
Graph Self-Contrast Representation Learning
Minjie Chen

School of Data Science and Engineering
East China Normal University

Shanghai, China
minjiechen@stu.ecnu.edu.cn

Yao Cheng
School of Data Science and Engineering

East China Normal University
Shanghai, China

52215903009@stu.ecnu.edu.cn

Ye Wang
School of Data Science and Engineering

East China Normal University
Shanghai, China

yewang@stu.ecnu.edu.cn

Xiang Li∗
School of Data Science and Engineering

East China Normal University
Shanghai, China

xiangli@dase.ecnu.edu.cn

Ming Gao
School of Data Science and Engineering

East China Normal University
Shanghai, China

mgao@dase.ecnu.edu.cn

Abstract—Graph contrastive learning (GCL) has recently
emerged as a promising approach for graph representation
learning. Some existing methods adopt the 1-vs-K scheme to
construct one positive and K negative samples for each graph,
but it is difficult to set K. For those methods that do not
use negative samples, it is often necessary to add additional
strategies to avoid model collapse, which could only alleviate the
problem to some extent. All these drawbacks will undoubtedly
have an adverse impact on the generalizability and efficiency of
the model. In this paper, to address these issues, we propose a
novel graph self-contrast framework GraphSC, which only uses
one positive and one negative sample, and chooses triplet loss as
the objective. Specifically, self-contrast has two implications. First,
GraphSC generates both positive and negative views of a graph
sample from the graph itself via graph augmentation functions
of various intensities, and use them for self-contrast. Second,
GraphSC uses Hilbert-Schmidt Independence Criterion (HSIC)
to factorize the representations into multiple factors and proposes
a masked self-contrast mechanism to better separate positive and
negative samples. Further, Since the triplet loss only optimizes
the relative distance between the anchor and its positive/negative
samples, it is difficult to ensure the absolute distance between
the anchor and positive sample. Therefore, we explicitly reduced
the absolute distance between the anchor and positive sample to
accelerate convergence. Finally, we conduct extensive experiments
to evaluate the performance of GraphSC against 19 other state-
of-the-art methods in both unsupervised and transfer learning
settings.

Index Terms—graph representation learning, contrastive learn-
ing

I. INTRODUCTION

Graph self-supervised learning (GSSL) [1]–[3] has attracted
significant attention in recent years. Compared with traditional
semi-supervised and supervised graph learning [4]–[6], GSSL
seeks to employ supervision extracted from data itself, which
can effectively circumvent the need for costly annotated data. In
particular, one of the main types of GSSL is graph contrastive
learning (GCL) [3], [7], whose core idea is to minimize the
distance between representations of different augmented views

∗ Corresponding author.

Fig. 1. A toy example to show the influence of the number of negative samples
K on the model performance. In our experiments, we set K = B − 1 in
GraphCL and K = 1 in our model GraphSC, where B is the batch size.

of the same graph (“positive pairs”), and maximize that of
augmented views from different graphs (“negative pairs”).

According to whether negative samples are used by the
model or not, most existing graph-level GCL methods fall
into one of two classes. On the one hand, some approaches
construct one positive sample and K negative samples for
each graph [3], [8], [9], and formulate their objectives based
on the normalized temperature-scaled cross entropy loss (NT-
Xent) [10], such as GraphCL [3]. However, these methods are
easily affected by K and an appropriate K value is usually set
empirically, which lacks theoretical supports. When K is small,
the model might not learn sufficient information to discriminate
positive and negative samples; otherwise, there could lead to a
large number of false-negative samples and slow convergence.
In these methods, for each graph in a batch, other graphs in
the same batch are considered as its negative samples, i.e.,
K = B − 1, where B is the batch size. As shown in Fig. 1,
the performance of GraphCL is significantly affected by K
on the COLLAB dataset. In particular, when K is small, the
performance of GraphCL drops drastically. On the other hand,

ar
X

iv
:2

30
9.

02
30

4v
1

 [
cs

.L
G

]
 5

 S
ep

 2
02

3

minjiechen@stu.ecnu.edu.cn
52215903009@stu.ecnu.edu.cn
yewang@stu.ecnu.edu.cn
xiangli@dase.ecnu.edu.cn
mgao@dase.ecnu.edu.cn

the second type of methods propose to not use negative samples.
However, these methods could suffer from a degenerate solution
[11], where all outputs “crash” to an undesired constant. To
avoid such model collapse, additional strategies have to be
applied, such as asymmetric dual encoders [12], [13]. Recently,
some studies [14] have showed that although these training
strategies can avoid collapse to some extent, they may still
cause collapse in partial dimensions of the representation, which
leads to worse performance. The main reason for the model
collapse is the complete non-use of negative samples. Therefore,
a research question arises: To avoid the problem of K selection
and the degenerate solution, can we develop a GCL model that
constructs only one positive sample and one negative sample
for each graph?

Given one positive sample and one negative sample for each
graph, a straightforward framework is to use triplet loss as
objective function. However, triplet loss is hard-to-train and
mainly suffers from poor local optima and slow convergence,
partially due to that the loss function employs only one negative
example while not interacting with other negative classes per
update [10]. In short, there are two difficulties: one is to find a
valid negative sample and the other is to solve the hard-to-train
problem.

For the first difficulty, hard negative sample mining [15]–
[19] has been proposed. However, most existing methods
applied to graphs are node-level sampling, and very few
is for graph-level sampling. Recently, Cuco [20] proposes
curriculum contrastive learning, which ranks negative samples
from easy to hard and trains them in order. CGC [21] proposes
to obtain reliable counterfactual negative samples by pre-
training to help contrastive learning. However, this introduces
additional computational overhead that limits the performance
of GCL. Inspired by the fact that some substances change
their properties in response to external conditions, we propose
a simple yet effective method to obtain negative samples
from graph themselves. For example, an enzymatic protein
could become a non-enzymatic one after some perturbations.
Since the non-enzymatic protein is directly generated from
the enzymatic protein, they can share structural similarities to
some degree, which makes the negative sample discriminatively
difficult, thereby achieving a similar effect to hard negative
sampling.

To address the hard-to-train problem, we consider multiple
facets of each graph to construct masked embedding vectors
for its positive/negative samples. Then the self-contrast is
performed not only between the whole embedding vectors,
but also between masked embedding vectors corresponding
to each facet. The masked contrast can be used to provide
more information and speed up the model convergence. Further,
optimizing the triplet loss essentially maximizes the distance
between positive and negative samples. This amplifies the
margin between different classes but cannot ensure low-
dimensional representations for each class compact. Therefore,
we further shorten the absolute distance between anchor and
positive sample, which can make each class more compact and
make the distance between similar samples in the feature space

closer. It can also provide shortcuts for model convergence
(we will show the experimental results in Section V).

In this paper, we study graph contrastive learning and
propose a novel Graph Self-Contrast framework GraphSC,
which follows the pattern of generating positive and negative
samples from the samples themselves and conducting self-
contrast. For each graph, GraphSC first generates one positive
sample and one negative sample from the graph itself, and then
self-contrasts the graph with its positive/negative samples as
well as their masked embeddings. Inspired by the assumption
in [3] that the semantics of a graph will not change for a certain
perturbation strength, we move forward and assume that the
semantics of a graph will change under strong perturbations.
Specifically, we propose to generate two different (positive and
negative) views of a graph via graph augmentation functions
of various intensities. After that, the original graph and two
generated views of the graph are fed into a shared GNN
encoder, after which sum pooling is used to derive graph-
level representations. In particular, we use the representation of
the original graph as anchor, and the representations of views
generated by weak and strong perturbations as a positive sample
and a negative sample, respectively. Further, to implement
masked self-contrast, we perform a division on the embeddings
of positive/negative samples, and divide each representation
vector into multiple factors by Hilbert-Schmidt Independence
Criterion (HSIC) [22]. In addition to the contrast between the
whole embedding vectors, we mask each factor separately
and perform masked self-contrast between corresponding
representations. Moreover, we use Mean Square Error (MSE)
loss/Barlow Twins loss (BT) [23] as a regularization to shorten
the absolute distance between anchor and positive sample. This
leads to better convergence in implementation. Finally, we
summarize the contributions as follows:

• We propose a novel graph self-contrast representation
learning framework GraphSC.

• We present a simple yet effective method to construct
negative samples from graphs themselves in graph-level
representation learning.

• We use triplet loss in graph contrastive learning and
address the hard-to-train problem of triplet loss by putting
forward a masked self-contrast mechanism and directly
shortening the absolute distance for positive pairs.

• We conduct extensive experiments to evaluate the per-
formance of GraphSC in both unsupervised learning and
transfer learning settings. Experimental results show that
GraphSC performs favorably against other state-of-the-
arts.

II. RELATED WORK

A. Graph self-supervised learning

Graph self-supervised learning [1]–[3] aims to extract
informative knowledge from graphs through pre-designed
pretext tasks without relying on manual labels. They can be
used to alleviate the annotation bottleneck that is one of the
main barriers for practical deployment of deep learning today.

According to the objectives of pretext tasks, existing graph
self-supervised learning methods can be broadly divided into
four categories: (1) generation-based methods [1], which aim to
reconstruct the input graph data and use the input data as their
supervision signals; (2) auxiliary-property-based methods [24],
which attempt to obtain graph-related properties from the
graph and further take them as supervision signals, such as
pseudo labels of unlabeled data; (3) contrast-based methods [2],
[3], which construct positive and negative pairs for contrast.
These methods follow the core idea of maximizing the mutual
information (MI) [25] between positive pairs and minimizing
that between negative pairs. (4) hybrid methods [26], which
integrate various pretext tasks together in a multi-task learning
fashion. Our proposed method GraphSC is contrast-based
and we next introduce contrast-based methods in detail. For
a comprehensive survey on graph self-supervised learning,
see [27].

B. Graph contrastive learning

According to the contrast mode, graph contrastive learning
can be mainly divided into three categories: node-node contrast,
node-graph contrast and graph-graph contrast.

For node-node contrast, the representative model
GRACE [28] first generates two contrastive views of a
graph via graph augmentation, and then pulls close the
representations of samples in positive pairs while pushing
away that of samples in inter-view and intra-view negative
pairs. GCA [29] further introduces an adaptive augmentation
by incorporating various priors for topological and semantic
aspects of the graph, which results in a more competitive
performance. GCC [30] utilizes random walk as augmentations
to extract the contextual information. BGRL [31] maximizes
the MI between node representations from online and target
networks.

There also exist methods [2], [7], [32]–[34] that are based
on node-graph contrast. For example, DGI [2] learns both local
and global semantic information in graphs by contrasting node-
level embeddings with the graph-level representation. After that,
GIC [32] seeks to additionally capture cluster-level information
by first clustering nodes based on their embeddings, and then
maximizing the MI between nodes in the same cluster. MVGRL
[33] first generates two graph views via graph diffusion and
subgraph sampling. Then it trains graph encoders by contrasting
node embeddings in a view and the graph-level representation
in another view. Further, SUBG-CON [34] uses triplet loss as
objective function. For each node, it first extracts the top-k
most informative neighbors to form a subgraph. Then it pulls
close the distance between the representations of the node and
the subgraph, and pushes away that between the representations
of the node and a randomly selected subgraph.

The third type of methods are based on graph-graph contrast.
The early model GraphCL [3] designs four types of graph
augmentation (node dropping, edge perturbation, attribute
masking and subgraph extraction), and then adopts the NT-
Xent loss to learn the graph-level representation. Further,
JOAO [35] proposes a unified bi-level optimization framework

to automatically select data augmentations. AD-GCL [36] uses
adversarial graph augmentation strategies that enables GNNs to
avoid capturing redundant information during training. Inspired
by Invariant Rationale Discovery (IRD), RGCL [9] puts forward
rationale-aware augmentations for graph contrastive learning
to preserve the critical information in the graph. There are also
methods that do not need data augmentations. For example,
SimGRACE [8] feeds the original graph into a GNN encoder
and achieves data augmentation through perturbation of the
encoder.

III. PRELIMINARY

In this section, we introduce basic concepts used in this
paper.

A. Graph Neural Networks (GNNs)

Let G = (V, E) denote an undirected graph, where V =
{v1, v2, · · · , vN} is the node set and E ⊆ V ×V represents the
edge set. We use X ∈ RN×F to denote the node feature matrix,
where F is the dimension of node features. Generally, given a
GNN model f(·), message propagation in the l-th layer can be
divided into two operations: one is to aggregate information
from a node’s neighbors while the other is to update a node’s
embedding. Taking node vi as an example, we formally define
these two operations as:

a
(l)
i = AGGREGATE(l){h(l−1)

j ,∀vj ∈ N (vi)}, (1)

h
(l)
i = COMBINE{h(l−1)

i , a
(l)
i }, (2)

where h
(l)
i is the embedding of node vi in the l-th layer and

N (vi) is a set of nodes adjacent to vi. AGGREGATE(l)(·) and
COMBINE(l)(·) are two functions in each GNN layer. After L
propagation layers, the output embedding for G is summarized
on node embeddings via the READOUT function, which is
formulated as:

f(G) = READOUT{h(L)
i ,∀vi ∈ V}. (3)

B. Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) [22]
is a kernel-based measure of dependence between probability
distributions. Let F be a Hilbert space of real-value functions
from a set X to R. We say F is a Reproducing Kernel Hilbert
Space (RKHS) if ∀x ∈ X , the Dirac evaluation operator δx :
F → R, which maps f ∈ F to f(x) ∈ R, is a bounded linear
functional. In RHKS, ∀x ∈ X , there is a mapping ϕ(x) ∈ F
and there also exists a unique definite kernel u : X ×X → R,
such that ⟨ϕ(x), ϕ(x′

)⟩F = u(x, x′).
Assume that we have two separable RKHSs F , G and a

joint measure pxy over (X × Y , Γ× Λ), where Γ is the Borel
sets on set X and Λ is the Borel sets on set Y . Then the
Hilbert-Schmidt Independence Criterion (HSIC) is defined as
the squared Hilbert-Schmidt norm of the associated cross-
covariance operator Cxy:

HSIC(pxy,F ,G) := ||Cxy||2HS , (4)

where the Hilbert-Schmidt norm is ||A||HS =
√∑

i,j a
2
ij , and

the cross-covariance operator is given as follows:

Cxy := Ex,y[(ϕ(x)− µx)⊗ (φ(y)− µy)], (5)

Here, ⊗ is tensor product, and ϕ(·), φ(·) are functions that map
x ∈ X and y ∈ Y to RKHSs F and G w.r.t. the kernel functions
u(x, y) =< ϕ(x), ϕ(y) > and s(x, y) =< φ(x), φ(y) >,
respectively. Accordingly, given i.i.d. m samples (X,Y) =
{(x1, y1), · · · , (xm, ym)} drawn from the joint distribution of
pxy , the empirical version of HSIC is given as:

HSIC(X,Y) = (m− 1)−2tr(UHSH), (6)

where U, S,H ∈ Rm×m, Uij := u(xi, xj), Sij := s(yi, yj)
and Hij := I −m−1.

IV. METHOD

In this section, we introduce the GraphSC framework. Given
a graph, GraphSC first generates two augmented views as
positive and negative samples via weak and strong perturbation,
respectively (Step ①). Then the graph and its augmented views
are fed into a GNN encoder with shared parameters to obtain
corresponding graph-level representations (Step ②). After these
representations have been mapped, they are self-contrasted
(Step ③). At the same time, considering each graph has multi-
facet features, GraphSC first factorizes the representations
of positive and negative samples by using HSIC, and then
masks each factor sequentially to generate multiple masked
views (Step ④). The representations of anchors and the masked
representations of positive and negative samples are contrasted
after a projection head (Step ⑤). Finally, GraphSC shortens the
absolute distance between an anchor and its positive sample
(Step ⑥). The overall framework of GraphSC is given in Fig.
2.

A. Data augmentation

To construct positive and negative pairs, most existing
graph contrastive learning methods [3], [36] first perform data
augmentations on graphs, such as node dropping and edge
perturbation. After that, for each graph, its augmented views
of graphs form positive samples while that of other graphs
in the same mini-batch are considered as negative samples.
Despite the success, these methods can be easily affected by
the number of negative samples K. To mitigate the influence of
K on the model performance and reduce the number of false
negative samples selected, using hard negative samples could
be a feasible solution. However, general hard negative sample
mining strategies are either not suitable for graph data [37] or
computationally costly [20].

Inspired by the assumption in GraphCL [3] that the semantics
of a graph will not change for a certain perturbation strength,
we further assume that the semantics of a graph will change
under strong perturbations. Based on these two assumptions, we
generate positive and negative pairs from graphs themselves via
graph augmentation functions of various intensities. Specifically,
given a graph G, the generated view of the graph with weak
perturbation is considered as a positive sample G+, while that

generated by strong perturbation is taken as negative sample
G−. Formally, for any graph augmentation function A(·) and
two different perturbation rates ra, rb, where (ra < rb) , we
have

G+ = A(G; ra), G
− = A(G; rb). (7)

In this way, since negative samples are directly constructed
from graphs themselves, they can share similarities with the
original graphs to some degree. Therefore, these negative
samples can play the role of hard negative, which can boost
the model performance.

B. Model architecture

Self-contrast: Given a graph Gi and its augmentations
G+

i and G−
i , we first feed them into a shared GNN encoder

f(·; θ) to learn graph-level representation vectors hi, h
+
i , h

−
i ,

respectively. We denote

hi = f(Gi), h
+
i = f(G+

i), h
−
i = f(G−

i). (8)

After that, as suggested in [38], the projection head, a non-linear
transformation, can be used to map these representations to
another latent space, which can enhance the model performance.
Therefore, we further define a projection head g1(·;ϕ1) and
derive:

yi = g1(hi), y
+
i = g1(h

+
i), y

−
i = g1(h

−
i), (9)

where yi, y
+
i , y

−
i ∈ Rd. These vectors characterize the overall

feature information of samples, which can be used for contrast.
Masked self-contrast: Further, since each graph has multi-

facet features, in order to pull apart positive pairs from
negative pairs, we can perform contrastive learning from
masked views. Specifically, we first factorize the representations
y+i , y

−
i of positive and negative samples into n independent

factors y+i = [c+i1, c
+
i2, · · · , c

+
in] and y−i = [c−i1, c

−
i2, · · · , c

−
in],

respectively. Then we sequentially mask each factor and
generate n views. For the m-th masked view, the corresponding
embeddings of positive and negative samples are denoted as:

y+im = [c+i1, · · · , c
+
i(m−1), c0, c

+
i(m+1), · · · , c

+
in] and

y−im = [c−i1, · · · , c
−
i(m−1), c0, c

−
i(m+1), · · · , c

−
in],

(10)

where c0 ∈ Rdc is an all-zero vector and dc = d/n. We further
feed yi, y+im, y−im into the second projection head g2(·;ϕ2) to
obtain their projected embeddings:

qi = g2(yi), q
+
im = g2(y

+
im), q−im = g2(y

−
im). (11)

These projected embeddings can be used for masked contrast
across various views.

Shorten the absolute distance: Finally, since triplet loss
can only capture the relative distance between an anchor and
its positive/negative sample, we explicitly shorten the absolute
distance between an anchor and its positive distance. To achieve
the goal, we introduce the third projection head g3(·;ϕ3) and
generate

zi = g3(hi), z
+
i = g3(h

+
i), (12)

where zi, z
+
i ∈ Rdh . Then we explicitly pull close zi and z+i .

Fig. 2. The overall framework of GraphSC. For details of each step, see Section IV.

C. Contrastive loss
In the training process, we randomly select B graphs from

the whole dataset of N graphs as a mini-batch. For each graph
Gi in the mini-batch, we apply two different strengths of per-
turbation, which generates a triple (Gi, G

+
i , G

−
i). Further, we

derive the corresponding representations (hi, h
+
i , h

−
i) through

a shared GNN encoder.
Self-contrast: To implement self-contrast between complete

representations, we put (hi, h
+
i , h

−
i) into a projection head

to get (yi, y+i , y
−
i), and use triplet margin loss to enlarge the

relative distance between positive and negative sample pairs:

Lse =
1

B

B∑
i=1

max(||yi − y+i ||
2 − ||yi − y−i ||

2 + ϵ, 0), (13)

Note that ϵ is the margin.
Masked self-contrast:For masked self-contrast, we first

use Hilbert-Schmidt Independence Criterion (HSIC) [22] to
factorize y+i and y−i into n factors:

Lfa =
1

B

B∑
i=1

n∑
j ̸=k

[HSIC(c+ij , c
+
ik) + HSIC(c−ij , c

−
ik)]. (14)

This process ensures that factors are as independent as
possible from each other, which helps reduce the dependence
between multiple partial representations. After that, we se-
quentially mask each factor to generate a set of masked
representations {y+im}nm=1 and {y−im}nm=1, respectively. When
a factor is masked, it is still expected that the positive sample
can be close to the anchor while the negative sample is distant.
Therefore, we formulate the masked contrastive loss as:

Lma = 1
B

∑B
i=1

∑n
m=1 wim ·max(∥qi − q+im∥2 − ∥qi − q−im∥2 + ϵ, 0), (15)

where

wim =

(
1− exp(eim)∑n

i=1 exp (eim)

)
· 1

n− 1
, (16)

eim = qi · (q+im − q−im)T . (17)

Here, we introduce the weight wim for the m-th factor and∑n
m=1 wim = 1. For the factor that leads to a small relative

distance, our model will assign a large weight and thus pay
more attention to the corresponding optimization process.

Shorten the absolute distance: To shorten the absolute dis-
tance between positive pairs, which can make each class more
compact, we propose two models GraphSC and GraphSC-MSE,
which use Barlow Twins loss and MSE loss as regularization
terms, respectively.

(1) GraphSC: GraphSC pulls close the representations of
the anchor and the positive sample after the third projection
head g3, and we formulate the objective function Lab as:

Lab =
1

B

∑
i

(1− Cii)
2 + β

∑
i

∑
j ̸=i

C2
ij , (18)

Cij =

∑B
b=1 zb,iz

+
b,j√∑B

b=1(zb,i)
2

√∑B
b=1(z

+
b,j)

2
. (19)

Here, Barlow Twins loss can additionally reduce the redundancy
between components of embedding vectors, which can also
boost the model performance.

(2) GraphSC-MSE: GraphSC-MSE no longer structurally
needs the third projection head g3, and the regularization term
Lab can be written as:

Lab =
1

B

B∑
i=1

||yi − y+i ||
2, (20)

Note that the MSE loss is a widely used distance measure,
and we can use GraphSC-MSE to verify the necessity and
effectiveness of shortening the absolute distance between the
anchor and the positive sample. Finally, our objective function
is summarized as:

minL = Lse + λ1 · Lma + λ2 · Lfa︸ ︷︷ ︸
relative term

+ λ3 · Lab︸ ︷︷ ︸
absolute term

, (21)

where λ1, λ2 and λ3 are hyper-parameters that are used to
balance the term importance.

V. EXPERIMENTS

In this section, we conduct experiments on multiple bench-
mark datasets to evaluate the performance of GraphSC through
answering the following research questions.

• RQ1. (Generalizability) Does GraphSC outperform other
competitors in unsupervised settings?

• RQ2.(Transferability) Can GNNs pre-train with GraphSC
show better transferability than competitors?

• RQ3. (Effectiveness) Are the individual components of
GraphSC really valid for the model ?

• RQ4. (Convergence) What is the effect of Lma, Lab and
the proposed negative sample generation strategy on the
convergence of the model?

• RQ5. (Hyperparameters Sensitivity) Is the proposed
GraphSC sensitive to hyperparameters like perturbation
intensity ra, rb and the term weight λ1, λ2, λ3?

A. Experimental Setup

Datasets: For unsupervised learning, we use 8 datasets
from the benchmark TU dataset [39], including graph data
for various biochemical molecules (i.e., NCI1, PROTEINS,
DD, MUTAG) and social networks (i.e., COLLAB, REDDIT-
BINARY, REEDIT-MULTI-5K and IMDB-BINARY). For
transfer learning, we perform pre-training on ZINC-2M which
samples 2 million unlabeled molecules from ZINC15 [40] and
fine-tune the model with 8 datasets including BBBP, Tox21,

TABLE I
DATASETS STATISTICS FOR UNSUPERVISED LEARNING.

Dataset Category Graph Num. Avg. Node Avg. Edge

NCI1 Biochemical Molecules 4110 29.87 32.30
PROTEINS Biochemical Molecules 1113 39.06 72.82

DD Biochemical Molecules 1178 284.32 715.66
MUTAG Biochemical Molecules 188 17.93 19.79

COLLAB Social Networks 5000 74.49 2457.78
RDT-B Social Networks 2000 429.63 497.75
RDB-M Social Networks 4999 508.52 594.87
IMDB-B Social Networks 1000 19.77 96.53

ToxCast, SIDER, ClinTox, MUV, HIV and BACE. More details
can be seen in the Table I and Table II.

Baselines: For unsupervised learning, we compare GraphSC
with three kernel-based methods including graphlet kernel (GL)
[41], Weisfeiler-Lehman kernel (WL) [42], and deep graph
kernel (DGK) [43]. Furthermore, we compare GraphSC with
other state-of-the-art methods: sub2vec [44], graph2vec [45],
InfoGraph [7], GraphCL [3], JOAO(v2) [35], AD-GCL [36],
SimGRACE [8], RGCL [9] and LaGraph [46]. We also take
GraphSC-MSE as our baseline. For transfer learning, we adopt
DGI [2], EdgePred [47], AttrMasking [47], ContextPred [47],
GraphCL [3], JOAO(v2) [35], AD-GCL [36], SimGRACE [8],
GraphLoG [48] and RGCL [9], which are the state-of-the-art
pre-training paradigms in this area, as our baselines.

Evaluation Protocols: Following the settings of previous
works [3], [9], [47], we evaluate the performance and general-
izability of the learned representations on both unsupervised
and transfer learning settings. In unsupervised setting, we train
GraphSC using the whole dataset to learn graph representations
and feed them into a downstream SVM classifier with 10-
fold cross-validation, report the mean accuracy with standard
deviation after 5 runs. For transfer learning, we pre-train
and fine-tune GNN encoder in different datasets to evaluate
the transferability of the pre-training scheme. The fine-tuning
procedure is repeated for 10 times with different random seeds
and we evaluate the mean and standard deviation of AUROC
scores on each downstream dataset, which is consistent with
our baselines.

Implementation details: We implement GraphSC using
PyTorch. The model is initialized by Xavier initialization [49]
and trained by Adam [50]. As suggested in [19], we set ϵ in (13)
and (15) to 0.2. Similarly, we set β in (18) to 0.013 according
to [23]. For other hyperparameters, we fine-tune them by grid
search. For unsupervised learning, we first fine-tune learning
rate from {0.001, 0.005, 0.01}. For the augmentation functions
A(·), we choose from four augmentations and some of their
combinations, which are in line with GraphCL [3]. For the
perturbation rates ra and rb, we fine-tune them from {0.05,
0.1, 0.15, 0.2} and {0.15,0.2,0.25,0.3,0.35,0.4} respectively. In
addition, we fine-tune λ1, λ2 and λ3 from {0.001, 0.01, 0.1, 1,
10, 100 }. In transfer learning, we pre-trained the GNN encoder
on the ZINC-2M dataset, and we set learning rate to 0.001,
the number of epochs to 80, ra to 0.1, rb to 0.25, λ1 to 1, λ2

to 0.01 and λ3 to 0.01. In addition, we use the combination of
subgraph and node dropping as augmentation function, which
is the same as GraphCL [3]. In the process of fine-tuning, we
adjust the two hyperparameters learning rate and epoch, and
the grid search range is {0.0001, 0.0005, 0.001} and {20, 40,
60, 80, 100} respectively. Since most results of baselines are
publicly available, we directly report these results from their
original papers. For the results of AD-GCL and GraphLoG, we
report these results from RGCL [9]. For fairness, we run all
the experiments on a server with 128G memory and a single
NVIDIA 2080Ti GPU. We provide our code and data here:
https://anonymous.4open.science/r/GraphSC-8360.

https://anonymous.4open.science/r/GraphSC-8360

TABLE II
DATASETS STATISTICS FOR TRANSFER LEARNING.

Datasets Category Utilization Graph Num. Avg. Node Avg.Degree

ZINC-2M Biochemical Molecules PRE-TRAINING 2,000,000 26.62 57.72

BBBP Biochemical Molecules FINETUNING 2,039 24.06 51.90
TOX21 Biochemical Molecules FINETUNING 7,831 18.57 38.58

TOXCAST Biochemical Molecules FINETUNING 8,576 18.78 38.52
SIDER Biochemical Molecules FINETUNING 1,427 33.64 70.71

CLINTOX Biochemical Molecules FINETUNING 1,477 26.15 55.76
MUV Biochemical Molecules FINETUNING 93,087 24.23 52.55
HIV Biochemical Molecules FINETUNING 41,127 25.51 54.93

BACE Biochemical Molecules FINETUNING 1,513 34.08 73.71

B. Unsupervised learning (RQ1)

For unsupervised representation learning, we take the one-
hot representations of node labels and degrees as node feature
vectors for molecular datasets and social network datasets,
respectively. We summarize the experimental results in Table III.
From the table, we see that GraphSC ranks first on 5 out of
8 datasets and has competitive results on the other three. For
example, the accuracie of GraphSC on the COLLAB datasets is
78.90% , which is > 1.2% higher than the runner-up. Moreover,
GraphSC also leads in the other four datasets (i.e. NCI1,
PROTEINS, RED-B and RED-M5K) by 0.3%-0.8%. Further,
the average ranking of GraphSC across all the datasets is 1.5,
much better than the runner-up’s, which is 2.8. We also notice
that GraphSC-MSE, which utilizes the MSE loss to minimize
the absolute distance between anchor and positive sample, is
the runner-up among all the methods. This further verifies the
effectiveness of our proposed self-contrast framework, which is
not simply originated from the Barlow Twin loss regularization.

C. Transfer learning (RQ2)

In transfer learning, we first pre-train a backbone model
on Zinc-2M, and fine-tune the model on 8 multi-task binary
classification datasets. All the results w.r.t. the area under
receiver operating characteristic (AUROC) on downstream
tasks are presented in Table IV, as well as the average scores.
From the table, we see that GraphSC achieves the highest
average score compared with other baselines, and also the best
performances on the BBBP and Toxcast datasets. For other
cases where GraphSC is not the winner, the gap between
GraphSC’s score and the winner’s is small. For example,
the gaps between GraphSC and the winner on the SIDER
and MUV datasets are only 0.89% and 0.35%, respectively.
Further, let us take a closer look at GraphCL, which uses
the same augmentation functions as GraphSC. Specifically,
GraphSC leads GraphCL by > 6% on both ClinTox and
MUV datasets, and has an average score on all datasets that is
2.6% higher than GraphCL.

D. Ablation Study (RQ3)

We conduct an ablation study on GraphSC to understand the
characteristics of its main components. One variant randomly
selects an augmented view of another sample as a negative
sample. This is different from GraphSC, which uses a negative
sample that is directly constructed from the graph sample itself
(see Section IV-A). We call this variant GraphSC rd (random),
which helps us evaluate the validity of our negative generation
strategy. Another variant trains model without considering
masked self-contrast. This helps us understand the importance
of masked self-contrast. We call this variant GraphSC nm
(no masked self-contrast). Finally, to show the importance of
the Barlow Twins loss regularization term, We remove Lab

from the objective function and call this variant GraphSC nB
(no Barlow Twins). The results are given in Table V and we
observe:

(1) GraphSC achieves better performance than GraphSC rd.
Since GraphSC rd randomly selects an augmented view of
other sample as a negative, the performance gaps between
GraphSC and GraphSC rd show that GraphSC’s negative
generation strategy is very effective in selecting a valid negative
sample to improve classification accuracy.

(2) GraphSC clearly outperforms GraphSC nm on all
datasets. GraphSC nm, which removes Lma from the objective
function, does not perform masked self-contrast. This leads to
significant performance degradation due to the ignorance of
the fact that graph-structured data generally contains multiple
aspects of information.

(3) GraphSC beats GraphSC nB across all datasets. In
particular, GraphSC significantly outperforms GraphSC nB on
MUTAG and COLLAB. This shows that the Barlow Twins
loss regularization is particularly important for model training.
When using Barlow Twins loss regularization, the model can
explicitly shorten the absolute distance between the anchor
and the positive sample. This effectively compensates for the
inherent weakness of triplet loss.

TABLE III
UNSUPERVISED REPRESENTATION LEARNING ON TU DATASETS. ALL THE BASELINES ARE COMPARED IN THE SAME EXPERIMENT SETTING W.R.T. THE

CLASSIFICATION ACCURACY(%). BOLD INDICATES THE BEST PERFORMANCE ON EACH DATASET. A.R. DENOTES AVERAGE RANK. - INDICATES THAT
RESULTS ARE NOT AVAILABLE IN PUBLISHED PAPERS. RESULTS FOR SOTA METHODS ARE AS PUBLISHED.

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R.

GL - - - 81.66± 2.11 - 77.34± 0.18 41.01± 0.17 65.87± 0.98 13.3
WL 80.01± 0.50 72.92± 0.56 - 80.72± 3.00 - 68.82± 0.41 46.06± 0.21 72.30± 3.44 7.9

DGK 80.31± 0.46 73.30± 0.82 - 87.44± 2.72 - 78.04± 0.39 41.27± 0.18 72.30± 3.44 6.4

sub2vec 52.84± 1.47 53.03± 0.55 - 61.05± 15.80 - 71.48± 0.41 36.68± 0.42 55.26± 1.54 14.5
graph2vec 73.22± 1.81 73.30± 2.05 - 83.15± 9.25 - 75.78± 1.03 47.86± 0.26 71.10± 0.57 11.5
InfoGraph 76.20± 1.06 74.44± 0.31 72.85± 1.78 89.01± 1.13 70.65± 1.13 82.50± 1.42 53.46± 1.03 73.03± 0.87 7.9
GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.34 71.36± 1.15 89.53± 0.84 55.99± 0.28 71.14± 0.44 7.8

JOAO 78.07± 0.47 74.55± 0.41 77.32± 0.54 87.35± 1.02 69.50± 0.36 85.29± 1.35 55.74± 0.63 70.21± 3.08 8.9
JOAOv2 78.36± 0.53 74.07± 1.10 77.40± 1.15 87.67± 0.79 69.33± 0.34 86.42± 1.45 56.03± 0.27 70.83± 0.25 8
AD-GCL 73.91± 0.77 73.28± 0.46 75.79± 0.87 88.74± 1.85 72.02± 0.56 90.07± 0.85 54.33± 0.32 70.21± 0.68 8.5

SimGRACE 79.12± 0.44 75.35± 0.09 77.44± 1.11 89.01± 1.31 71.72± 0.82 89.51± 0.89 55.91± 0.34 71.30± 0.77 5.6
RGCL 78.14± 1.08 75.03± 0.43 78.86 ± 0.48 87.66± 1.01 70.92± 0.65 90.34± 0.58 56.38± 0.40 71.85± 0.84 5.1

LaGraph 79.9± 0.5 75.2± 0.4 78.1± 0.4 90.2 ± 1.1 77.6± 0.2 90.4± 0.8 56.4± 0.4 73.7± 0.9 3

GraphSC-MSE 80.39± 0.62 75.58± 0.23 78.32± 0.77 88.04± 1.56 77.64± 0.26 90.26± 0.80 56.38± 0.60 74.34 ± 0.72 2.8
GraphSC 81.12 ± 0.40 75.92 ± 0.15 78.32± 1.07 89.19± 1.83 78.90 ± 0.32 91.08 ± 0.56 56.71 ± 0.30 74.28± 0.76 1.5

TABLE IV
TRANSFER LEARNING ON DOWNSTREAM GRAPH CLASSIFICATION TASKS. WE COMPARED ALL THE METHODS W.R.T. THE AUROC SCORE(%). BOLD

INDICATES THE BEST PERFORMANCE ON EACH DATASET. - INDICATES THAT RESULTS ARE NOT AVAILABLE IN PUBLISHED PAPERS. RESULTS FOR SOTA
METHODS ARE AS PUBLISHED.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG.

No Pre-Train 65.8± 4.5 74.0± 0.8 63.4± 0.6 57.3± 1.6 58.0± 4.4 71.8± 2.5 75.3± 1.9 70.1± 5.4 66.96
DGI 68.8± 0.8 75.3± 0.5 62.7± 0.4 58.4± 0.8 69.9± 3.0 75.3± 2.5 76.0± 0.7 75.9± 1.6 70.29

EdgePred 67.3± 0.24 76.0± 0.6 64.1± 0.6 60.4± 0.7 64.1± 3.7 74.1± 2.1 76.3± 1.0 79.9± 0.9 70.28
AttrMasking 64.3± 2.8 76.7 ± 0.4 64.2± 0.5 61.0± 0.7 71.8± 4.1 74.7± 1.4 77.2± 1.1 79.3± 1.6 71.15
ContextPred 68.0± 2.0 75.7± 0.7 63.9± 0.6 60.9± 0.6 65.9± 3.8 75.8± 1.7 77.3± 1.0 79.6± 1.2 70.89

GraphCL 69.68± 0.67 73.87± 0.66 62.40± 0.57 60.53± 0.88 75.99± 2.65 69.80± 2.66 78.47 ± 1.22 75.38± 1.44 70.77
JOAO 70.22± 0.98 74.98± 0.29 62.94± 0.48 59.97± 0.79 81.32± 2.49 71.66± 1.43 76.73± 1.23 77.34± 0.48 71.9

JOAOv2 71.39± 0.92 74.27± 0.62 63.16± 0.45 60.49± 0.74 80.97± 1.64 73.67± 1.00 77.51± 1.17 75.49± 1.27 72.12
AD-GCL 68.26± 1.03 73.56± 0.72 63.10± 0.66 59.24± 0.86 77.63± 4.21 74.94± 2.54 75.45± 1.28 75.02± 1.88 70.90

SimGRACE 71.25± 0.86 - 63.36± 0.52 60.59± 0.96 - - - - -
GraphLoG 71.04± 1.86 74.65± 0.60 62.32± 0.51 57.86± 1.44 78.72± 2.58 74.95± 1.96 75.12± 1.98 82.6 ± 1.25 72.16

RGCL 71.42± 0.66 75.20± 0.34 63.33± 0.17 61.38 ± 0.61 83.38 ± 0.91 76.66 ± 0.99 77.90± 0.80 76.03± 0.77 73.16

GraphSC 72.16 ± 1.42 75.58± 0.56 64.27 ± 0.23 60.49± 0.41 82.29± 1.21 76.31± 0.71 77.08± 0.83 78.82± 1.38 73.37

TABLE V
ABLATION STUDY FOR GRAPHSC ON UNSUPERVISED LEARNING DATASETS.

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B AVG.

GraphSC rd 80.44± 0.43 74.90± 0.70 77.60± 0.56 86.36± 1.93 77.60± 0.32 90.02± 0.96 56.18± 0.66 73.22± 0.77 77.04
GraphSC nm 80.79± 0.31 74.98± 0.73 77.39± 0.33 87.66± 0.95 77.46± 0.37 89.89± 0.65 56.17± 0.56 73.66± 0.54 77.25
GraphSC nB 79.61± 0.36 75.19± 0.36 77.27± 0.84 86.68± 1.94 77.24± 0.30 89.80± 0.48 56.12± 0.34 73.66± 0.84 76.95

GraphSC 81.12 ± 0.40 75.92 ± 0.15 78.32 ± 1.07 89.19 ± 1.83 78.90 ± 0.32 91.08 ± 0.56 56.71 ± 0.30 74.28 ± 0.76 78.19

E. Convergence analysis (RQ4)

We next show how different components of GraphSC can
address the hard-to-train due to the usage of triplet loss
objective. To show the difficulty in training triplet loss based
objective, we further consider a variant of GraphSC that
randomly selects an augmented view of another sample as a
negative sample and uses the triplet loss to train GNN encoder.
We call it GraphSC rdt (random selection and triplet loss).
We take it as a reference and show the convergence results of
GraphSC variants on four datasets in Fig. 3. From the figure,
we observe that:

(1) The accuracy of GraphSC rdt does not increase with
more training epochs on all four datasets. This shows that
GraphSC rdt is hard-to-train due to the triplet loss objective.

(2) GraphSC converges faster than GraphSC nm. Specif-
ically, on the COLLAB and REDDIT-BINARY datasets,
GraphSC nm converges with more than 60 epochs, while
GraphSC uses only 20 epochs. In addition, GraphSC nm trains
very unsteadily on REDDIT-MULTI-5K. The convergence
speed gaps between GraphSC and GraphSC nm show that
GraphSC’s masked self-contrast is very effective in accelerating
model convergence.

0 20 40 60 80 100
Epochs

79.0

79.5

80.0

80.5

81.0

Ac
cu

ra
cy

NCI1

GraphSC
GraphSC_nm
GraphSC_nB
GraphSC_rd
GraphSC_rdt

0 20 40 60 80 100
Epochs

76.5

77.0

77.5

78.0

78.5

79.0

Ac
cu

ra
cy

COLLAB

GraphSC
GraphSC_nm
GraphSC_nB
GraphSC_rd
GraphSC_rdt

0 20 40 60 80 100
Epochs

88.0

88.5

89.0

89.5

90.0

90.5

91.0

Ac
cu

ra
cy

REDDIT-BINARY

GraphSC
GraphSC_nm
GraphSC_nB
GraphSC_rd
GraphSC_rdt

0 20 40 60 80 100
Epochs

55.00

55.25

55.50

55.75

56.00

56.25

56.50

Ac
cu

ra
cy

REDDIT-MULTI-5K

GraphSC
GraphSC_nm
GraphSC_nB
GraphSC_rd
GraphSC_rdt

Fig. 3. Convergence curves for GraphSC and its variants on NCI1 , COLLAB, REDDIT-BINARY and REDDIT-MULTI-5K datasets

0.05 0.1 0.15 0.2

ra

0.15

0.2

0.25

0.3

0.35

0.4

rb

0.42 0.78

0.61 1.3 0.98

0.17 0.79 1.3 0.98

0.86 1.5 1.1 0.49

0.13 1.4 0.54 0.88

0.27 0.36 0.7 0.72

PROTEINS

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.05 0.1 0.15 0.2

ra

0.15

0.2

0.25

0.3

0.35

0.4

rb

3.2 2.7

2.9 2.2 2.6

2.4 2 1.8 2

2.8 2.4 1.6 1.8

2.6 1.9 1.9 2.1

2.4 2 2.1 1.8

NCI1

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

0.05 0.1 0.15 0.2

ra

0.15

0.2

0.25

0.3

0.35

0.4

rb

0.94 0.82

1.5 1.1 0.51

1.3 0.7 0.54 0.89

0.6 1.1 0.09 0.41

0.92 0.41 0.65 -0.32

0.74 0.6 0.75 0.36

REDDIT-BINARY

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.05 0.1 0.15 0.2

ra

0.15

0.2

0.25

0.3

0.35

0.4

rb

0.14 0.26

0.25 0.3 0.02

0.37 0.72 0.31 0.17

0.17 0.15 0.4 -0.4

-0.01 0.26 0.15 0.19

0.27 0.31 0.25 0.05

REDDIT-MULTI-5K

-0.4

-0.2

0.0

0.2

0.4

0.6

Fig. 4. Accuracy difference between GraphSC and GraphCL versus various perturbation intensity pairs in unsupervised learning settings. Since ra < rb, we
fill in the parts of the diagram that violate this condition with blanks.

0.001 0.01 0.1 1 10 100
1

75

78

81

84

87

90

Ac
cu

ra
cy

NCI1
PROTEINS
REDDIT-BINARY
IMDB-BINARY

0.001 0.01 0.1 1 10 100
2

75.0
77.5
80.0
82.5
85.0
87.5
90.0

Ac
cu

ra
cy

NCI1
PROTEINS
REDDIT-BINARY
IMDB-BINARY

0.001 0.01 0.1 1 10 100
3

72

75

78

81

84

87

90

Ac
cu

ra
cy

NCI1
PROTEINS
REDDIT-BINARY
IMDB-BINARY

Fig. 5. GraphSC ’s sensitivity analysis w.r.t. the hyperparameters λ1, λ2 and λ3 in unsupervised learning settings.

(3) Compared with GraphSC, GraphSC nB converges slower
and performs worse. GraphSC nB, which only consider relative
distances between anchor and positive sample, might not pull
close positive sample pairs well. By explicitly shortening the
absolute distance for positive sample pairs, GraphSC converges
faster and performs better.

(4) GraphSC also achieves faster convergence than
GraphSC rd. This shows that the negative generation strategy
is particularly important for model training. When using our
proposed negative generation strategy, the model can obtain
informative negative samples, which accelerates convergence.

F. Hyperparameter sensitivity analysis (RQ5)

We end this section with a sensitivity analysis on the
hyperparameters of GraphSC. In particular, we study four
key hyperparameters: the perturbation intensities ra, rb, and
the term weights λ1, λ2, λ3. We evaluate the performance of
GraphSC on unsupervised settings. We vary one hyperparameter
each time with others fixed. Experimental results are given in
Fig. 4 and Fig. 5.
• Perturbation intensity: As shown in Fig. 4, we calculate
the accuracy difference between GraphSC and GraphCL for
different combinations of perturbation strengths. Although the

best settings of perturbations are different for each dataset,
GraphSC performs very well over various perturbation strength
combinations. This demonstrates the stability of the model.
• Term weight λ1, λ2 and λ3: As can be observed in Fig.
5, for the term weight λ1, λ2 and λ3, GraphSC gives very
stable performances over a wide range of parameter values.
This also shows the robust performance of GraphSC.

VI. CONCLUSIONS

In this paper, we studied graph-level representation learning
and proposed GraphSC, a graph contrastive learning framework,
which uses triplet loss as objective. GraphSC first uses
graph augmentation functions of different intensities to obtain
a positive and negative view of a graph sample from the
graph itself. Further, it factorizes the graph representations into
multiple factors and then presented a self-contrast mechanism
to separate positive and negative samples. Moreover, GraphSC
tries to shorten the absolute distance between an anchor and
its positive sample, which addresses the problem of triplet loss
in optimizing only the relative distance between the anchor
point and its positive/negative samples. We conducted extensive
experiments in both unsupervised and transfer learning settings,

and experimental results demonstrate the effectiveness and
transferability of the proposed framework.

REFERENCES

[1] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[2] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax.” ICLR (Poster), vol. 2, no. 3, p. 4, 2019.

[3] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” in NeurIPS, vol. 33, pp. 5812–
5823, 2020.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[5] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903,
2017.

[6] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[7] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph: Unsupervised
and semi-supervised graph-level representation learning via mutual
information maximization,” arXiv preprint arXiv:1908.01000, 2019.

[8] J. Xia, L. Wu, J. Chen, B. Hu, and S. Z. Li, “Simgrace: A simple
framework for graph contrastive learning without data augmentation,” in
Proceedings of the ACM Web Conference 2022, 2022, pp. 1070–1079.

[9] S. Li, X. Wang, Y. Wu, X. He, T.-S. Chua et al., “Let invariant
rationale discovery inspire graph contrastive learning,” arXiv preprint
arXiv:2206.07869, 2022.

[10] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” Advances in neural information processing systems, vol. 29,
2016.

[11] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An empirical study of graph contrastive
learning,” arXiv preprint arXiv:2109.01116, 2021.

[12] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al., “Bootstrap
your own latent-a new approach to self-supervised learning,” in NeurIPS,
vol. 33, pp. 21 271–21 284, 2020.

[13] X. Chen and K. He, “Exploring simple siamese representation learning,”
in CVPR, 2021, pp. 15 750–15 758.

[14] A. C. Li, A. A. Efros, and D. Pathak, “Understanding collapse in non-
contrastive learning,” arXiv preprint arXiv:2209.15007, 2022.

[15] C.-Y. Chuang, J. Robinson, Y.-C. Lin, A. Torralba, and S. Jegelka, “De-
biased contrastive learning,” Advances in neural information processing
systems, vol. 33, pp. 8765–8775, 2020.

[16] J. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Contrastive learning
with hard negative samples,” arXiv preprint arXiv:2010.04592, 2020.

[17] M. Wu, M. Mosse, C. Zhuang, D. Yamins, and N. Goodman, “Conditional
negative sampling for contrastive learning of visual representations,” arXiv
preprint arXiv:2010.02037, 2020.

[18] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus,
“Hard negative mixing for contrastive learning,” NeurIPS, vol. 33, pp.
21 798–21 809, 2020.

[19] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in CVPR, 2015, pp.
815–823.

[20] G. Chu, X. Wang, C. Shi, and X. Jiang, “Cuco: Graph representation
with curriculum contrastive learning.” in IJCAI, 2021, pp. 2300–2306.

[21] H. Yang, H. Chen, S. Zhang, X. Sun, Q. Li, and G. Xu, “Generating
counterfactual hard negative samples for graph contrastive learning,”
ArXiv, vol. abs/2207.00148, 2022.

[22] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring
statistical dependence with hilbert-schmidt norms,” in International
conference on algorithmic learning theory. Springer, 2005, pp. 63–77.

[23] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins:
Self-supervised learning via redundancy reduction,” in ICML. PMLR,
2021, pp. 12 310–12 320.

[24] Y. You, T. Chen, Z. Wang, and Y. Shen, “When does self-supervision help
graph convolutional networks?” in international conference on machine
learning. PMLR, 2020, pp. 10 871–10 880.

[25] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, and Y. Bengio, “Learning deep representations
by mutual information estimation and maximization,” arXiv preprint
arXiv:1808.06670, 2018.

[26] J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-bert: Only atten-
tion is needed for learning graph representations,” arXiv preprint
arXiv:2001.05140, 2020.

[27] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. Yu, “Graph
self-supervised learning: A survey,” IEEE Transactions on Knowledge
and Data Engineering, 2022.

[28] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph contrastive
representation learning,” arXiv preprint arXiv:2006.04131, 2020.

[29] ——, “Graph contrastive learning with adaptive augmentation,” in
WebConf, 2021, pp. 2069–2080.

[30] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “Gcc: Graph contrastive coding for graph neural network
pre-training,” in KDD, 2020, pp. 1150–1160.

[31] S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Veličković, and M. Valko,
“Bootstrapped representation learning on graphs,” in ICLR 2021 Workshop
on Geometrical and Topological Representation Learning, 2021.

[32] C. Mavromatis and G. Karypis, “Graph infoclust: Leveraging cluster-level
node information for unsupervised graph representation learning,” arXiv
preprint arXiv:2009.06946, 2020.

[33] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representation
learning on graphs,” in International Conference on Machine Learning.
PMLR, 2020, pp. 4116–4126.

[34] Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu, “Sub-graph
contrast for scalable self-supervised graph representation learning,” in
2020 IEEE international conference on data mining (ICDM). IEEE,
2020, pp. 222–231.

[35] Y. You, T. Chen, Y. Shen, and Z. Wang, “Graph contrastive learning
automated,” in ICML. PMLR, 2021, pp. 12 121–12 132.

[36] S. Suresh, P. Li, C. Hao, and J. Neville, “Adversarial graph augmentation
to improve graph contrastive learning,” Advances in Neural Information
Processing Systems, vol. 34, pp. 15 920–15 933, 2021.

[37] J. Xia, L. Wu, G. Wang, J. Chen, and S. Z. Li, “Progcl: Rethinking hard
negative mining in graph contrastive learning,” in ICML. PMLR, 2022,
pp. 24 332–24 346.

[38] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML. PMLR,
2020, pp. 1597–1607.

[39] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and
M. Neumann, “Tudataset: A collection of benchmark datasets for learning
with graphs,” arXiv preprint arXiv:2007.08663, 2020.

[40] T. Sterling and J. J. Irwin, “Zinc 15–ligand discovery for everyone,”
Journal of chemical information and modeling, vol. 55, no. 11, pp.
2324–2337, 2015.

[41] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt, “Efficient graphlet kernels for large graph comparison,” in Artificial
intelligence and statistics. PMLR, 2009, pp. 488–495.

[42] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels.” Journal of Machine
Learning Research, vol. 12, no. 9, 2011.

[43] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in KDD, 2015,
pp. 1365–1374.

[44] B. Adhikari, Y. Zhang, N. Ramakrishnan, and B. A. Prakash, “Sub2vec:
Feature learning for subgraphs,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2018, pp. 170–182.

[45] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal, “graph2vec: Learning distributed representations of graphs,”
arXiv preprint arXiv:1707.05005, 2017.

[46] Y. Xie, Z. Xu, and S. Ji, “Self-supervised representation learning via
latent graph prediction,” arXiv preprint arXiv:2202.08333, 2022.

[47] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks,” arXiv preprint
arXiv:1905.12265, 2019.

[48] M. Xu, H. Wang, B. Ni, H. Guo, and J. Tang, “Self-supervised graph-
level representation learning with local and global structure,” ArXiv, vol.
abs/2106.04113, 2021.

[49] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

	Introduction
	RELATED WORK
	Graph self-supervised learning
	Graph contrastive learning

	Preliminary
	Graph Neural Networks (GNNs)
	Hilbert-Schmidt Independence Criterion

	METHOD
	Data augmentation
	Model architecture
	Contrastive loss

	EXPERIMENTS
	Experimental Setup
	Unsupervised learning (RQ1)
	Transfer learning (RQ2)
	Ablation Study (RQ3)
	Convergence analysis (RQ4)
	Hyperparameter sensitivity analysis (RQ5)

	CONCLUSIONS
	References

