

King’s Research Portal

Link to publication record in King's Research Portal

Citation for published version (APA):
Zhong, H., Loukidis, G., Conte, A., & Pissis, S. (Accepted/In press). Jaccard Median for Ego-network
Segmentation. IEEE International Conference on Data Mining (ICDM) 2022.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 30. Jun. 2023

https://kclpure.kcl.ac.uk/en/publications/be3de7de-b363-4fc1-afed-69b4e1917967

Jaccard Median for Ego-network Segmentation
Haodi Zhong1, Grigorios Loukides2, Alessio Conte3, and Solon P. Pissis4,5

1Xidian University, China
2King’s College London, United Kingdom

3University of Pisa, Italy
4CWI, The Netherlands

5Vrije Universiteit, The Netherlands
1zhonghaodi429@gmail.com, 2grigorios.loukides@kcl.ac.uk, 3alessio.conte@unipi.it, and 4solon.pissis@cwi.nl

Abstract—An ego-network is a graph representing the inter-
actions of a node (ego) with its neighbors and the interactions
among those neighbors. A sequence of ego-networks having the
same ego can thus model the evolution of these interactions over
time. We introduce the problem of segmenting a sequence of
ego-networks into k segments, for any given integer k. Each
segment is represented by a summary network, and the goal
is to minimize the total loss of representing k segments by k
summaries. The problem allows partitioning the sequence into
homogeneous segments with respect to the activities or properties
of the ego (e.g., to identify time periods when a user acquired
different circles of friends in a social network) and to compactly
represent each segment with a summary. The main challenge
is to construct a summary that represents a collection of ego-
networks with minimum loss. To address this challenge, we
employ Jaccard Median (JM), a well-known NP-hard problem for
summarizing sets, for which, however, no effective and efficient
algorithms are known. We develop a series of algorithms for
JM offering different effectiveness/efficiency trade-offs: (I) an
exact exponential-time algorithm, based on Mixed Integer Linear
Programming and (II) exact and approximation polynomial-
time algorithms for minimizing an upper bound of the objective
function of JM. By building upon these results, we design two
algorithms for segmenting a sequence of ego-networks that are
effective, as shown experimentally.

I. INTRODUCTION

An ego-network represents the interactions between a focal
entity and its neighbors, as well as interactions among those
neighbors. It can be modeled as an undirected graph where
a node u, called ego, must be connected to all other nodes,
and there may exist other edges between those nodes. Ego-
networks are often constructed from surveys or extracted from
larger networks [1]. See Fig. 1 for examples of ego-networks.

A sequence of ego-networks having the same ego can thus
naturally model the evolution of the interactions of an entity
with its neighbors and the interactions among these neighbors
over time. Consider a co-authorship network such as DBLP. A
sequence of the ego-networks of an author u represents who u
wrote papers with at different times. Also, consider a sequence
of ego-networks that are extracted from Twitter and have a
popular hashtag u as ego and other hashtags that co-occurred
with u as nodes. These ego-networks represent when u co-
occurred with some hashtags and if and when these hashtags
co-occurred at different times. Similarly, a sequence of ego-
networks for a Facebook user u represents when u acquired
some friends and if and when the friends of u became friends.

We introduce the problem of partitioning (segmenting) a
sequence of ego-networks having the same ego u into k con-
tiguous subsequences (segments), for any given integer k. Each
segment is associated with a network (graph), called summary,
which represents the ego-networks in the segment compactly.
Such a representation of a sequence incurs some loss (error)
that we seek to minimize. See Fig. 1 for an example illustrating
a sequence of ego-networks, its segmentation with k = 2, and
the summary of each segment.

Solving the ego-network sequence segmentation problem
enables us to find k time periods that are as homogeneous as
possible with respect to the activities or properties of u and to
compactly represent each such time period with a summary.
For example, segmenting a sequence of ego-networks of an
author u in DBLP allows identifying the time periods in which
u worked with different coauthors (e.g., due to their interest
in emerging areas) and to obtain a compact representation
of u and their coauthors for each time period. Similarly,
segmenting a sequence of ego-networks from Facebook allows
us to identify time periods when a user’s friendships remained
stable, as a result of working in the same organization or living
in the same city, and also obtain their compact representations.

The ego-network sequence segmentation problem is con-
ceptually similar to the well-known problem of time-series
segmentation [2], [3] but introduces two challenges: (I) how to
represent a sequence of graphs with a summary; and (II) how
to construct an optimal summary efficiently. These challenges
do not arise in time-series segmentation, as statistics such as
the median or mean can serve as optimal representatives with
respect to popular error measures [2]. The problem is also
related to anomaly detection [4], [5], [6].

To address challenges I and II, we observe that all ego-
networks have the same ego and are aligned (i.e., the cor-
respondence between nodes across networks is known), as
they model some known entities (e.g., DBLP authors, Twitter
hashtags or Facebook users). Thus, we represent each ego-
network by its edge set and propose using the notion of set
median (a set with minimum total distance from the sets
of a given collection of sets) as a summary that represents
the edge sets. Specifically, we construct a summary with
respect to Jaccard distance, based on the Jaccard Median (JM)
problem [7], [8], [9]. More formally, let X and Y be two
sets and JD(X,Y) = 1 − |X∩Y ||X∪Y | be their Jaccard distance.

1

(a)

0

1 2

3

0

1 2

3

4 0

1

3

4

(b)

0

1

5
6

0

1

5
6

7

(c)

0

1 2

3

4

(d)

0

1

5
6

7

Fig. 1: (a, b) Ego-networks with node 0 as ego. The ego-networks in Fig. 1(a) (respectively, Fig. 1(b)) correspond to the first
(respectively, second) segment. (c) Summary of the ego-networks in Fig. 1(a). (d) Summary of the ego-networks in Fig. 1(b).

Given U = {u1, . . . , un} and a collection C = {C1, . . . , Cm}
of subsets of U , JM asks for a set M ⊆ U such that∑
i∈[m] JD(Ci,M) is minimized. An optimal JM solution

provides us with an edge set that is as close as possible with
respect to Jaccard distance to the others in the collection, thus
a good summary. For example, a solution to JM with the
collection of edge sets of the ego-networks in Fig. 1(a) as
input is shown in Fig. 1(c).

Jaccard distance is suitable for ego-network segmentation
because: (I) it has a clear interpretation as the proportion of
edges that are in only one input edge set with respect to the
total number of edges appearing in either edge set; (II) it is
effective at capturing changes to the underlying graph structure
around a node over time [10]; and (III) it is computable in
linear time in the total size of the two input edge sets.

Unfortunately, however, JM is NP-hard to compute exactly
and (assuming P6=NP) cannot have a fully polynomial-time
approximation scheme (FPTAS) [9]. In addition, the exist-
ing approximation algorithms for JM are not satisfactory in
practice. Two algorithms are known [9]: a 2-approximation
algorithm and a PTAS (1 + ε)-approximation algorithm, for
any ε > 0. The first is a simple O(nm2)-time algorithm, which
returns the best element of C with respect to Jaccard distance
as a solution. This algorithm is ineffective, as shown in our
experiments. The second algorithm is inefficient as it takes

(nm)
1

εO(1) time, which implies that, even for ε = 1 needed to
obtain a 2-approximation, it takes Ω(nm) time.

Contributions. We introduce the problem of segmenting a
sequence of ego-networks and solve it via proposing practical
algorithms for JM. In summary, our contributions are:

1. We develop an exact algorithm for JM, based on Mixed
Integer Linear Programming (MILP). Thus, using any spe-
cialized solver, we can find a single optimal solution and also
enumerate all optimal solutions. In accordance with the NP-
hardness of JM, the algorithm takes in general exponential
time in the size of the input; it is however useful for evaluating
our other algorithms on small instances.

2. We alleviate the computational difficulty of JM by
plugging in the Sørensen-Dice coefficient [11], a well-known
similarity measure for sets, instead of the Jaccard distance.
Specifically, we provide an upper bound for the objective
function of JM based on the Sørensen-Dice coefficient and
develop EXACT-SCUB, an exact O(n3m)-time algorithm that
minimizes the bound. We also develop two more efficient
variants of EXACT-SCUB. The first constructs an exact solu-
tion of fixed size ρ in O(nmρ) time; it may be useful when
one wants to control the summary size (e.g., for compactly

representing a sequence based on the segment summaries). The
second variant constructs an exact solution in O(n2m) time,
when all ego-networks have the same size. If the latter does
not hold, it is still a very effective approximation algorithm.
Both EXACT-SCUB and its variants are orders of magnitude
faster than the MILP algorithm and find near-optimal solutions
to the JM problem, as shown in our experiments.

3. We build on the above results to design two segmentation
algorithms: one exact based on dynamic programming [12],
[2]; and another based on a top-down heuristic [2]. Both
algorithms can use any of our algorithms for the JM problem
as a subroutine to construct the summaries.

4. We present experiments showing that our algorithms: (I)
find optimal or near-optimal solutions to the JM problem, sub-
stantially outperforming the 2-approximation algorithm of [9];
and (II) are much more effective in ego-network segmentation
than several state-of-the-art methods [13], [4], [5], [6].

II. BACKGROUND AND PROBLEM STATEMENTS

Preliminaries. An ego-network is a triple G = (u, V,E), such
that V = {u, v1, . . . , v|V |−1} and {(u, v1), . . . , (u, v|V |−1)} ⊆
E ⊆ V ×V . That is, every node vi 6= u, i ∈ [1, |V |−1], is con-
nected to u and can potentially be connected to other nodes.
Let X and Y be two sets. Based on the inclusion/exclusion
principle, it holds that |X ∪ Y | = |X|+ |Y | − |X ∩ Y |. The
Jaccard coefficient of X and Y is defined as J C(X,Y) =
|X∩Y |
|X∪Y | and the Jaccard distance is defined as JD(X,Y) =

1 − |X∩Y ||X∪Y | . Another popular similarity measure for sets is
the Sørensen-Dice coefficient [11]. For sets X and Y , it is
defined as SDC(X,Y) = 2 |X∩Y ||X|+|Y | and can be easily rewritten

as 1−JD(X,Y)
1−JD(X,Y)/2 . Let U be a universe of elements and 2U

be its power set. A function f : 2U → R is monotone, if
f(X) ≤ f(Y) for all subsets X ⊆ Y ⊆ U . A function f that
is not monotone is referred to as non-monotone.

Segmentation. A k-segmentation of a sequence E1,m =
E1, . . . , Em of sets is a partition of E1,m into k contiguous
subsequences (segments) E1,j1 , . . . , Ejk−1+1,m, where the sub-
scripts in a subsequence denote the indices of the first and
last set in the subsequence. Let E1,j1 , . . . , Ejk−1+1,m be k
feasible JM solutions (summaries) for E1,j1 , . . . , Ejk−1+1,m.
The error of this k-segmentation is then calculated as∑j1
i=1 JD(Ei, E1,j1)+ . . .+

∑m
i=jk−1+1 JD(Ei, Ejk−1+1,m).

We next define the Set Sequence Segmentation (SSS) problem.

Problem 1 (Set Sequence Segmentation (SSS)). Given a
sequence E1,m = E1, . . . , Em of sets and an integer k > 0,
find a k-segmentation of E1,m minimizing the error.

2

Since Problem 1 (SSS) with k = 1 is essentially JM, it is
NP-hard and there is no FPTAS for it (assuming P6=NP) [9].

We now consider a collection of ego-networks that have
the same ego. As the ego-networks are aligned, we view each
ego-network merely as its set of edges. We can thus provide
the edge sets E1, . . . , Em of the ego-networks as input to
JM to construct a set E[m] of edges that has minimum total
Jaccard distance from the edge sets. For brevity, we may
denote | ∪i∈[m] Ei| by n and

∑
i∈[m] |Ei| by N .

We refer to E[m] as the summary of E1, . . . , Em and to
the JM problem that takes as input the edge sets E1, . . . , Em
as Summary Construction (SC). Similarly, we refer to the SSS
that takes as input a sequence of edge sets E1, . . . , Em as Ego-
network Sequence Segmentation (ESS). Note that the order of
the input edge sets plays no role in SC, but it is crucial to
be maintained in ESS, as the segmentation will be different
should the order change.

III. SC AS A MIXED INTEGER LINEAR PROGRAM

The objective function in the SC problem can be written as∑
i∈[m] JD(Ei, E[m]) =

∑
i∈[m](1−

|Ei∩E[m]|
|Ei∪E[m]|

). Thus, we can

minimize it by maximizing
∑
i∈[m]

|Ei∩E[m]|
|Ei∪E[m]|

. We achieve this
by a novel Mixed Integer Linear Program (MILP) formulation.

Recall that n = | ∪i∈[m] Ei|. We associate each edge ej ∈
∪i∈[m]Ei with a binary variable xj , j ∈ [n], which is equal to
1 if ej ∈ E[m] and 0, otherwise. We also consider a coefficient
aij which is equal to 1 if ej ∈ Ei and 0, otherwise. Thus, we
can express |E[m]| as

∑n
j=1 xj and |Ei∩E[m]| as

∑n
j=1 aijxj .

Furthermore, based on the inclusion/exclusion principle, we
can write |Ei∪E[m]| = |Ei|+ |E[m]|−|Ei∩E[m]| and express
it as |Ei|+

∑n
j=1 xj−

∑n
j=1 aijxj = |Ei|+

∑n
j=1(1−aij)xj .

Therefore,
∑
i∈[m]

|Ei∩E[m]|
|Ei∪E[m]|

is maximized by solving the
following fractional 0-1 program:

max
∑m
i=1

∑n
j=1 aijxj

|Ei|+
∑n
j=1(1− aij)xj

(1a)

s.t. xj ∈ {0, 1}, j ∈ [n]. (1b)

Fractional 0-1 programs are in general very difficult to
solve directly due to their nonlinear objective functions and
the discrete nature of their decision variables. However, it
is fortunately possible to formulate our fractional program
as an MILP, based on the general methodology of [14]. We
do this in two steps. First, we use a substitution variable
yi = 1

|Ei|+
∑n
j=1(1−aij)xj

, for each i ∈ [m]. Since yi ∈
[1
|Ei|+n ,

1
|Ei|], for each i ∈ [m], the substitution leads to the

following nonlinear reformulation of the fractional program:

max
∑m
i=1

∑n
j=1 aijyixj (2a)

s.t. |Ei|yi +
∑n
j=1(1− aij)yixj − 1 = 0, i ∈ [m] (2b)

xj ∈ {0, 1} , j ∈ [n] (2c)

yi ∈ [
1

|Ei|+ n
,

1

|Ei|
] , i ∈ [m], (2d)

where Eq. 2b is introduced to enforce the substitution.
In the second step, we linearize this program by setting

zij = yixj , for all i ∈ [m] and j ∈ [n]. By do-
ing so, we obtain the following MILP formulation of SC:

max
∑m
i=1

∑n
j=1 aijzij (3a)

s.t. |Ei|yi +
∑n
j=1(1− aij)zij − 1 = 0 , i ∈ [m] (3b)

zij ≤
1

|Ei|
xj , i ∈ [m], j ∈ [n] (3c)

zij ≤ yi +
1

|Ei|+ n
(xj − 1) , i ∈ [m], j ∈ [n] (3d)

zij ≥
1

|Ei|+ n
xj , i ∈ [m], j ∈ [n] (3e)

zij ≥ yi +
1

|Ei|
(xj − 1) , i ∈ [m], j ∈ [n] (3f)

xj ∈ {0, 1} , j ∈ [n] (3g)

yi ∈ [
1

|Ei|+ n
,

1

|Ei|
] , i ∈ [m]. (3h)

The constraints in Eqs. 3c to 3f are introduced to enforce
zij = yixj , for all i ∈ [m] and j ∈ [n]. To see this, let xj = 0
for some j ∈ [n]. Then, we get zij ≤ 0 from Eq. 3c and
zij ≥ 0 from Eq. 3e, which implies zij = yixj = yi · 0 = 0.
Now, let xj = 1. Then, we get zij ≤ min(1

|Ei| , yi) = yi
from Eqs. 3c and 3d and zij ≥ max(1

|Ei|+n , yi) = yi from
Eqs. 3e and 3f, which imply zij = yixj = yi·1 = yi. Similarly,
we can observe that zij = yixj for each yi satisfying Eq. 3h.

Finally, given an optimal solution of the MILP, we obtain
an optimal summary E[m] by adding, for each j ∈ [n] such
that xj = 1, an edge ej into E[m]. The resulting algorithm is
referred to as EXACT-SC. We obtain the following.

Theorem 1. EXACT-SC solves the SC problem exactly.

IV. GREEDY ALGORITHMS FOR AN UPPER BOUND OF JD

The computational difficulty of the SC problem is due to
the use of Jaccard distance. To alleviate this difficulty, we
consider a variant of the SC problem where an upper bound of
Jaccard distance is used instead. The upper bound we consider
is based on the Sørensen-Dice coefficient, as can be seen in
the following lemma (the proof is deferred to the full version):

Lemma 1 (JD Upper Bound). For any collection
E1, . . . , Em and any summary E[m], it holds that∑
i∈[m] JD(Ei, E[m]) ≤

∑
i∈[m](1 −

1
2SDC(Ei, E[m])).

We define JDUB(Ei, E[m]) = 1− 1
2SDC(Ei, E[m]) = 1−

|Ei∩E[m]|
|Ei|+|E[m]|

and refer to the variant of SC using JDUB as
SCUB (SC Upper Bound). We also observe the following (the
proof is deferred to the full version):

Lemma 2. Let E1, . . . , Em be a collection, U = ∪i∈[n]Ei,
and E[m] ⊆ U . The function

∑
i∈[m] JDUB(Ei, E[m]) is non-

monotone with respect to E[m].

An exact algorithm for SCUB. Notably, we show that unlike
the JM problem, SCUB can be solved in polynomial time:

Theorem 2. SCUB can be solved in O(n3m) time.

Specifically, we provide EXACT-SCUB. This algorithm

3

applies an algorithm for SCUB with fixed solution size ρ as
a subroutine for all ρ ∈ [0, n], and it returns as solution a set
Eρ that minimizes

∑
i∈[m](1−

|Ei∩Eρ|
|Ei|+ρ) over all ρ’s.

The subroutine algorithm is called FIXED-SIZE-
GREEDY-SCUB, and it performs ρ iterations for a
given ρ. It starts with E1 = E0 = {} and, in each
iteration j ∈ [1, ρ], it adds into a set Ej that contains
all previously added edges, an edge e ∈ ∪i∈[m]Ei \ Ej

minimizing
∑
i∈[m](1 −

|Ei∩{Ej∪{e}}|
|Ei|+ρ). When j = ρ,

it returns the set Ej . Note that the value of the output∑
i∈[m](1 −

|Ei∩Eρ|
|Ei|+ρ) differs from the upper bound∑

i∈[m] JDUB(Ei, E[m]) =
∑
i∈[m](1 −

|Ei∩E[m]|
|Ei|+|E[m]|

) in
that E[m] is replaced by Eρ, which has now fixed size ρ.

FIXED-SIZE-GREEDY-SCUB solves exactly a variant of
SCUB, called SCUB-FIXED, which asks for a solution of fixed
size ρ, for some given ρ. We prove this in Lemma 5 by means
of proving Lemmas 3 and 4 (the proofs of Lemmas 3, 4, and 5
are deferred to the full version of the paper).

Lemma 3 (Greedy choice). Let e be the element contained
in E1 that is constructed by FIXED-SIZE-GREEDY-SCUB.
There is an optimal solution to SCUB-FIXED that contains e.

Lemma 4 (Optimal Substructure). Let Eρ[m] be any optimal
solution to SCUB-FIXED for some ρ ∈ [0, n − 1]. There is
an edge e ∈ ∪i∈[m]Ei \ Eρ[m] that can be added into Eρ[m] to
construct an optimal solution to SCUB-FIXED of size ρ+ 1.

Lemma 5 (Induction). FIXED-SIZE-GREEDY-SCUB finds
an optimal solution to SCUB-FIXED.

FIXED-SIZE-GREEDY-SCUB takes O(nmρ) time. To
achieve this time complexity, we compute

∑
i∈[m](1 −

|Ei∩{Ej∪{e}}|
|Ei|+ρ) incrementally. That is, we exploit the follow-

ing: (I) |Ei∩{Ej∪{e}}| = |Ei∩Ej |+|Ei∩{e}|, which holds
by the distributivity of ∪ over ∩ and the inclusion/exclusion
principle, and (II) that |Ei ∩ {e}| with all Ei’s can be
computed in O(m) time, after building a perfect hashtable
for every Ei in total O(N) time in which we search e.
Since FIXED-SIZE-GREEDY-SCUB performs ρ iterations,
it needs O(N + nmρ) = O(nm+ nmρ) = O(nmρ) time.

The proof of Theorem 2 follows from Lemma 5 and from
that EXACT-SCUB applies FIXED-SIZE-GREEDY-SCUB
for each ρ which costs O(nm(1 + . . .+ n)) = O(n3m).
A faster–and sometimes optimal–approximation algorithm
for SCUB. We show GREEDY-SCUB, a greedy algorithm
for SCUB that is polynomially faster than EXACT-SCUB.
GREEDY-SCUB is similar to FIXED-SIZE-GREEDY-
SCUB, but it: (I) selects e based on the upper bound∑
i∈[m] JDUB(Ei, E

j ∪ {e}) =
∑
i∈[m](1 −

|Ei∩{Ej∪{e}}|
|Ei|+|Ej |+1)

instead of
∑
i∈[m](1 −

|Ei∩{Ej∪{e}}|
|Ei|+ρ); and (II) selects E[m]

as the Ej with minimum
∑
i∈[m] JDUB(Ei, E

j) over all j ∈
[n]; this is needed due to non-monotonicity (see Lemma 2).

Thus, GREEDY-SCUB makes the greedy choice optimally
for the current size of Ej (after the addition of e), instead of
making the optimal choice for a target size ρ. The advantage

of this strategy is that each intermediate Ej is immediately
considered in the tentative solution for size |Ej |, and it is not
necessary to run the whole process, for each target size.

Next, we prove the approximation guarantee of GREEDY-
SCUB and that it is optimal when all Ei’s have equal size.

Let sm = mini∈[m] |Ei| and sM = maxi∈[m] |Ei| be the
smallest and largest size of an input set Ei. We show that
GREEDY-SCUB is guaranteed to return a good approximation
of an optimal solution whenever these two values are close.

Lemma 6. Let Ej , with |Ej | = j, be the set of edges selected
by GREEDY-SCUB up to step j, for any j ∈ [n], and E∗ be
an optimal solution of fixed size j of SCUB, i.e., the set of size
j minimizing

∑
i∈[m](1 −

|Ei∩E∗|
|Ei|+j). For some 1 ≤ φ ≤ s2M

s2m
,

we have that
∑
i∈[m](1−

|Ei∩Ej |
|Ei|+j ·φ) ≤

∑
i∈[m](1−

|Ei∩E∗|
|Ei|+j).

Proof. Observe that
∑
i∈[m](1 − |Ei∩E∗|

|Ei|+j) =

m −
∑
i∈[m]

|Ei∩E∗|
|Ei|+j . The rest of the proof shows that∑

i∈[m]
|Ei∩E∗|
|Ei|+j ≤

∑
i∈[m](

|Ei∩Ej |
|Ei|+j) · φ, which implies

m −
∑
i∈[m]

|Ei∩E∗|
|Ei|+j ≥ m −

(∑
i∈[m]

|Ei∩Ej |
|Ei|+j

)
· φ, proving

the lemma.
For an integer h ∈ [j] and any edge e ∈ ∪i∈[m]Ei, we

define Ch(e) =
∑
i∈[m]

|Ei∩{e}|
|Ei|+h , the “contribution” of e to

the score of a solution of size h. We can now easily see that∑
e∈E∗ Cj(e) =

∑
i∈[m]

|Ei∩E∗|
|Ei|+j . This lets us evaluate edges

independently of each other and even predict what contribution
they will bring to a solution of some specific size.

Note, we can turn Ch(e) =
∑
i∈[m]

|Ei∩{e}|
|Ei|+h into Cj(e)

by taking each |Ei∩{e}||Ei|+h and multiplying it by |Ei|+h|Ei|+j . Since
sm+h
sM+j ≤

|Ei|+h
|Ei|+j ≤

sM+h
sm+j , it follows: Cj(e) ≥ Ch(e) · sm+h

sM+j

and Cj(e) ≤ Ch(e) · sM+h
sm+j .

At a generic step h ≤ j, let eh be the edge maximizing
Ch(e) and eopt be the edge maximizing Cj(e), among the
edges not previously selected. We can observe that GREEDY-
SCUB will select eh, while FIXED-SIZE-GREEDY-SCUB
would instead select eopt.

From the above and from the fact that Ch(eopt) ≤ Ch(eh)
by the definition of eh, we have Cj(eopt) ≤ Ch(eopt)· sM+h

sm+j ≤
Ch(eh) · sM+h

sm+j ≤
(
Cj(eh) · sM+j

sm+h

)
· sM+h
sm+j . This bounds the

difference of contributions between the selection made by the
two algorithms, and although the bound depends on the step
h, we can upper bound the ratio since 1 ≤ (sM+j)(sM+h)

(sm+h)(sm+j) ≤
φ = (sM+j)sM

sm(sm+j) ≤
s2M
s2m

, obtaining Cj(eopt) ≤ Cj(eh) · φ.
This completes the proof, as Ej consists of edges each

maximizing Ch(e) at some step h ≤ j, whereas E∗ consists
instead of the edges maximizing Cj(e), which in turn gives
m−

∑
e∈E∗ Cj(e) ≥ m−

∑
e∈Ej Cj(e) · φ.

The ratio s2M
s2m

is not necessarily small, but the analysis is
pessimistic: GREEDY-SCUB is near-optimal in practice. In
fact, our experiments in Section VI show that GREEDY-SCUB
obtains almost the same results as EXACT-SCUB while being
up to orders of magnitude more efficient.

4

Furthermore, we can now easily show a class of instances
where GREEDY-SCUB is optimal.

Corollary 6.1. GREEDY-SCUB is optimal when sm = sM .

Proof. If sm = sM then, for any j ∈ [n], φ = (sM+j)sM
sm(sm+j) = 1.

Thus,
∑
i∈[m](1−

|Ei∩Ej |
|Ei|+j ·φ) =

∑
i∈[m](1−

|Ei∩E∗|
|Ei|+j), where

Ej is the set of edges selected up to step j by GREEDY-
SCUB, and E∗ is an optimal solution of size j. An optimal
solution of arbitrary size is thus found when GREEDY-SCUB
selects an Ej minimizing the summation.

It is easy to see that GREEDY-SCUB takes O(n2m) time.
Thus, we obtain the following result:

Theorem 3. SCUB can be solved in O(n2m) time when |E1| =
. . . = |Em|.

V. EGO-NETWORK SEQUENCE SEGMENTATION

The error in the ESS problem is incurred by representing
each segment by its summary and is expressed as a sum of
the errors of the k segments. Since EXACT-SC constructs
a minimum-error (i.e., optimal) summary for any segment,
we can solve ESS by considering all k-segmentations and
selecting the one with minimum total error. For this task, we
adapt a classic dynamic programming algorithm [12], [2].

Let E∗(E1,m, k) be the error of an optimal solution to
ESS (see Section II). Our algorithm, EXACT-ESS, solves
ESS for a sequence E1,m = E1, . . . , Em of ego-networks
by recursively applying Eq. 4 and finding an optimal k-
segmentation of E1,m through standard backtracking [2]:

E∗(E1,m, k) = min
0<j<m

{
E∗(E1,j , k − 1) +E∗(Ej+1,m, 1)

}
. (4)

E∗(E1,j , k − 1) is the error of optimally segmenting E1,j ,
the sequence comprised of the first j ego-networks, into k −
1 segments; and E∗(Ej+1,m, 1) is the error of representing
the single-segment sequence Ej+1,m by its optimal summary,
constructed by EXACT-SC.

Eq. 4 requires invoking EXACT-SC O(m2k) times. To
trade-off accuracy for speed, we can construct the summaries
using any of our other algorithms. Yet, constructing a k-
segmentation needs Ω(m2) time, which is impractical.

Therefore, we partition the sequence of ego-networks E1,m
by adapting a top-down greedy algorithm [2] to work with
a sequence of ego-networks and any of our algorithms for
constructing a summary. The top-down algorithm starts with
the entire sequence E1,m and applies Eq. 4 with k = 2. Let
j1 be the split point found by this process. Then, it applies
Eq. 4 with k = 2 to E1,j1 and to Ej1+1,m. This results in two
candidate split points, out of which the one with the lowest
error is selected as the second split point, j2, of E1,m. The
process continues in the same way, until k − 1 split points,
defining a k-segmentation of E1,m, are selected, and it requires
invoking a summary construction algorithm O(mk) times.

VI. EXPERIMENTAL EVALUATION

Datasets. We extracted 5 ego-network sequences from DBLP,
a real dataset modeling temporal graphs, obtained from https:

//projects.csail.mit.edu/dnd/DBLP/. To extract an ego-network
sequence, we: (I) selected a node u as ego; (II) extracted,
as the ego-network of u, the subgraph induced by all edges
adjacent to u and edges between its neighbors with timestamps
within a time window of certain length; and (III) extracted the
next ego-network by sliding the time window by a sliding
interval of 4 years. The sliding window model leads to
ego-networks with common edges which make segmentation
challenging. We defined a segment as a maximal contiguous
subsequence of ego-networks sharing at least one edge; the
ego-networks in the end of a segment share many edges with
those in the beginning of the next one. Each segment was
assigned a different ground truth label. The average number
m of egonetworks over the 5 extracted sequences is 29.8, the
average number n of distinct edges is 2,662, the average total
number N of edges is 9,780.8, and the number k of segments
is in [5, 8].

Experimental Setup. We evaluated the effectiveness of our
dynamic programming (DP) and top-down (T) algorithm,
paired with our summary construction algorithms EXACT-
SC (ESC), EXACT-SCUB (ESCUB), and GREEDY-SCUB
(GSCUB), in ego-network segmentation. We compared against
SnapNets [13], the only method for segmenting a sequence
of graphs, and state-of-the-art anomaly detection methods:
COPOD [4], ECOD [5], and ROD [6]. The latter methods get
as input a sequence of real numbers and identify a specified
number of anomalies. We constructed an input sequence
comprised of: (I) JD(Ei, Ei+1) for each i ∈ [1,m−1]; or (II)
the L2 distance L2(FV(Ei),FV(Ei+1)) for each i ∈ [1,m−1],
where FV() outputs a vector comprised of all features used in
[13]. A subscript D (respectively, F) for an anomaly detection
method (e.g., COPODD) denotes that the input sequence is
based on Jaccard distance (respectively, L2 distance). All
parameters of the methods we compared against were set to
their default values from [13], [4], [5], [6].

We evaluated the quality of a segmentation by compar-
ing it to the ground truth segmentation using Accuracy
(ACC) [15] and macro-F1 [16]. These measures take val-
ues in [0, 1] with larger values indicating a result closer
to the ground truth. However, they require a segmentation
to have the same number of segments as the ground truth
segmentation. To compare against SnapNets, which does not
take the desired number of segments as input, we used
the Average Sum of Pairwise L2 distance of NetLSD sig-
natures 1

k

∑
S∈S

∑
E,E′∈S NetLSD(E,E′) (ASPLN), where

E,E′ are the edge sets of two ego-networks in a segment S of
a k-segmentation S. NetLSD creates signatures representing
two graphs, so that close signatures correspond to similar
graphs, and it was configured as in [17].

All experiments ran on an Intel i9@3.70GHz with 64 GB
RAM. We implemented our methods in Python and used
Gurobi 9.5.1 for the MILP instances. See https://rebrand.ly/
egoseg for our code and datasets. We used publicly available
Python implementations of all other methods.
SC. We selected a contiguous subsequence of length m from

5

https://projects.csail.mit.edu/dnd/DBLP/
https://projects.csail.mit.edu/dnd/DBLP/
https://rebrand.ly/egoseg
https://rebrand.ly/egoseg

0.1
505

0.3
1169

0.5
1496

0.7
1724

0.9
1867

s10

11

12

13

14

JD

619 1846 3068 4295 5522
i [m]

|Ei|

n

ESC ESCUB GSCUB JMA

0.1
505

0.3
1169

0.5
1496

0.7
1724

0.9
1867

s10

11

12

13

14

JD
619 1846 3068 4295 5522

i [m]
|Ei|

n
(a)

0.1
505

0.3
1169

0.5
1496

0.7
1724

0.9
1867

s10 5

10 2

101

103

106

R
un

tim
e

(lo
g

sc
al

e)
 (s

ec
s)

619 1846 3068 4295 5522
i [m]

|Ei|

n
(b)

Fig. 2: DBLP: (a) JD and (b) runtime (secs) for varying s and
m = 15. ESC did not terminate within 48 hours for large s.

TABLE I: (a) ACC and macro-F1. ACC and macro-F1 cannot
be used with SnapNets as it does not get k as input. (b)
Runtime (secs) averaged over all sequences of DBLP.

Methods ACC macro-F1

COPODD 0.55 0.48
COPODF 0.47 0.42

T-ESCUB 0.78 0.76
DP-GSCUB 0.72 0.71
T-GSCUB 0.72 0.71

(a)

Methods Runtime (secs)
COPODD 0.02
COPODF 658.02
T-ESCUB 593, 514

DP-GSCUB 10, 101
T-GSCUB 3, 302

(b)

the first ego-network sequence of DBLP and sampled s ·100%
of edges from each ego-network, so that an Ei for s contains
all edges in Ei for s′ < s. The selected subsequence contained
moderately similar ego-networks to be aligned with the goal
of constructing an informative summary. Fig. 2a and 2b
shows the results in terms of JD and runtime, for varying s,
respectively. All our algorithms outperformed JMA in terms of
effectiveness. As expected, ESC produced the best result since
it is exact for SC; and, notably, our other algorithms produced
near-optimal solutions. In terms of runtime, the results are in
line with the time complexity analyses. ESC is the slowest,
followed by ESCUB and GSCUB.
Segmentation. We first compared our algorithms to the meth-
ods that can segment a sequence of ego-networks in a given
number k of segments, which was set to the number of ground
truth segments. These are the anomaly detection methods
COPOD, ECOD, ROD and a baseline combining our top-
down algorithm with JMA. The latter did not perform well
and we omit its results. Among the former methods, COPOD
performed the best, thus we omit the others. As can be seen
in Table Ia, all our methods substantially outperformed both
variations of COPOD. COPODD outperformed COPODF ,
which implies that the features proposed by [13] for graph
segmentation may not be suitable for ego-network segmenta-
tion. EXACT-ESS and DP-ESCUB did not terminate within
48 hours (expected).

We also compared our algorithms against SnapNets, which
automatically determines the number of segments. To do this,
we used as k in our algorithms the number of segments in the
solutions of SnapNets. The results in Fig. 3a show that all our
methods significantly outperformed SnapNets with respect to
ASPLN, which is very encouraging.

In terms of efficiency, Table Ib shows the runtime of all

0.0

0.5

1.0

A
SP

L
N

 (
10

3)

(a)

Methods Runtime (secs)
SnapNets 659
T-ESCUB 596, 174

DP-GSCUB 10, 101
T-GSCUB 3, 454

(b)
Fig. 3: (a) ASPLN and (b) runtime (secs) averaged over all
sequences of DBLP. Our omitted methods did not terminate
within 48 hours.

algorithms for the experiment of Table Ia and Fig. 3b for
the experiment of Fig. 3a. Our algorithms were slower albeit
more effective than COPODD, COPODF , and SnapNets; their
runtime is in line with their time complexities.

VII. FINAL REMARKS

We introduced the problem of segmenting a sequence of
ego-networks based on the JM problem. It would be interesting
to design faster methods and optimize the performance of the
current ones exploiting properties of the similarity function.

ACKNOWLEDGMENTS

HZ is supported by a CSC scholarship, GL by the Lever-
hulme Trust RPG-2019-399, and AC partially supported by
MUR, PRIN Project n. 20174LF3T8 AHeAD. We would like
to thank Prof. Roberto Grossi for useful discussions.

REFERENCES

[1] R. A. Hanneman and M. Riddle, Introduction to social network methods,
2005.

[2] E. Terzi and P. Tsaparas, “Efficient algorithms for sequence segmenta-
tion,” in SDM, 2006.

[3] N. Tatti, “Strongly polynomial efficient approximation scheme for
segmentation,” IPL, 2019.

[4] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “COPOD: copula-based
outlier detection,” in ICDM, 2020.

[5] Z. Li, Y. Zhao, X. Hu, N. Botta, C. Ionescu, and G. Chen, “ECOD:
Unsupervised outlier detection using empirical cumulative distribution
functions,” TKDE, 2022.

[6] Y. Almardeny, N. Boujnah, and F. Cleary, “A novel outlier detection
method for multivariate data,” TKDE, 2020.

[7] H. Späth, “The minisum location problem for the Jaccard metric,”
Operations-Research-Spektrum, 1981.

[8] G. A. Watson, “An algorithm for the single facility location problem
using the Jaccard metric,” SIAM J. Sci. Stat. Comput., 1983.

[9] F. Chierichetti, R. Kumar, S. Pandey, and S. Vassilvitskii, “Finding the
Jaccard median,” in SODA, 2010.

[10] C. Donnat and S. Holmes, “Tracking network dynamics: A survey using
graph distances,” AOAS, 2018.

[11] T. A. Sørensen, “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application
to analyses of the vegetation on Danish commons,” Biol. Skar., 1948.

[12] R. Bellman, “On the approximation of curves by line segments using
dynamic programming,” Commun. ACM, 1961.

[13] S. E. Amiri, L. Chen, and B. A. Prakash, “Automatic segmentation of
dynamic network sequences with node labels,” TKDE, 2017.

[14] H.-L. Li, “A global approach for general 0-1 fractional programming,”
EJOR, 1994.

[15] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, “Image clustering using
local discriminant models and global integration,” TIP, 2010.

[16] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[17] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller,
“NetLSD: hearing the shape of a graph,” in KDD, 2018.

6

	Introduction
	Background and Problem Statements
	SC as a Mixed Integer Linear Program
	Greedy Algorithms for an Upper Bound of JD
	Ego-network Sequence Segmentation
	Experimental Evaluation
	Final Remarks
	References

