. Avg. F1

LTW1

Isolation Forest 0.75 0.47 0.88 0.83 0.61
OC-SVM 0.41 0.7 0.86 0.81 0.55

CSI 0.75 0.2 0.61 0.53 0.48
fAnoGAN 0.69 0.18 0.8 0.8 0.44
fAnoGAN** 0.68 0.04 0.85 0.84 0.37
UnetGAN 0.74 0.41 0.86 0.89 0.58
CAAD 0.93 0.9 0.97 0.97 0.92

STW1

Isolation Forest 0.64 0 0.49 0.57 0.3
OC-SVM 0.59 0.79 0.97 0.98 0.7

CSI 0.03 0.81 0.37 0.58 0.44
fAnoGAN 0.85 0.72 0.95 0.93 0.78
fAnoGAN** 0.83 0.79 0.96 0.63 0.81
UnetGAN 0.85 0.9 1.0 1.0 0.88
CAAD 0.92 0.94 1.0 1.0 0.93

LTW2

Isolation Forest 0.75 0.02 0.63 0.71 0.46
OC-SVM 0.34 0.59 0.74 0.78 0.44

CSI 0.84 0.27 0.63 0.3 0.61
fAnoGAN 0.75 0.14 0.7 0.58 0.51
fAnoGAN** 0.76 0.6 0.73 0.63 0.7
UnetGAN 0.73 0.36 0.64 0.5 0.58
CAAD 0.77 0.73 0.86 0.83 0.75

MNIST

Isolation Forest 0.28 0.63 0.88 0.59 0.6
OC-SVM 0.56 0.96 0.91 0.62 0.92

CSI 0.55 0.9 0.9 0.81 0.87
fAnoGAN 0.51 0.88 0.98 1.0 0.84
fAnoGAN** 0.31 0.65 0.95 0.99 0.62
UnetGAN 0.5 0.89 0.93 0.99 0.85
CAAD 0.76 0.97 0.93 1.0 0.95
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Table 6.2: Impact of fine tuning with expert feedback. There is a significant improve-
ment in performance for both benign and anomaly detection tasks after incorporating expert
feedback ( CAAD-EF ) relative to the expert feedback agnostic models CAAD , CAAD-UQ .
CAAD-EF 95% is the CAAD-EF evaluated only on a test-set with expert feedback instances
removed.

Data Model Benign Anomaly Overall
F1 F1 AUROC AUPRC Wt. Avg. F1

LTW1

CAAD 0.93 0.9 0.97 0.97 0.92
CAAD-UQ 0.92 0.9 0.97 0.98 0.91
CAAD-EF 0.94 0.94 0.98 0.98 0.94

CAAD-EF95% 0.95 0.94 0.98 0.98 0.95

STW1

CAAD 0.92 0.94 1 1 0.93
CAAD-UQ 0.93 0.94 1 1 0.94
CAAD-EF 0.98 0.98 1 1 0.98

CAAD-EF95% 0.98 0.99 1 1 0.99

Table 6.3: Incremental ablation of CAAD-EF . The removal of important components
of CAAD-EF incrementally, causes performance deterioration. EF: Finetuning after Expert
Feedback, UQ: Uncertainty Quantification and CL: Contrastive Learning.

Model Benign Anomaly Overall
F1 F1 AUROC AUPRC Wt. Avg. F1

CAAD-EF 0.94 0.94 0.98 0.98 0.94
CAAD-EF w/o EF 0.92 0.9 0.97 0.98 0.91
CAAD-EF w/o EF, UQ 0.93 0.9 0.97 0.97 0.92
CAAD-EF w/o EF, UQ, CL 0.74 0.41 0.86 0.89 0.58
CAAD-EF w/o EF, UQ, CL, UNet 0.72 0.28 0.84 0.83 0.5
CAAD-EF w/o EF, UQ, CL, WGAN-GP 0.73 0.32 0.83 0.8 0.53



Chapter 7

Conclusions

A novel anomaly detection framework called CAAD , employing adversarial training and

contrastive learning is introduced. Through rigorous experiments it is demonstrated that

the proposed method outperforms SOTA anomaly detection baselines and achieves a 92.84%

improvement for anomaly detection in wireless communication networks as well as in more

generic anomaly detection contexts. CAAD-EF , a variant of CAAD capable of incorporat-

ing expert feedback is introduced and its effectiveness is evaluated through several qual-

itative and quantitative experiments. Incorporating expert feedback gives a performance

boost of 4.19% over CAAD . Finally, the importance of each facet of our proposed CAAD-

EF framework is highlighted through a detailed ablation study.

38



Chapter 8

Future Directions

Although extensive experiments have been performed to evaluate the proposed model, more

study is needed to improve the proposed framework.

• Moving forward CAAD-EF can be augmented with more sophisticated uncertainty

quantification techniques and leverage the power of our model for real-time human-in-

the-loop anomaly detection applications, especially plagued by covariate shift.

• The model can be evaluated on more varieties of sophisticated anomalies.

• More complicated datasets other than MNIST, such as image datasets can be used to

evaluate generalisability.

• Metadata at the signal detection and extraction level can become more accurate, more

efficient, and can be enriched with additional features.

• Additional feature spaces and feature representations exist, which could represent more

of this information more efficiently for anomaly detection.

• This thesis uses only static datasets and evaluates the model on certain types of anoma-

lies. However, in a real world scenario, data might continually evolve and so will the

anomalies. Hence, continuous training and evaluation is crucial to evaluating the va-

lidity of the proposed model.
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