
Communication-Efficient Adam-Type Algorithms
for Distributed Data Mining

Wenhan Xian, Feihu Huang, Heng Huang
Department of Electrical and Computer Engineering, University of Pittsburgh

Pittsburgh, United States
wex37@pitt.edu, huangfeihu2018@gmail.com, heng.huang@pitt.edu

Abstract—Distributed data mining is an emerging research
topic to effectively and efficiently address hard data mining tasks
using big data, which are partitioned and computed on different
worker nodes, instead of one centralized server. Nevertheless, dis-
tributed learning methods often suffer from the communication
bottleneck when the network bandwidth is limited or the size
of model is large. To solve this critical issue, many gradient
compression methods have been proposed recently to reduce
the communication cost for multiple optimization algorithms.
However, the current applications of gradient compression to
adaptive gradient method, which is widely adopted because of
its excellent performance to train DNNs, do not achieve the same
ideal compression rate or convergence rate as Sketched-SGD. To
address this limitation, in this paper, we propose a class of novel
distributed Adam-type algorithms (i.e., SketchedAMSGrad) uti-
lizing sketching, which is a promising compression technique that
reduces the communication cost from O(d) to O(log(d)) where
d is the parameter dimension. In our theoretical analysis, we
prove that our new algorithm achieves a fast convergence rate of
O(1√

nT
+ 1

(k/d)2T
) with the communication cost of O(k log(d))

at each iteration. Compared with single-machine AMSGrad, our
algorithm can achieve the linear speedup with respect to the
number of workers n. The experimental results on training
various DNNs in distributed paradigm validate the efficiency of
our algorithms.

Index Terms—distributed data mining, adaptive gradient, gra-
dient compression

I. INTRODUCTION

Nowadays, as more and more data mining and machine
learning applications take advantage of large-scale data, plenty
of learning models are trained in a distributed fashion across
many worker nodes [1]. Specifically, the problem of these tasks
can be formulated as:

f(x) =
1

n

n∑
i=1

Eξi∼Di
Fi(x; ξi), (1)

where fi(x) = Eξi∼Di
Fi(x; ξi) is the local objective function

on i-th node that is generally smooth and possibly nonconvex,
and n is the number of worker nodes. Here Di denotes the
data distribution on i-th node, and {Di}ni=1 are probably non-
identical.

Although distributed training has shown excellent perfor-
mance and efficiency for solving problem (1), it still suf-
fers from the communication bottleneck, especially when the
network bandwidth is limited or the size of model is large.
To address the critical high communication cost issue, many

methods have been presented to reduce the amount of com-
munication. Among these methods, one of the most popular
and common ways is to compress the message to be sent at
each communication round, such as gradient quantization [2],
[3] and gradient sparsification [4]–[6].

Gradient quantization reduces the communication cost by
lowering the float-point precision of gradients so that less
amount of bits will be transmitted. 1-bit Stochastic Gra-
dient Descent (1-bit SGD) [2] is a classic and primitive
gradient quantization work which uses 1-bit quantization and
dramatically enhances the communication efficiency. Quan-
tized Stochastic Gradient Descent (QSGD) adopts stochastic
randomized rounding to obtain an unbiased estimator after
compression. SignSGD and its variant with momentum named
Signum [7] were designed to only transmit the 1-bit gradient
sign between worker and central node, which is convenient to
implement.

Gradient sparsification is another widely-used strategy to
decrease the communication cost which sparsifies the gradient
instead of quantizing each element. The most popular way is to
extract the top-k coordinates of local workers and send them to
the master node to estimate the mini-batch gradient. Some of
these methods also combine gradient sparsicifation with other
techniques such as momentum correction and error-feedback.
For example, MEM-SGD [6] adds back the accumulated error
before each transmission and is proven to achieve the same
convergence rate as SGD.

Recently, more variants of gradient compression with the-
oretical guarantees have been proposed, such as SGD with
Error-Feedback (EF-SGD) [8], Distributed SGD with Error-
Feedback (dist-EF-SGD) [9] and SGD with Error Reset
(CSER) [10]. In some recent works like [9], [10], the ag-
gregated gradient estimator is also compressed before sending
back to workers. Some works also apply gradient compression
to other optimizer such as Frank-Wolfe algorithm [11].

Besides, to solve problem (1), we also need an efficient
optimizer to search for the optimal solution. Among existing
popular optimization methods, adaptive gradient algorithms
[12], [13] have become ones of the most important optimiza-
tion algorithms to pursue higher efficiency or accuracy in a
wide range of data mining and machine learning problems.
In the family of adaptive gradient algorithms, Adam [14] is
one of the most popular ones that combines momentum and
adaptive learning rate. Though it achieves great success in

ar
X

iv
:2

21
0.

07
45

4v
1

 [
cs

.L
G

]
 1

4
O

ct
 2

02
2

practice, several technical issues in the analysis were pointed
out [15] and in some cases the algorithm could diverge.

In [15], two variants of Adam, named as AMSGrad and
Adamnc, were proposed to fix the theoretical issues in the
analysis of Adam. AMSGrad makes quantity Γt+1 = (

√
Vt+1

αt+1
−

√
Vt
αt

) positive to ensure the convergence, while Adamnc adopts
an increasing parameter β2,t = 1− 1

t .
Despite of the success of gradient compression methods, it

is hard to use them in distributed adaptive gradient method.
So far the application of gradient compression to adaptive
gradient algorithm with theoretical guarantee is still limited.
Quantized Adam [16] combines gradient quantization with
Adamnc, which keeps track of local momentum and variance
terms on each worker node and uses quantization when
averaging the parameter. Efficient-Adam [17] is similar to
Quantized Adam where the gradient message sent back is also
compressed. However, both Quantized Adam and Efficient-
Adam are not proven to achieve linear speedup or convergence
on non-iid data. APMSqueeze [18] and 1-bit Adam [19]
are Adam-preconditioned momentum SGD algorithms with
gradient compression. However, the variance term is fixed
during the training process. Even though it is computed by
Adam at the end of warmup step, technically APMSqueeze
and 1-bit Adam are not a true adaptive gradient method.

Therefore, it is difficult to apply gradient compression to
adaptive gradient methods and maintain the excellent perfor-
mance of distributed Adam-type algorithms. The challenge is
that the original adaptive learning rate is adjustable based on
global information such as the aggregated gradient. Although
the compressed message is a good estimation of local gradient
or momentum, the adaptive learning rate calculated by these
inexact messages could be far away from the original one.

To address the challenging high communication cost lim-
itation in distributed adaptive gradient methods, we propose
a class of novel distributed Adam-type algorithms (called as
SketchedAMSGrad), based on the distributed version of AMS-
Grad [15] algorithm and the gradient sparsification technique
named sketching [20], [21].

Our main contributions are summarized as follows:

(1) To efficiently address the communication bottleneck
problem in distributed data mining, we propose a
class of novel communication-efficient algorithms named
SketchedAMSGrad with two averaging strategies: param-
eter averaging and gradient averaging. Our new meth-
ods can reduce the communication cost from O(d) to
O(log(d)).

(2) We provide theoretical analysis based on mild assump-
tions to guarantee the convergence of our algorithms.
Specifically, we prove that our SketchedAMSGrad algo-
rithms have a convergence rate of O(1√

nT
), which shows

a linear speedup. Our theoretical analysis also allows the
data distribution to be non-identical.

(3) To the best of our knowledge, our method is the first one
to utilize the sketching technique to solve the communica-
tion bottleneck in distributed adaptive gradient methods.

The experimental results on training various DNNs verify
the performances of our algorithms, on both identical and
non-identical distributed datasets.

II. RELATED WORKS

In the section, we review the related adaptive gradient
algorithms with their compressed versions and introduce some
preliminary background of sketching. The summary of proper-
ties of related methods is listed in Table I. Top-k is considered
as the compressor in the result of convergence rate.

A. Quantized-Adam and Efficient-Adam

Quantized-Adam [16] is proposed to combine quantization
scheme with distributed Adam algorithm to reduce the com-
munication cost. Specifically, on each worker, it owns a local
momentum term m

(i)
t and a local variance term v

(i)
t . These

two terms are updated by the exponential moving averaging
used in Adam-type algorithms. Gradient quantization is used

to compress the term m
(i)
t /

√
v
(i)
t .

Efficient-Adam [17] is a similar work to Quantized Adam.
The only difference is that when the parameter server sends
information back to worker nodes, Efficient-Adam compresses
the updating term, which is more common in related works,
while Quantized-Adam quantizes the parameter. Actually, both
Quantized-Adam and Efficient-Adam allow other compressors
if they satisfy the compressor assumption that there exists a
constant θ ∈ (0, 1] such that

‖C(x)− x‖ ≤ (1− θ)‖x‖. (2)

These two algorithms are parameter averaging since if there
is no compression, they degenerate to an algorithm where each
node is updated by Adam and then the model parameter is
averaged. It is not mathematically equivalent to the typical
distributed Adam algorithm where gradient averaging is used.
Though in some cases parameter averaging is convenient to
implement, it is likely to cause bad convergence or be detri-
mental to the model accuracy especially when the optimizer
relies on past local gradient [1]. Besides, in the convergence
analysis of Quantized-Adam and Efficient-Adam, the data
distribution {Di}ni=1 have to be identical and the convergence
rate does not achieve a linear speedup.

B. APMSqueeze and 1-bit Adam Algorithms

APMSqueeze [18] and 1-bit Adam [19] are communication-
efficient Adam-preconditioned momentum SGD algorithms.
Since the definitions of these two algorithms are similar and
1-bit Adam is the later work, in this paper we will only discuss
1-bit Adam. In the warmup stage, it calculates a variance term
vTw

. During the training process, vTw
is fixed and serves as

the exponential moving averages term vt in regular Adam-
type algorithms. 1-bit Adam is a gradient averaging algorithm.
According to the convergence analysis of [19], 1-bit Adam
achieves a linear speedup with a convergence rate of O(1√

nT
)

for a fixed T . However, since vTw
is a fixed variable, 1-bit

Adam is not technically an adaptive gradient method. In our
method, the variance term vt is dynamic and computed by

TABLE I: Comparison of Related Algorithms with Compression

Name Convergence rate Linear speedup Non-iid Adaptive Reference

Quantized-Adam O(1√
T
) × ×

√
[16]

Efficient-Adam O(1√
T
) × ×

√
[17]

APMSqueeze O(1√
nT

+ 1
(k/d)2/3T2/3)

√ √
× [18]

1-bit Adam O(1√
nT

+ 1
(k/d)2/3T2/3)

√ √
× [19]

SketchedAMSGrad (GA) O(1√
nT

+ 1
(k/d)2T

)
√ √ √

this paper

exponential moving averaging. Besides, we do not need a sep-
arate warmup stage where another communication-inefficient
optimizer is used. Furthermore, 1-bit Adam requires the gradi-
ent compressor to satisfy an assumption that ‖C(x)− x‖ ≤ ε
for some constant ε. Under the condition of this paper, the
bound epsilon in 1-bit Adam should be O(dGk) where G is the
bounded gradient. Hence we can reach the convergence rate
in Table I. The second dominating term in the convergence
rate is O(1

(k/d)2/3T 2/3). We will compare it with the result of
sketching method in next subsection.

C. Sketching

In this subsection we introduce some preliminary back-
ground about sketching before moving forward to our pro-
posed algorithms. Sketching [20], [21] is a novel and promis-
ing gradient sparsicifation technique that compresses a gradi-
ent vector g into a sketch S(g) of size O(log(d)ε−1) such
that S(g) can approximately recover every coordinates by
ĝ2i = g2i ± ε‖g‖22. It is originated from a data structure
used in data streaming named Count Sketch [22] which is
designed to find large coordinates in a vector g defined by a
sequence of updates {(ij , wj)}nj=1. When we use sketching to
reduce the communication cost, the sketching and unsketching
process are demonstrated in Algorithm 4 in [20]. We have a
r × c table of counters S, sign hashes {sj}rj=1 and bucket
hashes {hj}rj=1. Given an update (i, fi), where i is an index
and fi is the i-th coordinate of a vector f , S is updated
by S[j, hj(i)] += sj(i)fi for j = 1, · · · r. It is obvious
that sketching operator is linear and satisfies the following
formulation:

S(αg1 + βg2) = αS(g1) + βS(g2). (3)

Therefore, the sketches from different workers can be aggre-
gated on the parameter server. The unsketching operator is to
get an estimation which is derived from the median value of
sj(i)S[j, hj(i)] for j = 1, · · · r.

In [20], sketching serves as a compressor that will ap-
proximately recover the true top-k coordinates of mini-batch
gradient 1

n

∑n
i=1 g

(i)
t where n is the number of workers.

In [23], the authors explicitly treat it as a compressor and
denote the sketching and unsketching operators by S and U
respectively. For convenience, we also use these notations
in this paper. Sketching method reduces the communication
cost to O(log(d)) while gradient quantization only achieves
a constant level reduction and the communication cost is still
O(d). The current best results for quantization method achieve
an approximate 32× compression rate [9], [24]. vqSGD [25] is

actually a sparsification method that maps a gradient vector to
the set of vertices of a convex hull so here we do not categorize
it as a quantization method. Compared with top-k method, one
advantage of sketching is to recover the true top-k coordinates,
where the gradient estimator is v1 ≈ Topk(1

n

∑n
i=1 g

(i)
t).

Although applying the method in [9] can avoid the O(n) return
communication cost mentioned in [20], the gradient estimator
v2 = Topk(1

n

∑n
i=1 Topk(g

(i)
t)) is still probably far away

from the true top-k coordinates. This issue can be reflected
by the second dominating term in the convergence rate. In
[9], the second dominating term is O(1

(k/d)4/3T 2/3) which is
claimed to be the price to pay for two-way compression and
linear speedup. In 1-bit Adam the step size is dependent on
the compression ratio and this term becomes O(1

(k/d)2/3T 2/3)
as we have mentioned. However, in Sketched-SGD and our
algorithms, the corresponding term is O(1

(k/d)2T), which is
smaller when T is large.

III. SKETCHED ADAM-TYPE ALGORITHMS

In the section, we propose a class of efficient sketched
distributed Adam-type algorithms.

A. SketchedAMSGrad (Parameter Averaging)

In this subsection, we will propose the SketchedAMSGrad
(PA) algorithm using parameter averaging, the description of
which is shown in Algorithm 1.

In Algorithm 1, we use AMSGrad algorithm to update
each worker node, based on local momentum term m

(i)
t and

exponential moving averages of squared past gradients v(i)t .
αt is the stepsize and β1, β2 ∈ (0, 1) are exponential moving
average hyperparameters in Adam-type algorithm. ε > 0 is
the initial value of v0 to avoid zero denominators. The mul-
tiplication, division and square operation between vectors are
component-wise. We use sketching to improve communication
efficiency and average the parameters. We also use error-
feedback to further accelerate the convergence.

For convenience, we also use the notations S and U defined
in [23] to represent the sketching operator and unsketching
operator. They can be treated as a compressor that will
approximately recover the true top-k coordinates. In practice,
we use a second round communication which is also required
in SketchedSGD [20]. After unsketching, we get an estimation
of the aggregated mini-batch gradient which is denoted by
U(St). Then we select the largest Pk coordinates to extract
their exact values before sketching from each worker during
the second round communication. Finally, we select the top-
k coordinates among these Pk coordinates as ∆t and send

Algorithm 1 SketchedAMSGrad (parameter averaging)

Input: initial value x1, sketching operator S and unsketch-
ing operator U
Set: m(i)

0 =0, v(i)0 = v̂
(i)
0 =ε, e(i)0 =0 on i-th worker node

for t = 1 to T do
On i-th worker node:

Estimate a stochastic gradient g(i)t ;
Compute m(i)

t = β1m
(i)
t−1 + (1− β1)g

(i)
t ;

v
(i)
t = β2v

(i)
t−1 + (1− β2)[g

(i)
t]2;

v̂
(i)
t = max{v̂(i)t−1, v

(i)
t };

Sketch S(i)
t = S(m

(i)
t /

√
v̂
(i)
t + αt−1

αt
e
(i)
t−1);

Send S(i)
t to the master node;

Send ∆
(i)
t to the master node after unsketching;

Compute e(i)t = m
(i)
t /

√
v̂
(i)
t + αt−1

αt
e
(i)
t−1 −∆

(i)
t ;

Receive ∆t from the master node;
Update xt+1 = xt − αt∆t.

On the master node:
Aggregate St = 1

n

∑n
i=1 S

(i)
t ;

Unsketch ∆t = 1
n

∑n
i=1 ∆

(i)
t = Top-k(U(St));

Send ∆t back to each worker node;
Update xt+1 = xt − αt∆t.

end for

it back to each worker. ∆
(i)
t contains the corresponding k

coordinates in m
(i)
t /

√
v̂
(i)
t + αt−1

αt
e
(i)
t−1 and automatically it

satisfies ∆t = 1
n

∑n
i=1 ∆

(i)
t . Therefore, at each iteration, the

total communication cost is |S|+Pk+k and the compression
rate is 2d/(|S| + Pk + k) where |S| is the size of sketch.
Using lemma 1 in [20] and replacing g̃t and ḡit with ∆t

and (m
(i)
t /

√
v̂
(i)
t + αt−1

αt
e
(i)
t−1), we can obtain the following

Lemma 1.

Lemma 1. In Algorithm 1, let ∆̃t = 1
n

∑n
i=1(m

(i)
t /

√
v̂
(i)
t +

αt−1

αt
e
(i)
t−1), and give sketch size Θ(k log(d/δ)), with the prob-

ability ≥ 1− δ, we have

‖∆t − ∆̃t‖2 ≤ (1− k

d
)‖∆̃t‖2. (4)

Lemma 1 indicates that ∆t is an estimation of ∆̃t and
illustrates how sketch can serve as a compressor.

B. SketchedAMSGrad (Gradient Averaging)

In the subsection, we propose the SketchedAMSGrad (GA)
algorithm using gradient averaging, which is demonstrated in
Algorithm 2.

In Algorithm 2, the meanings of hyperparameters αt, β1
and β2 are the same as those in Algorithm 1. We also keep
track of local momentum term m

(i)
t on each node but the

exponential moving averaging squared gradient vt is defined
on the master node. The index set It represents the coordinates
updated at iteration t, which is obtained by the unsketching
operator. Notation h(i)t = (g

(i)
t)It−1

means for ∀j ∈ It−1, h(i)t
maintains the j-th coordinate of g(i)t . Otherwise, if j /∈ It−1,

Algorithm 2 SketchedAMSGrad (gradient averaging)

Input: initial value x1, sketching operator S and unsketch-
ing operator U
Set: m(i)

0 = 0, e(i)0 = 0 on i-th worker node; v0 = v̂0 on
the master node; index set I0 = ∅
for t = 1 to T do

On i-th worker node:
Estimate a stochastic gradient g(i)t ;
Compute m(i)

t = β1m
(i)
t−1 + (1− β1)g

(i)
t ;

Send h(i)t = (g
(i)
t)It−1

to the master node;
Sketch S(i)

t = S(m
(i)
t + αt−1

αt
e
(i)
t−1);

Send S(i)
t to the master node;

Send ∆
(i)
t to the master node after unsketching;

Compute e(i)t = m
(i)
t + αt−1

αt
e
(i)
t−1 −∆

(i)
t ;

Receive ∆t from the master node;
Update xt+1 = xt − αt∆t.

On the master node:
Aggregate ht = 1

n

∑n
i=1 h

(i)
t ;

Compute vt = β2vt−1 + (1− β2)h2t ;
v̂t = max{v̂t−1, vt};
Aggregate St = 1

n

∑n
i=1 S

(i)
t ;

Unsketch ∆t=
1
n

∑n
i=1 ∆

(i)
t =Top-k(U(St, v̂t));

Send ∆t back to each worker node;
Update xt+1 = xt − αt∆t.

end for

the j-th coordinate of h(i)t is 0. We define It in this way
because we want to accumulate the coordinates of squared
gradient which are just updated and we want to define an
auxiliary sequence that makes the convergence analysis more
convenient. Algorithm 2 is a gradient averaging algorithm
because if there is no compressor applied, this algorithm is
degenerated to the common distributed AMSGrad optimizer.
In Algorithm 2 the unsketching operator U requires a vector v̂t
as another input and is used to recover the top-k coordinates
of term ∆̃t, which is defined as follows.

∆̃t =
1

n

n∑
i=1

∆̃
(i)
t , ∆̃

(i)
t = v̂

−1/2
t (m

(i)
t +

αt−1
αt

e
(i)
t−1) (5)

The index set of these k coordinates is denoted as It. The
implementation of U is shown in Algorithm 3, which is
established on the original sketching and unsketching operator.
According to the linear property of sketching S, it is equivalent
to compress ∆̃t by S and then unsketch it by the normal
unsketching operator. ∆

(i)
t contains the coordinates of ∆̃

(i)
t

that belongs to index set It and ∆t = 1
n

∑n
i=1 ∆

(i)
t . Therefore,

using lemma 1 in [20] and replacing g̃t and ḡit with ∆t and
∆̃

(i)
t , we reach our following Lemma 2.

Lemma 2. With sketch size Θ(k log(d/δ)) and with probabil-
ity ≥ 1− δ in Algorithm 2, we have

‖∆t − ∆̃t‖2 ≤ (1− k

d
)‖∆̃t‖2 (6)

Algorithm 3 Unsketching Operator in Algorithm 2

Input: r × c sketch S, vector v, bucket hashes {hj}rj=1,
original unsketching operator U0
for i = 1 to d do

for j = 1 to r do
S[j, hj(i)] = S[j, hj(i)]/

√
vi

end for
end for
return U0(S)

Lemma 2 is the key lemma to the analysis of our Algo-
rithm 2 which provides an estimation of term mt/

√
v̂t. It

is also the motivation to apply sketching in communication
efficient Adam-type algorithms. As the top-k coordinates of
mt/
√
v̂t and mt are likely to change a lot, it is hard to estimate

the Adam updating term mt/
√
v̂t by the known vector m(i)

t on
each node. However, the sketching technique makes it possible
within the communication cost of O(log(d)).

In Algorithm 2, thus, the total communication cost at each
iteration is |S|+Pk+2k and the compression rate is 2d/(|S|+
Pk + 2k) where |S| is the size of sketch.

In fact, our SketchedAMSGrad (GA) algorithm is com-
patible with 1-bit Adam algorithm. We can also regard the
vTw in the 1-bit Adam algorithm as the initial value of v0
in Algorithm 2. The only difference is that in the theoretical
analysis we need to replace the initial value ε with the vmin
defined in the 1-bit Adam. Moreover, if we do not send ht or
update vt, our algorithm is reduced to the 1-bit Adam with
sketching compressor.

IV. CONVERGENCE ANALYSIS

In the section, we provide the convergence analysis of our
algorithms. Due to the space limit, we will only provide the
proof outline for Theorem 1 and full proof for Theorem 2. We
begin with giving some mild assumptions.

Assumption 1. (Lipschitz Gradient) There is a constant L
such that for ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Assumption 2. (Lower Bound) Function f(x) has the lower
bound, i.e., infx∈Rd f(x) = f∗ > −∞

Assumption 3. (Bounded Gradient) There is a constant
G such that for ∀i ∈ {1, · · · , n}, ∀ξi ∼ Di, we have
‖∇Fi(x; ξi)‖∞ ≤ G.

These assumptions are commonly used in related works of
Adam-type algorithms in nonconvex optimization [26]–[28].
In our convergence analysis, we define the following constants.

γ0 = (1−δ)(1− k
d

)+δ, γ = 1− k

2d
(1−δ), γ1 =

(3− γ0)γ0
1− γ0

(7)

A. SketchedAMSGrad (PA)

Theorem 1. Assume that Assumption 1 to Assumption 3
are satisfied and data distribution {Di}ni=1 are identical. In

Algorithm 1, let β1 < 1, β2 < 1, ε > 0 and αt = α√
1+T

,
α > 0. Then we have

1

T

T∑
t=1

E‖∇f(xt)‖2 ≤
C1√
T

+
C2

T
,

where constants C1 and C2 are independent of T .

To prove Theorem 1, we define a useful auxiliary sequence
x̃t such that x̃1 = x1 and

x̃t+1 = x̃t − αt
1

n

n∑
i=1

m
(i)
t /

√
v̂
(i)
t . (8)

Let et = 1
n

∑n
i=1 e

(i)
t . The error compensation term e

(i)
t is

multiplied by a factor αt−1/αt because it always satisfies

xt − x̃t = αt−1et−1. (9)

Next we will provide the proof outline of Theorem 1.

Proof. Let A(i)
t = αt[v̂

(i)
t]−1/2∇f(x̃t) for i = 1, · · · , n, t =

1, · · · , T and A(i)
0 = A

(i)
1 . Since m(i)

t = β1m
(i)
t−1+(1−β1)g

(i)
t

and m(i)
0 = 0, it is easy to check the following equation:

T∑
t=1

〈A(i)
t , g

(i)
t 〉 =

β1
1− β1

〈A(i)
T ,m

(i)
T 〉+

T∑
t=1

〈A(i)
t ,m

(i)
t 〉

+
β1

1− β1

T∑
t=1

〈A(i)
t −A

(i)
t+1,m

(i)
t 〉 (10)

The left hand side of Eq. (10) can be rewritten by

〈A(i)
t , g

(i)
t 〉 = 〈αt−1[v̂

(i)
t−1]−1/2∇f(xt), g

(i)
t 〉 − 〈(αt−1[v̂

(i)
t−1]−1/2

−αt[v̂(i)t]−1/2)∇f(x̃t), g
(i)
t 〉

−〈αt[v̂(i)t−1]−1/2(∇f(xt)−∇f(x̃t)), g
(i)
t 〉 (11)

Let ξ(i)t be the sample index set at iteration t on node i. As
data distribution Di’s are identical, we have

E
ξ
(i)
t
g
(i)
t = ∇f(xt) (12)

Therefore, if taking expectation on 〈[v̂(i)t−1]−1/2∇f(xt), g
(i)
t 〉

over ξ
(i)
t , we can replace the g

(i)
t with ∇f(xt). But this

operation is not allowed on 〈A(i)
t , g

(i)
t 〉 because v̂

(i)
t is also

dependent on ξ
(i)
t . We deal with it in this way because the

previous value v̂(i)t−1 is not determined by ξ
(i)
t . Next we will

estimate the terms in Eq. (10) and (11). Using Assumption 1
and the definition of x̃t in (8), we have

1

n

n∑
i=1

〈A(i)
t ,m

(i)
t 〉 = 〈∇f(x̃t),

1

n

n∑
i=1

αt[v̂
(i)
t]−1/2m

(i)
t 〉

≤ f(x̃t)− f(x̃t+1) +
L

2
‖x̃t+1 − x̃t‖2 (13)

By Young’s inequality and Assumption 3 we can obtain

1

n

n∑
i=1

〈A(i)
T ,m

(i)
T 〉 ≤ L‖x̃T+1 − x̃T ‖2 +

G2d

4L
(14)

With Assumption 3 and v̂(i)t+1 ≥ v̂
(i)
t , we can also obtain

〈A(i)
t −A

(i)
t+1,m

(i)
t 〉 ≤ G

2(‖αt[v̂(i)t]−1/2‖1−‖αt+1[v̂
(i)
t+1]−1/2‖1)

+ 〈∇f(x̃t)−∇f(x̃t+1), αt[v̂
(i)
t]−1/2m

(i)
t 〉 (15)

Sum i from 1 to n on Eq. (15) and we have

1

n

n∑
i=1

〈A(i)
t −A

(i)
t+1,m

(i)
t 〉 ≤ L‖x̃t+1 − x̃t‖2

+
G2

n

n∑
i=1

(‖αt[v̂(i)t]−1/2‖1 − ‖αt+1[v̂
(i)
t+1]−1/2‖1) (16)

where Assumption 1 is used. According to Assumption 3 and
the ascent of v̂(i)t ≥ v̂

(i)
t−1, we have

〈(αt−1[v̂
(i)
t−1]−1/2 − αt[v̂(i)t]−1/2)∇f(x̃t), g

(i)
t 〉

≤ G2(‖αt−1[v̂
(i)
t−1]−1/2‖1 − ‖αt[v̂(i)t]−1/2‖1) (17)

Next we can bound the last term in Eq. (11).

E〈αt[v̂(i)t−1]−1/2(∇f(xt)−∇f(x̃t)), g
(i)
t 〉 ≤

1

2
E〈αt[v̂(i)t−1]−1/2∇f(xt), g

(i)
t 〉+

αtL
2

2
√
ε
E‖xt − x̃t‖2 (18)

where we have used Assumption 1 and Cauchy-Schwartz
inequality. The first term of Eq. (18) can be merge into the
first term of Eq. (11). To finish the proof, we only need to
estimate E‖xt − x̃t‖2. It can be estimated according to the
following inequality

E‖αtet‖2 ≤ γ0E‖
1

n

n∑
i=1

αtm
(i)
t /

√
v̂
(i)
t + αt−1et−1‖2

≤ γ1E‖
1

n

n∑
i=1

αtm
(i)
t /

√
v̂
(i)
t ‖2 + γE‖αt−1et−1‖2

≤ γ1
t∑

s=1

γt−sE‖ 1

n

n∑
i=1

αs[v̂
(i)
s]−1/2m(i)

s ‖2

= γ1

t∑
s=1

γt−sE‖x̃s+1 − x̃s‖2 (19)

Here the first inequality is because with probability p > 1−δ,
it satisfies ‖αtet‖2 ≤ (1 − k

d) ‖ 1n
∑n
i=1 αt[v̂

(i)
t]−1/2m

(i)
t +

αt−1et−1‖2. Otherwise with probability p < δ, ∆t is
still some coordinates of ∆̃t. It always satisfies ‖αtet‖ ≤
‖ 1n

∑n
i=1 αt[v̂

(i)
t]−1/2m

(i)
t +αt−1et−1‖. Hence we can get the

first inequality of Eq. (19). In the third inequality of Eq. (19)
we use Young’s inequality. In the third inequality of Eq. (19)
we apply recursion to the second inequality.

Finally, we can reach the conclusion of Theorem 1 with the
following C1 and C2

C1 =
2G(f(x1)− f∗)

α
+

β1G
3d

2Lα(1− β1)
+

4GLαd

(1− β1)(1− β2)
,

C2 =
GL2α2dγ1√

ε(1− β2)(1− γ)
+

2G3d√
ε(1− β1)

. (20)

which will be omitted due to space limit.

B. SketchedAMSGrad (GA)

Theorem 2. Assume that Assumptions 1-3 are satisfied. In
Algorithm 2, let β1 < 1, β2 < 1, ε > 0 and αt = α√

1+T/n
,

α > 0. Then we have

1

T

T∑
t=1

E‖∇f(xt)‖2 ≤
C1√
nT

+
C1 + C2

T
,

where constants C1 and C2 are independent of T .

Similar to the analysis of Algorithm 1, we also define
et = 1

n

∑n
i=1 e

(i)
t and define an auxiliary sequence x̃t in the

convergence analysis, which satisfies x̃1 = x1 and

x̃t+1 = x̃t −
1

n

n∑
i=1

αtv̂
−1/2
t m

(i)
t . (21)

We can prove that sequence x̃t satisfies the following Lemma 3

Lemma 3. In Algorithm 2, we always have

xt − x̃t = αt−1v̂
−1/2
t−1 et−1. (22)

Proof. By the definition of x̃t, ∆t and et, we have

xt − x̃t = αt−1v̂
−1/2
t−1 et−1 +

t−2∑
s=1

αs(v̂
−1/2
s − v̂−1/2s+1)es (23)

As v̂s ≥ vs for each element, the coordinate in vs+1 which is
not updated at iteration s+1 keeps the same as vs and is always
smaller that the corresponding coordinate in v̂s. Moreover,
since v̂s+1 = max{v̂s, vs+1}, we reach the conclusion that
for any index j /∈ Is, the value of j-th coordinate in term
(v̂
−1/2
s −v̂−1/2s+1) must be 0. On the other hand, by the definition

of ∆t and et, for any index j ∈ Is, the j-th coordinate of
es is always 0. Therefore, term (v̂

−1/2
s − v̂−1/2s+1) and es are

orthogonal and we can prove our Lemma 3.

Next we will provide the proof outline of Theorem 2.

Proof. We define
gt =

1

n

n∑
i=1

g
(i)
t , mt =

1

n

n∑
i=1

m
(i)
t . (24)

It automatically satisfies

mt = (1− β1)mt−1 + β1gt, x̃t+1 = x̃t − αtv̂−1/2t mt (25)

Let At = αtv̂
−1/2
t ∇f(x̃t) for t = 1, · · · , T and A0 = A1. By

Eq. (25) and m0 = 0, it is easy to check
T∑
t=1

〈At, gt〉 =
β1

1− β1
〈AT ,mT 〉+

T∑
t=1

〈At,mt〉

+
β1

1− β1

T∑
t=1

〈At −At+1,mt〉 (26)

The left hand side of Eq. (26) can be rewritten by

〈At, gt〉 = 〈αt−1v̂
−1/2
t−1 ∇f(xt), gt〉 − 〈(αt−1v̂

−1/2
t−1 − αtv̂

−1/2
t)

· ∇f(x̃t), gt〉 − 〈αtv̂−1/2
t−1 (∇f(xt)−∇f(x̃t)), gt〉 (27)

Similar to Sketched-AMSGrad (GA), we want to obtain
‖∇f(xt)‖2 by taking expectation on gt. However, we cannot
do this by taking expectation directly on 〈At, gt〉 because v̂t

is also determined by ξ
(i)
t . But the previous value v̂t−1 does

not depend on ξ(i)t . Therefore, we have

Eξt〈αt−1v̂
−1/2
t−1 ∇f(xt), gt〉 = 〈αt−1v̂

−1/2
t−1 ∇f(xt),∇f(xt)〉 (28)

By Young’s inequality and Assumption 3 we have

〈AT ,mT 〉=〈∇f(x̃T), αT v̂
−1/2
T mT 〉≤L‖αT v̂−1/2

T mT ‖2+
G2d

4L
(29)

The second term on the right of Eq. (26) can be estimated by

〈At,mt〉 = 〈∇f(x̃t), αtv̂
−1/2
t mt〉 = 〈∇f(x̃t), x̃t − x̃t+1〉

≤ f(x̃t)− f(x̃t+1) +
L

2
‖x̃t+1 − x̃t‖2 (30)

where the last inequality is due to Assumption 1. According to
Assumptions 1 and 3, Eq. (25) and v̂t+1 ≥ v̂t, we can obtain

〈At −At+1,mt〉 ≤ G2(‖αtv̂−1/2t ‖1 − ‖αt+1v̂
−1/2
t+1 ‖1)

+ L‖x̃t+1 − x̃t‖2 (31)

Similarly, we can bound the second right term of Eq. (27)

E〈(αt−1v̂−1/2t−1 − αtv̂
−1/2
t)∇f(x̃t), gt〉

≤ G2(‖αt−1v̂−1/2t−1 ‖1 − ‖αtv̂
−1/2
t ‖1) (32)

Now we only need to estimate the last term of Eq. (27).
With probability p > 1 − δ, it satisfies ‖αtet‖2 ≤ (1 −
k
d) ‖ 1n

∑n
i=1 αt[v̂

(i)
t]−1/2m

(i)
t + αt−1et−1‖2. Otherwise with

probability p < δ, ∆t is still some coordinates of ∆̃t. It always
satisfies ‖αtet‖ ≤ ‖ 1n

∑n
i=1 αt[v̂

(i)
t]−1/2m

(i)
t + αt−1et−1‖.

Hence we can get

E‖αtv̂−1/2t et‖2 ≤ γ1
t∑

s=1

γt−sE‖αsv̂−1/2s ms‖2 (33)

Taking expectation, we have estimation

E〈αtv̂−1/2
t−1 (∇f(xt)−∇f(x̃t)), gt〉

= E〈αtv̂−1/2
t−1 (∇f(xt)−∇f(x̃t)),∇f(xt)〉

≤ 1

2
E〈αt[v̂(i)t−1]−1/2∇f(xt),∇f(xt)〉+

αtL
2

2
√
ε
E‖xt − x̃t‖2 (34)

The inequality results from Cauchy-Schwartz inequality and
Assumption 1. Sum the last term of Eq. (34) from t = 1 to T
and we have

T∑
t=1

E‖xt − x̃t‖2 =

T∑
t=1

E‖αt−1v̂
−1/2
t−1 et−1‖2 (35)

≤γ1
T∑
t=1

t−1∑
s=1

γt−1−sE‖αsv̂−1/2
s ms‖2≤

γ1
(1− γ)

T∑
t=1

E‖αtv̂−1/2
t mt‖2

Combine Eqs. (26), (27), (29), (30), (31), (32), (34) and (35).
Take expectation and we have

1

2

T∑
t=1

E〈αt−1v̂
−1/2
t−1 ∇f(xt),∇f(xt)〉

≤ f(x̃1)− f(x̃T+1) +
β1G

2d

4L(1− β1)
+ (

L

2
+

2β1L

1− β1
)

·
T∑
t=1

E‖x̃t − x̃t+1‖2 +G2(‖α0v̂
−1/2
0 ‖1 − E‖αT v̂−1/2

T ‖1)

+
β1G

2

1− β1
(‖α1v̂

−1/2
1 ‖1−E‖αT+1v̂

−1/2
T+1 ‖1)+

L

2

T∑
t=1

E‖αtv̂−1/2
t gt‖2

+
αtL

2γ1
2
√
ε(1− γ)

T∑
t=1

E‖αtv̂−1/2
t mt‖2 (36)

As v̂t+1 ≥ v̂t, we have
T∑
t=1

‖αtv̂−1/2
t mt‖2 = (1− β1)2

T∑
t=1

‖
t∑

s=1

βt−s1 αtv̂
−1/2
t gs‖2

= (1− β1)2
T∑
t=1

t∑
s,j=1

β2t−s−j
1 〈αtv̂−1/2

t gs, αtv̂
−1/2
t gj〉 (37)

≤ (1− β1)

T∑
t=1

t∑
s=1

βt−s1 ‖αsv̂−1/2
s gs‖2 ≤

T∑
t=1

‖αtv̂−1/2
t gt‖2.

By Lemma 4 (shown after the proof) we also know that

E‖gt −∇f(xt)‖2 = E‖ 1

n

n∑
i=1

(g
(i)
t −∇fi(xt))‖

2 ≤ G2d

n
. (38)

According to Eqs. (25), (36), (37), (38) and Assumption 2 we
can obtain

1

2

T∑
t=1

E〈αt−1v̂
−1/2
t−1 ∇f(xt),∇f(xt)〉

≤ f(x1)−f∗+ β1G
2d

4L(1− β1)
+

G2αt√
ε(1− β1)

+ C0

T∑
t=1

E‖αtv̂−1/2
t gt‖2

≤ f(x1)− f∗ +
β1G

2d

4L(1− β1)
+

G2αt√
ε(1− β1)

+
2C0G

2d

nε

T∑
t=1

α2
t

+
2C0

ε

T∑
t=1

α2
tE‖∇f(xt)‖2. (39)

where C0 = (1+β1)L
1−β1

+ αtL
2γ1

2
√
ε(1−γ) is a constant as 0 < αt < α.

The left side of Eq. (39) can be lower bounded by
T∑
t=1

E〈αt−1v̂
−1/2
t−1 ∇f(xt), gt〉 ≥

T∑
t=1

αt
G

E‖∇f(xt)‖2. (40)

Since αt ≤ ε
8C0G

when T is large, we have

α

4G
√

1 + T
n

T∑
t=1

E‖∇f(xt)‖2 ≤ f(x1)− f∗ +
β1G

2d

4L(1− β1)

+
G2αt√
ε(1− β1)

+
2C0G

2d

nε

T∑
t=1

α2
t (41)

Let

C1 =
4G(f(x1)− f∗)

α
+

β1G
3d

Lα(1− β1)
+

8(1 + β1)LG3dα

ε(1− β1)

C2 =
4L2G3dα2γ1
ε3/2(1− γ)

+
4G3

√
ε(1− β1)

(42)

Then we can reach the conclusion

1

T

T∑
t=1

E‖∇f(xt)‖2 ≤
C1√
nT

+
C1 + C2

T
. (43)

using the fact that
√

1 + x ≤ 1 +
√
x.

Lemma 4. Let X1, · · · , Xk be independent stochastic vari-
ables with 0 means. Then we have E‖

∑k
j=1Xj‖2 =∑k

j=1 E‖Xj‖2.

Corollary 1. In Theorem 2, we can see the dominating term
is O(1√

nT
), which achieves a linear speedup compared with

AMSGrad in nonconvex optimization [27].

Remark 1. In Algorithm 2, the data distribution Di’s are
allowed to be non-identical, which implies it could be used
in more general problems such as federated learning [29]. In
both Algorithm 1 and Algorithm 2, β1 and β2 are constants
in (0, 1), which is applicable to the common default settings
that β1 = 0.9 and β2 = 0.999.

C. Discussion on the Compression Rate

In this subsection, we will discuss the how the compression
rate, i.e., the choice of k influences the convergence rate. In
both of Theorem 1 and Theorem 2, constant C1 is independent
on k. Hence the dominating term is not affected by the
compression rate. This result is the same as many other
gradient compression methods. According to the definitions
of C2 in Theorem 1 and Theorem 2, the second dominating
term is affected by k with the form O(1

(k/d)2T) for both pa-
rameter averaging and gradient averaging SketchedAMSGrad
algorithms.

V. EXPERIMENTS

In this section we will show the experimental results of two
distributed data mining tasks of image categorization to vali-
date our methods. All experiments are run on a server with 64-
core Intel Xeon E5-2683 v4 2.10GHz processor and 4 Nvidia
P40 GPUs. We simulate the edge-based training environment
on the GPU server where the root process represents the edge
server, each process represents an IoT device and the dataset
represents the captured data. The codes are implemented in
PyTorch 1.4.0 and CUDA 10.1.

A. ResNet on CIFAR
Our first task is to train ResNet-50 [30] using CIFAR10

and CIFAR100 datasets [31], which are benchmark datasets
for image classification tasks. Both CIFAR10 and CIFAR100
contain 60,000 32 × 32 pixel images with RGB channels,
50,000 of which is regarded as training set and the other
10,000 of which is used for testing. The images are distributed
evenly over 10 and 100 classes for CIFAR10 and CIFAR100
respectively. The ResNet-50 model has about 25M parameters.
We use cross-entropy loss to train the neural network.

In our experiment, we compare our SketchedAMSGrad
(PA) and SketchedAMSGrad (GA) with Sketched-SGD [20],
Efficient-Adam [17] and 1-bit Adam [19]. For Efficient-Adam
and 1-bit Adam, we consider both quantization and sparsifi-
cation as compressor. For gradient quantization, we adopt the
following scheme used in [9] which is a variant of SignSGD:

C(x) =
‖x‖1
d

sign(x) (44)

Compressor (44) automatically satisfies the compressor as-
sumption Eq (2) and achieves about 32× reduction of com-
munication cost. For gradient sparsification, we use top-k as
the compressor.

The number of workers in this task is set to be 16. The
batch-size on each worker node is 32. Hence the total batch-
size at each iteration is 512. We run 200 epochs in total.
For each algorithm, we grid search the learning rate from
{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} and ε from {1e −
2, 1e−4, 1e−6} and select the values that get the best training
result. For Adam-type algorithms, β1 and β2 are set to be
the common choices that β1 = 0.9 and β2 = 0.999. For 1-
bit Adam, similar to [19], we run 13 epochs to compute the
Adam-preconditioned vector vTw . For sketching methods, the
sketch is set to have 100,000 columns and 10 rows. We set
k = 50, 000 and P = 8. For Efficient-Adam and 1-bit Adam
with top-k compressor, we choose k = 750, 000. Therefore,
all algorithms implemented in this task are communication-
efficient and approximately achieve the same compression rate
(about 32× reduction).

Figure 1 shows the experimental results of this image clas-
sification task. According to the result of train loss value, we
can see the three sketching methods converge faster than other
algorithms on both CIFAR10 and CIFAR100 dataset. When
comparing the train accuracy, the sketching methods are still
advantageous over other methods. Our parameter averaging
and gradient averaging SketchedAMSGrad and SketchedSGD
approximately have the same performance. On CIFAR100,
our parameter averaging SketchedAMSGrad is slightly bet-
ter on the train accuracy results. According to the test
accuracy results, our gradient averaging SketchedAMSGrad
and SketchedSGD also outperform other algorithms on both
dataset. On CIFAR100, our gradient averaging SketchedAMS-
Grad achieves the best performance on test accuracy. From this
experiment we can see that although using compression on the
returning message avoids the growing O(n) communication
cost issue of local top-k (mentioned in [20]), it probably
encounters slow convergence since the estimator is too far
away from the true top-k coordinates.

Theoretically, when the sketch size is larger, the probability
of recovering top-k coordinates is higher. The sketch size used
in this experiment is 1,000,000. On CIFAR10, the test accuracy
of our SketchedAMSGrad (GA) is 91.04%. When we increase
the sketch size to 2,000,000 and 3,000,000, the test accuracy
is increased by 0.24% and 0.39% respectively. Thus, we can
see the influence of sketch size. If the sketch size larger, our
algorithm will probably show a better performance.

B. LeNet on MNIST
Our second task is to train MNIST dataset [32] using LeNet-

5 [33]. This task is conducted in [34] under non-identical data
partitioning. In this paper, we also run this experiment to verify
the performance of our algorithms and related algorithms
in the case of non-identical data distribution. MNIST is a
database of hand written digits that is usually used for training
image processing tasks. It contains 60,000 training images

Fig. 1: The experimental results of training ResNet-50 on CIFAR10 and CIFAR100. Figures (a), (b) and (c) show the
experimental results on CIFAR10. Figures (d), (e) and (f) show the experimental results on CIFAR100. Figures (a) and
(d) show the train loss value. Figures (b) and (e) show the train accuracy. Figures (c) and (f) show the test accuracy.

Fig. 2: The experimental results of training LeNet-5 on MNIST. Figures (a), (b) and (c) show the experimental results when
the number of workers is 50. Figures (d), (e) and (f) show the experimental results when the number of workers is 100. Figures
(a) and (d) show the train loss value. Figures (b) and (e) show the train accuracy. Figures (c) and (f) show the test accuracy.

and 10,000 testing images from 10 classes. Each sample is
a 28 × 28 grayscale image. The training model used in this
experiment is LeNet-5 which has about 60k parameters. We
choose cross-entropy loss to be our criterion. The number of
workers is set to be 50 and 100 respectively. Each worker can
only access its local data and the data distribution is made

non-identical.

In this experiment we also compare our parameter averaging
SketchedAMSGrad and gradient averaging SketchedAMSGrad
with SketchedSGD, Efficient-Adam and 1-bit Adam. Both
gradient quantization and gradient sparsification are consid-
ered as compressor in Efficient-Adam and 1-bit Adam. We

also use compressor (44) as quantization method and top-k
as sparsification method. We conduct two groups of experi-
ments, with the number of workers n = 50 and n = 100
respectively. The total number of training epoch is 100.
On each worker node, the batchsize is set to be 30. For
each algorithm, we also grid search the learning rate from
{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} and ε from {1e −
2, 1e−4, 1e−6} and select the values that get the best training
result. For Adam-type algorithms, we select β1 = 0.9 and
β2 = 0.999 as usual. For 1-bit Adam, we also run 13 epochs
to compute the Adam-preconditioned vector. For sketching
methods, the sketch is set to have 400 columns and 5 rows.
We set k = 500 and P = 4. For Efficient-Adam and 1-bit
Adam with top-k compressor, we choose k = 2, 000. With
these settings, the compression rate of different algorithms are
approximately the same. The experimental results are shown
in Figure 2.

From the train loss results we can see that when data
distribution is non-identical, generally gradient averaging al-
gorithms SketchedSGD, SketchedAMSGrad (GA) and 1-bit
Adam performs better than parameter averaging algorithms.
Among these communication efficient adaptive gradient al-
gorithms, our gradient averaging SketchedAMSGrad (GA)
achieves the best convergence result in both n = 50 and
n = 100 cases according to the train loss figures.

VI. CONCLUSION

In this paper, we propose a class of communication-efficient
distributed adaptive gradient algorithm named SketchedAMS-
Grad based on two averaging strategies parameter averaging
and gradient averaging to tackle the high communication cost
issue for IoT edge-based training. Specifically, the commu-
nication cost of our algorithm at each iteration is reduced to
O(log(d)) from O(d). Moreover, we proved that our algorithm
achieves a fast convergence rate of Õ(1√

nT
), which achieves

the linear speedup with respect to the number of workers n,
compared with single-machine AMSGrad. In particular, our
analysis of gradient averaging SketchedAMSGrad can work
for both identical and non-identical data distribution. To the
best of our knowledge, our algorithm is the first to apply
sketching technique to adaptive gradient methods.

ACKNOWLEDGMENT

This work was partially supported by NSF IIS 1838627,
1837956, 1956002, 2211492, CNS 2213701, CCF 2217003,
DBI 2225775.

REFERENCES

[1] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch distributed:
Experiences on accelerating data parallel training,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, 2020.

[2] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” International Speech Communication Association, 2014.

[3] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Neural Information Processing Systems, 2017.

[4] A. F. Aji and K. Heafield, “Sparse communication for distributed gra-
dient descent,” Conference on Empirical Methods in Natural Language
Processing, 2017.

[5] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” Neural
Information Processing Systems, 2018.

[6] S. U. Stich, J. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,”
Neural Information Processing Systems, 2018.

[7] J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar,
“Signsgd: Compressed optimization for nonconvex problems,” Interna-
tional Conference on Machine Learning, 2018.

[8] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error
feedback fixes signsgd and other gradient compression schemes,” In-
ternational Conference on Machine Learning, 2019.

[9] S. Zheng, Z. Huang, and J. T. Kwok, “Communication-efficient dis-
tributed blockwise momentum sgd with error-feedback,” Neural Infor-
mation Processing Systems, 2019.

[10] C. Xie, S. Zheng, S. Koyejo, I. Gupta, M. Li, and H. Lin, “Cser:
Communication-efficient sgd with error reset,” in Advances in Neural
Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 12593–12603, Curran
Associates, Inc., 2020.

[11] W. Xian, F. Huang, and H. Huang, “Communication-efficient frank-
wolfe algorithm for nonconvex decentralized distributed learning,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 10405–10413, May 2021.

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, 2011.

[13] T. Tieleman and G. Hinton, “Rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for
machine learning, 2011.

[14] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2014.

[15] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” International Conference on Learning Representations, 2018.

[16] C. Chen, L. Shen, H. Huang, Q. Wu, and W. Liu, “Quantized adam with
error feedback,” arXiv:2004.14180, 2020.

[17] C. Chen, L. Shen, H. Huang, W. Liu, and Z. Luo, “Efficient-adam:
Communication-efficient distributed adam with complexity analysis,”
openreview.net, 2020.

[18] H. Tang, S. Gan, S. Rajbhandari, X. Lian, J. Liu, Y. He, and C. Zhang,
“Apmsqueeze: A communication efficient adam-preconditioned momen-
tum sgd algorithm,” arXiv:2008.11343, 2020.

[19] H. Tang, S. Gan, A. A. Awan, S. Rajbhandari, C. Li, X. Lian,
J. Liu, C. Zhang, and Y. He, “1-bit adam: Communication efficient
large-scale training with adam’s convergence speed,” arXiv preprint
arXiv:2102.02888, 2021.

[20] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora,
“Communication-efficient distributed sgd with sketching,” Neural Infor-
mation Processing Systems, 2019.

[21] T. Li, Z. Liu, V. Sekar, and V. Smith, “Privacy for free:
Communication-efficient learning with differential privacy using
sketches,” arXiv:1911.00972, 2019.

[22] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” International Colloquium on Automata, Languages, and
Programming, 2002.

[23] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient fed-
erated learning with sketching,” International Conference on Machine
Learning, 2020.

[24] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signsgd
with majority vote is communication efficient and fault tolerant,” Inter-
national Conference on Learning Representations, 2019.

[25] V. Gandikota, R. K. M. D. Kane, and A. Mazumdar, “vqsgd: Vector
quantized stochastic gradient descent,” arXiv:1911.07971, 2020.

[26] D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu, “On the con-
vergence of adaptive gradient methods for nonconvex optimization,”
arXiv:1808.05671, 2018.

[27] X. Chen, S. Liu, R. Sun, and M. Hong, “On the convergence of a class
of adam-type algorithms for nonconvex optimization,” International
Conference on Learning Representations, 2019.

[28] A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher, “A new
regret analysis for adam-type algorithms,” International Conference on
Machine Learning, 2020.

[29] J. Konečný, H. McMahan, F. Yu, A. Suresh, D. Bacon, and P. Richtarik,
“Federated learning: Strategies for improving communication effi-
ciency,” arXiv:1610.05492, 2016.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[31] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Technical Report TR-2009, 2009.

[32] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[33] A. El-Sawy, E.-B. Hazem, and M. Loey, “Cnn for handwritten arabic
digits recognition based on lenet-5,” International Conference on Ad-
vanced Intelligent Systems and Informatics, 2016.

[34] X. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng,
“Variance reduced local sgd with lower communication complexity,”
arXiv:1912.12844, 2019.

	I Introduction
	II Related Works
	II-A Quantized-Adam and Efficient-Adam
	II-B APMSqueeze and 1-bit Adam Algorithms
	II-C Sketching

	III Sketched Adam-type Algorithms
	III-A SketchedAMSGrad (Parameter Averaging)
	III-B SketchedAMSGrad (Gradient Averaging)

	IV Convergence Analysis
	IV-A SketchedAMSGrad (PA)
	IV-B SketchedAMSGrad (GA)
	IV-C Discussion on the Compression Rate

	V Experiments
	V-A ResNet on CIFAR
	V-B LeNet on MNIST

	VI Conclusion
	References

