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Abstract—In causal inference, it is a fundamental task to
estimate the causal effect from observational data. However,
latent confounders pose major challenges in causal inference
in observational data, for example, confounding bias and M -
bias. Recent data-driven causal effect estimators tackle the
confounding bias problem via balanced representation learning,
but assume no M -bias in the system, thus they fail to handle the
M -bias. In this paper, we identify a challenging and unsolved
problem caused by a variable that leads to confounding bias
and M -bias simultaneously. To address this problem with co-
occurring M -bias and confounding bias, we propose a novel
Disentangled Latent Representation learning framework for
learning latent representations from proxy variables for unbiased
Causal effect Estimation (DLRCE) from observational data.
Specifically, DLRCE learns three sets of latent representations
from the measured proxy variables to adjust for the confounding
bias and M -bias. Extensive experiments on both synthetic and
three real-world datasets demonstrate that DLRCE significantly
outperforms the state-of-the-art estimators in the case of the
presence of both confounding bias and M -bias.

Index Terms—Causal Inference, Causal Effect Estimation,
Confounding Bias, M -bias, Disentangled Representation Learn-
ing, Latent Confounders

I. INTRODUCTION

Causal effect estimation is an important approach to un-
derstand the underlying causal mechanisms of problems in
various areas, such as economics [1], [2], epidemiology [3],
medicine [4] and computer science [5], [6]. Randomised
control trials (RCTs) are the gold standard for assessing
causal effects, but conducting RCTs can often be infeasible or
impractical due to ethical considerations, high costs, or time
constraints [1], [7]. Therefore, estimating causal effects from
observational data has emerged as an important alternative
strategy of RCTs [1], [6], [8].

The presence of confounding bias, caused by confounders,
creates challenges when using observational data for causal
effect estimation [1], [5]. A confounder is a variable that
influences both the treatment variable, denoted as W , and
the outcome variable, denoted as Y . Many works [9], [10]
consider all measured variables, denoted as X as the set of
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Fig. 1. In the figure, L, F and Z each represent a set of latent variables
(indicated by shaded circles), and the other variables are measured. W and Y
are the treatment and outcome variables respectively. X is the set of covariates,
M is a set of M -bias variables, and Q is a set of proxy variables of Z.
Note that M is also a set of proxies of L and F. In the four causal DAGs,
(a) a simple case with confounding bias caused by X w.r.t. (W,Y ); (b) an
illustration of M -structure: W ← L → M ← F → Y . Conditioning on M
results in M -bias wrt., (W,Y ); (c) A DAG illustrating the problem identified
in this work, M serves as a set of M -bias variables and a set of confounders,
w.r.t. (W,Y ); (d) the DAG showing the problem studied in this work.

confounders as shown in Fig. 1 (a), in which X causes both
W and Y simultaneously in the causal DAG. To address
the confounding bias, various methods that employ covariate
adjustment [5], [8] or confounding balancing [9], [11] have
been developed, under the unconfoundedness assumption [1],
[6]. For example, Shalit et al. [9] proposed a representation
learning based counterfactual regression framework.

Nevertheless, some variables are unmeasured or unobserved
due to various uncontrollable factors in many real-world
applications [13], [14], consequently, the unconfoundedness
assumption is violated due to the presence of the latent
variables. These latent variables result in not only confounding
bias, but also M -bias. M -bias is introduced by conditioning
on a variable that is caused by two latent variables. We call
a measured variable an M -bias variable if it is a direct effect
variable of two or more latent variables, forming an “M -
structure”. For example, in Fig. 1 (b), M is a set of measured

A DAG (directed acyclic graph) is a graph with directed edges only and
contains no cycles. More details of graph terminologies can be found in [5].

The unconfoundedness assumption holds when there are no unmeasured
confounders for each pair measured variables [1], [12].
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variables and is the set of M -bias variables since L and F
are two sets of latent variables and they are direct causes of
M. In this case, when M is considered as confounders such
that it is adjusted for estimating the causal effect of W on
Y , a spurious association between W and Y occurs since
the path W ← L → M ← F → Y is opened when M
is given (conditioned on). The spurious association along the
path causes a biased estimation wrt., (W,Y ). Such a bias is
known as M -bias in causal effect literature [3], [15], [16].

Excluding the M -bias variable in an adjustment set is a
common way of dealing with M -bias [5], [8], [15], [17]. For
example, Enter et al. [18] and Cheng et al. [19] use an anchor
node to perform conditioning independence/dependence tests
for identifying valid adjustment sets to exclude the M -bias
variable from an adjustment set.

Dealing with M -bias becomes complex when a variable
acts as both an M -bias variable and a confounder, and we
call the problem confounding M -bias problem. We call a
variable acting both as an M -bias variable and a confounder
a confounding M -bias variable, and the problem with a con-
founding M -bias variable the confounding M -bias problem,
and Fig. 1 (c) shows an example of the problem. M is a set
of M -bias variables based on path W ← L → M ← F → Y
and a set of confounders based on path W ← L → M → Y .
Using statistical methods, such as Entner et al. ’s [18] and
Cheng et al. ’s [19], whether adjusting for M or not, leads
to a biased causal effect of W on Y . There is no immediate
solution to the confounding M-bias problem but the problem
is real. We substantiate the example in Fig. 1 (c) by letting
W be ‘Study time’, Y be ‘Academic performance’, M be
‘Personal interests’, L be ‘Personal experience’, and F be
‘IQ’. When ‘Personal experience’ and ‘IQ’ are unmeasured, it
is impossible to estimate the causal effect of ‘Study time’ on
‘Academic performance’ since ‘Personal interests’ is both an
M -bias variable and a confounder.

In this paper, we will solve the problem by leveraging the
representation learning technique to recover the information
of latent variables, and then using observed variables and the
learned representations to unbiasedly estimate causal effect in
the presence of confounding M -bias variables.

The causal graph of the problem that is considered in this
paper is shown in Fig. 1 (d). To make our solution covers
a broader range of practical scenarios, we also consider the
latent confounders whose proxies are observed. For example,
in Fig. 1 (d), if the unobserved confounder Z represents
‘Teaching quality’, and Q represents ‘Schools’, then Q can
be used as the proxy of Z.

In summary, this paper makes the following contributions:

• We identify the confounding M -bias problem in causal
effect estimation, which is a realistic problem. The prob-
lem has not been identified or studied previously.

• We propose a solution, the DLRCE (Disentangled
Latent Representation learning for unbiased Causal effect
Estimation) algorithm to resolve the confounding M-bias
problem. To the best of our knowledge, there are no

solutions to this problem. Furthermore, we prove the
soundness of the solution.

• We conduct an empirical evaluation to assess the per-
formance of the proposed algorithm on both synthetic
and real-world datasets, in comparison to state-of-the-art
methods. The experimental results reveal that the pro-
posed algorithm effectively mitigates confounding bias
and handles M -bias, and demonstrate its superior perfor-
mance compared to the baseline methods.

II. PRELIMINARIES

Throughout the paper, we use uppercase and lowercase
letters to denote variables and their values, respectively. We
use bold-faced uppercase and lowercase letters to represent a
set of variables and their corresponding values, respectively.

A graph is a Directed Acyclic Graph (DAG) when it consists
of directed edges (represented by →) and does not contain
cycles. In this paper, we use G = (V,E) to denote a DAG,
where V = X∪U∪{W,Y } represents the set of nodes, i.e., X
the set of measured variables, U the set of latent confounders,
W the treatment variable, and Y the outcome variable, and
E ⊆ V ×V indicates the set of directed edges.

In DAG G, two nodes are adjacent when there exists a
directed edge → between them. In a causal DAG, a directed
edge Xi → Xj signifies that variable Xi is a cause of variable
Xj and Xj is an effect variable of Xi. A path π from Xi to
Xk is a directed or causal path if all edges along it are directed
towards Xk. If there is a directed path π from Xi to Xk, Xi

is known as an ancestor of Xk and Xk is a descendant of
Xi. The sets of ancestors and descendants of a node X are
denoted as An(X) and De(X), respectively.

A causal DAG G = (V,E) is employed to represent the
underlying causal mechanism of a system. The following
presented Markov property and faithfulness assumptions are
often assumed in causal inference with a causal DAG.

Definition 1 (Markov property [5], [20]): Given a DAG G =

(V,E) and the joint probability distribution P (V), G satisfies
the Markov property if for ∀Vi ∈ V, Vi is probabilistically
independent of all of its non-descendants in P (V), given the
parent nodes of Vi.

Definition 2 (Faithfulness [20]): Given a DAG G = (V,E)
and the joint probability distribution P (V), G is faithful
to a joint distribution P (V) over V if and only if every
independence present in P (V) is entailed by G and satisfies
the Markov property. A joint distribution P (V) over V is
faithful to G if and only if G is faithful to P (V).

When the Markov property and faithfulness are satisfied,
the dependency/independency relations between variables in
the probability distribution P (V) can be inferred from the
corresponding causal DAG G [5], [20]. To determine the
conditional independence relationships implied by G, Pearl
introduced a graphical criterion, named d-separation.

Definition 3 (d-separation [5]): A path π in a DAG G =

(V,E) is said to be d-separated (or blocked) by a set of nodes
S if and only if (i) π contains a chain Vi → Vk → Vj or a
fork Vi ← Vk → Vj such that the middle node Vk is in S, or



(ii) π contains a collider Vk such that Vk is not in S and no
descendant of Vk is in S. A set S is said to d-separate Vi from
Vj (Vi ⫫ Vj ∣ S) if and only if S blocks every path between
Vi to Vj . Otherwise, they are said to be d-connected by S,
denoted as Vi ⫫̸ Vj ∣ S.

In this work, we assume that the set X contains pretreatment
variables, i.e., all variables in X are measured before the
treatment W is applied and the outcome Y is measured. Based
on the potential outcome framework [1], [21], [22], for an
individual, with respect to a binary treatment, there are two
potential outcomes, Y (W = 1) and Y (W = 0) respectively.
Y (W = w) is the observed outcome when the treatment W is
equal to w. Note that, for an individual, we can only observe
one of Y (W = 1) and Y (W = 0) relative to the factual
treatment we have applied. The unobserved potential outcome
is known as the counterfactual outcome [1], [21], [22]. The
individual treatment effect (ITE) for i is defined as:

ITEi = Yi(W = 1) − Yi(W = 0) (1)

The average treatment effect (ATE) of W on Y at the
population level is defined as:

ATE(W,Y ) = E[Yi(W = 1) − Yi(W = 0)] (2)

where E indicates the expectation function. In graphical causal
modelling, the ATE is defined as the following using “do”
operation introduced by Pearl [5], and defined as:

ATE(W,Y ) =
E[Y ∣ do(W = 1)] − E[Y ∣ do(W = 0)] (3)

where do(⋅) is the do-operator.
The ITE defined in Eq.(1) cannot be obtained from data

directly since only one potential outcome is observed for an
individual. Instead, a number of data-driven methods have
been developed for ATE estimation from data. To estimate
the causal effect of W on Y unbiasedly from observational
data, covariate adjustment [5], [13], [23] and confounding
balance [9] are commonly used method for eliminating the
confounding bias. It is critical to discover an adjustment
set to eliminate the confounding bias when estimating the
causal effect of W on Y . The back-door criterion, a well-
known graphical criterion, can be applied to discover such an
adjustment set S ⊆ X in G.

Definition 4 (Back-door criterion [5]): In a DAG G =

(V,E), for the pair of variables (W,Y ) ∈ V, a set of vari-
ables S ⊆ V\{W,Y } is said to satisfy the back-door criterion
in the given DAG G if (i) S does not contain a descendant node
of W ; and (ii) S blocks every back-door path between W and
Y (the paths between W and Y starting with an arrow into
W ). A set S is referred to as a back-door set relative to (W,Y )
in G if S satisfies the back-door criterion relative to (W,Y )
in G. Therefore, adjusting for the back-door set S, we have
ATE(W,Y ) = E[Y ∣ w = 1,S = s] − E[Y ∣ w = 0,S = s].

For a sub-population with the same features, the conditional
ATE (CATE) (Some researchers use it to approximate ITE [9])
from observational data is as follows:

CATE(W,Y ∣ X = x) = E[Y ∣ do(W = 1),X = x]
− E[Y ∣ do(W = 0),X = x] (4)

where X contains all factors causing the outcome Y .
When there exists a confounding M -bias variable, the set

of measured variables X are not enough for the identification
of ATE(W,Y ) and CATE(W,Y ∣ X = x) from data
as discussed in Introduction. We will introduce our DLRCE
algorithm for solving this challenging problem in Section III.

III. THE PROPOSED DLRCE ALGORITHM

A. Problem Setting

We assume that the underlying data generation or causal
mechanism is represented as a causal DAG G = (X ∪ U ∪
{W,Y },E) shown in Fig. 1 (d), where U = Z ∪ L ∪ F are
latent confounders, X = Q∪M are measured variables, Q is
the set of proxy variables for Z, and M is the set of proxy
variables for both L and F.

Existing methods cannot be used to obtain an unbiased
estimation of the causal effect of W on Y using measured
variables since either adjusting or not adjusting for M results
in a biased estimation. The aim of this paper is to unbiasedly
estimate the ATE of W on Y , and the CATE of W on Y
conditioning on X from observational data. More precisely,
the research problem to be tackled in this paper is as follows.

Problem 1: Given an observational dataset D of a set
measured variables {X = Q∪M,W, Y }, and assume that D is
generated from the underlying DAG G=(X∪U∪ {W,Y },E)
as shown in Fig. 1 (d). W and Y are the treatment and outcome
variables respectively and X contains pretreatment variables.
Q is a set of proxy confounders and M represents confounding
M -bias variables. The goal is to estimate ATE(W,Y ) and
CATE(W,Y ∣ X = x) from the dataset D.

B. Theoretical base of the Proposed DLRCE Algorithm

We will leverage the capability of VAE (variational autoen-
coder) [24], [25] in disentangled representation learning to
tackle the confounding M -bias problem. VAEs are generative
models, also known as latent variable models, and use a
prior distribution and a noise distribution for generating the
latent representations of the measured variables. We propose
to make use of the VAE technique to learn and disentangle the
latent representations of the latent variables in our problem
setting. Specifically, we propose to use VAE to learn the
representation of Z from the proxy variables Q, and the
latent representations Ψ from M, and then disentangle Ψ into
representations of L and F, respectively. As in VAE literature,
we use the same letter to denote a latent variable and its
learned representation. The learned and disentangled latent
representations {F,Z} and M are used to obtain unbiased
estimation of CATE(W,Y ∣ X = x) and ATE(W,Y ) from
observational data with latent confounders.



We first demonstrate that the latent representations learned
and disentangled by the DLRCE algorithm are sound to
estimate ATE(W,Y ) from the dataset D.

Theorem 1: Given the setting in Problem 1, ATE(W,Y )
can be identified if the latent representations Z and L are
recovered from the dataset D, and we have ATE(W,Y ) =

E[Y ∣ W = 1,Z = z,L = l] − E[Y ∣ W = 0,Z = z,L = l].
Proof 1: In Fig. 1 (d), Z and L are the parents of W . We will

prove that Z∪L satisfies the back-door criterion (Definition 4)
wrt., (W,Y ), i.e., Z∪L blocks all the backdoor paths between
W and Y . Firstly, Z and L do not contain any descendants
of W , i.e., the first condition (i) of the back-door criterion
holds. Secondly, there are three back-door paths between W
and Y , i.e., W ← Z → Y , W ← L → M → Y , and W ←

L → M ← F → Y . The first back-door path is blocked by
Z and the remaining two back-door paths are blocked by L.
Hence Z and L block all back-door paths between W and Y ,
i.e., the second condition (ii) of the back-door criterion holds.
Therefore, Z∪L satisfies the back-door criterion and based on
Eq. 3 ATE(W,Y ) can be identified in the dataset D. Hence,
ATE(W,Y ) = E[Y ∣ W = 1,Z = z,L = l] − E[Y ∣ W =

0,Z = z,L = l].
Theorem 1 presents a theoretical base for ATE(W,Y )

estimation. It is worth mentioning that the conditional clause
‘if Z and L are recovered from the dataset D’ in the theorem is
a fundamental assumption that is widely made in VAE-based
causal inference [26]–[28].

In the following theorem, we will show that the latent
representations learned and disentangled by the DLRCE are
sound to estimate CATE(W,Y ∣ X = x) from D.

Theorem 2: Given the setting in Problem 1, CATE(W,Y ∣
X = x) can be identified if the latent variables Z and F are
recovered from the dataset D, and we have CATE(W,Y ∣
X = x) = E[Y ∣ W = 1,Z = z,M = m,F = f] − E[Y ∣
W = 0,Z = z,M = m,F = f].

Proof 2: We first use the ‘do’ calculus rules [5] to
remove the ‘do’ operator from the definition of CATE,
i.e., CATE(W,Y ∣ X = x) = E[Y ∣ do(W ),Z = z,F =

f ,L = l,X = x] = E[Y ∣ do(W ),Z = z,F = f ,L =

l,M = m,Q = q]. Let GW be the manipulated DAG by
removing all outgoing edges of W from the causal DAG
in Fig. 1 (d), and GW represents the manipulated DAG by
eliminating all edges into W . Note that Y ⫫ L ∣ M,F and
Y ⫫ Q ∣ Z in GW . Hence, using Rule 3 of do-calculus, we
can remove L and Q from the conditioning set, and obtain
CATE(W,Y ∣ X = x) = E[Y ∣ do(W ),Z = z,F =

f ,M = m]. Following Rule 2 of do-calculus [5] with the
condition Y ⫫ W ∣ Z,M,F in GW , we have CATE(W,Y ∣
X = x) = E[Y ∣ do(W ),F = f ,M = m,Z = z) = E[Y ∣
W,Z = z,M = m,F = f]. Therefore, Z, F and M are suf-
ficient for identifying CATE(W,Y ∣ X = x) from the
dataset D. Hence, CATE(W,Y ∣ X = x) = E[Y ∣
W,Z = z,M = m,F = f].

Theorems 1 and 2 provide the ground that learning the
latent representations allows us to unbiasedly estimate CATE
and ATE from observational data when there exists a set of

proxy variables, i.e., X = (M,Q). In the next section, we will
introduce our proposed DLRCE algorithm for learning these
latent representations from observational data.

C. Disentanglement of Latent Representations

In this section, we present the details of our proposed
DLRCE algorithm that is built on disentangled representation
learning and supported by Theorems 1 and 2. The overall
architecture of DLRCE is presented in Fig. 2. DLRCE aims
to learn the latent representations Z from the proxy variables
Q, and the latent representations Ψ from the proxy variables
M, and then disentangle Ψ into two disjoint sets L and F.
Finally, the latent representations {F,Z} and M are used for
calculating causal effects of W on Y .

To learn and disentangle the representations, the inference
model and the generative model are employed to approximate
the two posteriors pφQ

(Q ∣ Z) and pφM
(M ∣ L,F), where

φQ and φM are the network parameters in the generative
model. In the inference model of DLRCE, three separate
encoders qθZ(Z ∣ Q), qθL(L ∣ M) and qθF(F ∣ M)
are employed to serve as variational posteriors for deducing
the three latent representations, for which θZ, θL and θF
are the network parameters. In the generative model of the
DLRCE algorithm, the latent representation Z is generated
from a single encoder qθZ(Z ∣ Q) used by a single decoder
pφQ

(Q ∣ Z) to reconstruct Q; the latent representations L
and F are generated from two separated encoders qθL(L ∣ M)
and qθF(F ∣ M) used by a single decoder pφM

(M ∣ L,F) to
reconstruct M.

As in the standard VAE [24], [25], we use Gaussian distri-
butions to initialise the prior distributions of P (Z), P (L) and
P (F), and defined as:

P (Z) =
∣Z∣
∏
i=1

N (Zi ∣ 0, 1);P (L) =
∣L∣
∏
i=1

N (Li ∣ 0, 1);

P (F) =
∣F∣
∏
i=1

N (Fi ∣ 0, 1);
(5)

In the inference model of DLRCE, the variational posteriors
for approximating qθZ(Z ∣ Q), qθL(L ∣ M) and qθF(F ∣ M)
are defined as:

qθZ(Z ∣ Q) =
∣Z∣
∏
i=1

N (µ = µ̂Zi
, σ

2
= σ̂

2
Zi
);

qθL(L ∣ M) =
∣L∣
∏
i=1

N (µ = µ̂Li
, σ

2
= σ̂

2
Li
);

qθF(F ∣ M) =
∣F∣
∏
i=1

N (µ = µ̂Fi
, σ

2
= σ̂

2
Fi
);

(6)

where µ̂Zi
, µ̂Li

, µ̂Fi
and σ̂

2
Zi
, σ̂

2
Li
, σ̂

2
Fi

are the estimated means
and variances of latent variables Zi, Li and Fi, respectively.



Fig. 2. The architecture of the proposed DLRCE algorithm consists of the inference network and the generative network for learning the three representations
from proxy variables. Three auxiliary predictors ensure that the treatment W is predicted by Z and L, the measured variables M are predicted by L and F,
and the outcome Y is predicted by Z, L and M.

In the generative models of DLRCE, Z, L and F are used
to generate W , Q and M as:

pφW
(W ∣ Z,L) = B(σ(g1(Z,L)));

pφQ
(Q ∣ Z) =

∣Q∣
∏
i=1

P (Qi ∣ Z);

pφM
(M ∣ L,F) =

∣M∣
∏
i=1

P (Mi ∣ L,F);

(7)

where B(⋅) is the Bernoulli function, g1(⋅) is a neural
network, σ(⋅) is the logistic function. Notably, P (Qi ∣ Z)
and P (Mi ∣ L,F) are the distributions on the i-th variable.

In the generative model of DLRCE, we generate the out-
come Y based on its data type.

When Y is a continuous variable, we sample Y from a
normal distribution and model it in the treatment and control
groups as P (Y ∣ W = 0,Z,M,F) and P (Y ∣ W =

1,Z,M,F) respectively. Hence, the generative model for Y
is described as:

pφY
(Y ∣ W,Z,M,F) = N (µ = µ̂Y , σ

2
= σ̂

2
Y );

µ̂Y = W ⋅ g2(Z,M,F) + (1 −W ) ⋅ g3(Z,M,F);
σ̂
2
Y = W ⋅ g4(Z,M,F) + (1 −W ) ⋅ g5(Z,M,F);

(8)

where g2(⋅), g3(⋅), g4(⋅) and g5(⋅) are the functions param-
eterised by neural networks.

When Y is a binary variable, we use a Bernoulli distribution
to parameterise it:

pφY
(Y ∣ W,Z,M,F) = B(σ(g6(W,Z,M,F))), (9)

where g6(⋅) is a neural network. We optimise these parameters
by maximising the evidence lower bound (ELBO) [24]:

LELBO = EqθZ
[log pφQ

(Q ∣ Z)]+
EqθLqθF

[log pφM
(M ∣ L,F)]

−DKL[qθZ(Z ∣ Q)∣∣P (Z)]
−DKL[qθL(L ∣ M)∣∣P (L)]
−DKL[qθF(F ∣ M)∣∣P (F)],

(10)

where DKL[⋅∣∣⋅] is a KL divergence term.
To encourage the disentanglement of latent representations

and ensure that M can be recovered by L and F, and to ensure

W can be predicted by Z and L, and Y can be predicted
by Z, M and F, three auxiliary predictors are added to the
variational ELBO. Finally, the objective of DLRCE can be
described as:
LDLRCE = − LELBO + αEqθLqθF

[log q(M ∣ L,F)]
+ βEqθZqθL

[log q(W ∣ Z,L)]
+ γEqθZqθF

[log q(Y ∣ W,Z,M,F)],
(11)

where α, β and γ are the weights for balancing the three
auxiliary predictors.

To estimate the CATEs of individuals conditioning on
their measured variables X, we employ the three encoders
qθZ(Z ∣ Q), qθL(L ∣ M) and qθF(F ∣ M) to sample the
approximated posteriors, and average the predicted potential
outcomes using the classifier q(Y ∣ W,Z,M,F). Finally, by
utilising Theorems 1 and 2, DLRCE is able to estimate the
ATE(W,Y ) and CATE(W,Y ∣ X = x) from the dataset D.

IV. EXPERIMENTS

In this section, we conduct experiments on both synthetic
and real-world datasets to evaluate the performance of DLRCE
for estimating ATE and CATE from observational data with
latent confounders. For the synthetic datasets, we use the
causal DAG in Fig. 1 (d) to generate synthetic datasets with
ground truths of ATE and CATE for evaluating the perfor-
mance of DLRCE. For the experiments on real-world datasets,
we choose three benchmark datasets, Schoolingreturns [29],
Cattaneo2 [30] and Sachs [31] where the empirical causal
effects are available in the literature.

A. Experiment Setup

Baseline causal effect estimators. We compare our proposed
DLRCE algorithm with nine state-of-the-art causal effect
estimators that are widely used to estimate ATE and CATE
from observational data. The seven estimators can be divided
into two groups, Machine Learning based estimators and
VAE based estimators. The Machine learning based estimators
include (1) LinearDML (LDML) [32]: It is to solve the reverse
causal metric bias by applying a cross-fitting strategy; (2)
SparseLinearDML (SLDML) [33]: The loss function of the
LinearDML estimator is modified by incorporating L1 regu-
larisation; (3) KernelDML [34]: It combines dimensionality



TABLE I
ESTIMATION BIAS (MEAN±STANDARD DEVIATION) OVER 30 INDEPENDENTLY REPEATED EXPERIMENTS ON THE SYNTHETIC DATASETS WITH Ylinear .

THE BEST RESULT IS MARKED IN BOLDFACE. OUR PROPOSED DLRCE ALGORITHM OBTAINS THE SMALLEST BIAS.

Method Sample sizes
2k 4k 6k 8k 10k

LDML 30.82±0.31 28.56±0.19 28.36±0.17 28.65±0.12 28.08±0.05
SLDML 39.98±0.38 28.57±0.18 28.50±0.16 28.54±0.11 28.10±0.05

KernelDML 39.71±0.46 41.06±0.19 41.00±0.22 41.98±0.14 43.09±0.09
X-learner 23.99±0.51 22.24±0.17 22.15±0.14 21.86±0.11 21.92±0.10
R-learner 28.37±1.04 39.73±0.30 29.04±0.21 29.95±0.13 28.86±0.05

LDRlearner 48.57±0.51 47.48±0.17 46.50±0.18 46.73±0.12 47.22±0.09
CFDML 39.53±0.49 35.51±0.15 33.16±0.12 32.50±0.08 31.81±0.05
CEVAE 31.03±0.79 45.73±0.39 35.60±0.56 29.47±1.10 23.27±0.68

TEDVAE 40.59±0.40 34.59±0.18 31.82±0.14 31.27±0.11 29.75±0.07
DLRCE 12.62±1.20 14.09±1.06 15.20±1.23 12.54±0.74 13.59±0.54

TABLE II
ESTIMATION PEHE (MEAN±STANDARD DEVIATION) OVER 30 INDEPENDENTLY REPEATED EXPERIMENTS ON THE SYNTHETIC DATASETS WITH Ylinear .

THE BEST RESULT IS MARKED IN BOLDFACE. OUR PROPOSED DLRCE ALGORITHM OBTAINS THE SMALLEST PEHE.

Method Sample sizes
2k 4k 6k 8k 10k

LDML 1.06±0.03 0.93±0.02 0.90±0.01 0.91±0.01 0.88±0.01
SLDML 1.07±0.03 0.93±0.02 0.91±0.01 0.90±0.01 0.89±0.01

KernelDML 1.25±0.05 1.22±0.02 1.24±0.02 1.27±0.01 1.48±0.01
X-learner 3.61±0.01 3.56±0.01 3.53±0.01 3.52±0.01 3.52±0.01
R-learner 7.69±2.21 5.00±0.49 4.13±0.37 3.91±0.25 3.39±0.14

LDRlearner 1.61±0.04 1.51±0.01 1.46±0.01 1.46±0.01 1.48±0.01
CFDML 1.34±0.03 1.19±0.01 1.15±0.01 1.12±0.01 1.10±0.01
CEVAE 1.17±0.06 1.36±0.05 1.18±0.06 0.94±0.06 0.82±0.07

TEDVAE 1.39±0.03 1.09±0.01 0.99±0.01 0.95±0.01 0.94±0.01
DLRCE 0.46±0.12 0.50±0.12 0.58±0.13 0.47±0.07 0.56±0.10

reduction techniques and kernel methods; (4) Mete-learners
(including X-learner and R-learner) [35]; (5) LinearDRLearner
(LDRlearner) [36]: It is based on double neural networks for
addressing the bias in causal effect estimation; (6) Causal-
ForestDML (CFDML) [37]: It employs two random forests for
causal estimations for predicting two potential outcomes re-
spectively. The VAE based estimators include: (1) causal effect
variational autoencoder (CEVAE) [26] and (2) treatment effect
by disentangled variational autoencoder (TEDVAE) [28].
Evaluation metrics. We employ the estimation bias»»»»»(

ˆATE −ATE)/ATE
»»»»» ∗ 100 (%) to evaluate the perfor-

mance of all estimators, where ATE is the true causal ef-
fect and ˆATE is the estimated causal effect. We utilise the
Precision of the Estimation of Heterogeneous Effect (PEHE)
for the quality of CATE estimation [26], [38] defined as√
εPEHE =

√
E(((y1 − y0) − (ŷ1 − ŷ0))2), where y1, y0 rep-

resent the true potential outcomes and ŷ1, ŷ0 represent the
predicted potential outcomes. Note that PEHE is widely em-
ployed for assessing CATE estimations in causal inference [6].
To mitigate random noise, we repeat the experiments multiple
times and report the average and the standard deviation. For
the three real-world datasets, since there is no ground truth
causal effects available, we evaluate all estimators against the
reference causal effects found in the literature.
Implementation details. We use Python and the libraries
including pytorch [39], pyro [40] and econml to imple-
ment our proposed DLRCE algorithm. The implementa-
tion of DLRCE is available at the anonymous site https:

//anonymous.4open.science/r/DLRCE-385A. The implemen-
tations of LDML, SLDML, KernelDML, LDRLearner and
CFDML are from the Python package encoml [41]. The im-
plementations of X-learner and R-learner are from the Python
package CausalML [42]. The implementation of CEVAE is
based on the Python library pyro [40] and the implementations
of TEDVAE is from the authors’ GitHub.

B. Evaluations on Synthetic Datasets

We use the causal DAG in Fig. 1 (d) to generate the
synthetic datasets with sample sizes, 2k, 4k, 6k, 8k, and
10k for our experiments. In the causal DAG G, M and
X are two set of proxy variables. L, F and Z are latent
confounders. Similar to [10], [43], L, F and Z are generated
from Bernoulli distribution. For an element M ∈ M, it
is generated from the two latent confounders L and F by
using M = η1 ∗ L + η2 ∗ F , where η1 and η2 are two
coefficients. For an element X ∈ X, it is generated from
the latent confounder Z by using X ∼ N(Z, η3 ∗ Z),
where η3 is a coefficient. For generating the treatment W ,
we use Bernoulli distribution with the conditional probability
P (W = 1 ∣ L,Z,M) = [1 + exp{1 + 0.25 ∗ L + 0.25 ∗ Z}].

In this work, we generate two types of potential outcomes
Y (W ), namely a linear function Ylinear and a nonlinear
function Ynonlinr as Y (W ) = 2 + 3 ∗ W + 3 ∗ M + 2 ∗
F ∗M+ 3∗Z + ϵw, where ϵw is an error term, and Y (W ) =

https://github.com/WeijiaZhang/TEDVAE

https://anonymous.4open.science/r/DLRCE-385A
https://anonymous.4open.science/r/DLRCE-385A
https://github.com/WeijiaZhang/TEDVAE


TABLE III
ESTIMATION BIAS (MEAN±STANDARD DEVIATION) OVER 30 INDEPENDENTLY REPEATED EXPERIMENTS ON THE SYNTHETIC DATASETS WITH Ynonlin .

THE BEST RESULT IS MARKED IN BOLDFACE. OUR PROPOSED DLRCE ALGORITHM OBTAINS THE SMALLEST BIAS.

Method Sample sizes
2k 4k 6k 8k 10k

LDML 45.39±0.71 47.02±0.49 46.90±0.30 45.58±0.32 43.97±0.16
SLDML 46.79±0.76 47.14±0.42 47.12±0.30 45.79±0.33 44.03±0.16

KernelDML 54.30±0.94 61.93±0.74 63.45±0.50 61.72±0.39 62.34±0.26
X-learner 33.08±0.69 30.12±0.71 34.62±0.20 33.80±0.27 30.60±0.23
R-learner 26.13±0.43 23.73±0.32 25.64±0.21 25.60±0.12 23.44±0.13

LDRlearner 69.19±0.98 72.61±0.80 71.94±0.48 70.28±0.33 69.55±0.21
CFDML 59.94±0.84 57.61±0.41 53.87±0.37 51.52±0.20 48.86±0.16
CEVAE 24.15±3.08 61.91±2.30 46.21±3.71 47.07±4.44 41.37±5.48

TEDVAE 59.96±1.21 59.15±0.63 54.94±0.40 52.26±0.27 48.39±0.17
DLRCE 15.52±0.89 16.58±7.70 19.32±3.37 10.57±0.59 10.32±0.65

TABLE IV
ESTIMATED PEHE (MEAN±STANDARD DEVIATION) OVER 30 INDEPENDENTLY REPEATED EXPERIMENTS ON THE SYNTHETIC DATASETS WITH Ynonlin

FOR DIFFERENT METHODS. THE BEST RESULT IS MARKED IN BOLDFACE. OUR PROPOSED DLRCE ALGORITHM OBTAINS THE SMALLEST PEHE.

Method Samples
2k 4k 6k 8k 10k

LDML 1.65±0.07 1.52±0.04 1.53±0.02 1.46±0.02 1.39±0.01
SLDM 1.62±0.07 1.53±0.05 1.54±0.02 1.45±0.02 1.39±0.01

KernelDML 1.69±0.12 1.78±0.10 1.92±0.05 1.87±0.03 1.88±0.01
X-learner 6.23±0.04 6.22±0.03 6.17±0.01 6.18±0.01 6.10±0.01
R-learner 6.91±0.04 4.81±0.21 3.76±0.01 3.25±0.01 2.83±0.01

LDRlearner 2.37±0.09 2.27±0.09 2.31±0.03 2.24±0.03 2.20±0.02
CFDML 2.04±0.06 1.92±0.03 1.89±0.02 1.84±0.01 1.76±0.01
CEVAE 1.46±0.21 1.90±0.18 1.51±0.29 1.35±0.34 1.56±0.42

TEDVAE 2.07±0.09 1.82±0.09 1.75±0.03 1.63±0.02 1.54±0.02
DLRCE 0.70±0.09 0.76±0.64 0.95±0.35 0.55±0.08 0.54±0.04

2+3∗W+L∗M+M+2∗F+3∗Z+ϵw, respectively. Based
on the data generation process, all synthetic datasets have
both potential outcomes, i.e., the true ITE for an individual is
known. In our simulation study, the true ATE is 3. To evaluate
the performance of our DLRCE algorithm, we conduct the
experiments 30 times independently for each setting.

We report the estimation bias and PEHE for the synthetic
datasets generated from Ylinear in Tables I and II, and for the
synthetic datasets generated from Ynonlin in Tables III and IV.
Results. From the experimental results, we have the following
observations: (1) Machine learning based estimators, LDML,
SLDML, KernelDML, X-learner, R-learner, LDRlearner and
CFDML have a large estimation bias and PEHE on both types
of synthetic datasets since these estimators rely on the assump-
tion of unconfoundedness and cannot learn a valid representa-
tion from proxy variables to block all back-door paths between
W and Y . (2) VAE based estimators, TEDVAE and CEVAE
methods have a large estimation bias and PEHE on both types
of synthetic datasets since both methods fail to deal with the
confounding M -bias variable studied in this work. (3) The
proposed DLRCE algorithm obtains the smallest estimation
bias and PEHE among all methods on both types of synthetic
datasets since our DLRCE algorithm learns and disentangles
three latent representations Z, L and F from proxy variables
(X,M) to effectively block all back-door paths between W
and Y . The smallest estimation bias and PEHE further confirm
the correctness of our DLRCE algorithm in learning three
latent representations Z, L and F from proxy variables. (4)

The compared algorithms, machine learning based and VAE
based estimators achieve better performance compared to the
synthetic datasets generated from Ylinear and relatively poorer
performance on the synthetic datasets generated from Ynonlin.
Our proposed DLRCE algorithm consistently produces good
performance across both types of datasets.

In sum, the simulation studies demonstrate that the pro-
posed DLRCE algorithm effectively addresses the problem of
confounding M-bias when estimating ATE and CATE from
observational data in the presence of latent confounders. It
further provides evidence that DLRCE is capable of recovering
latent variable representations from proxy variables.

C. Parameters Analysis

In our DLRCE algorithm, there are three tuning parameters,
namely α, β, and γ, used to balance LELBO and the three
classifiers during the training process. We consider setting
{α, β, γ} = {0.1, 0.5, 1, 1.5, 2} to analyse the sensitivity of
the three parameters on synthetic datasets with a sample size
of 10k, generated using the same data generation process
described in Section IV-B. We report the estimation bias of
DLRCE algorithm in Table V. From Table V, we observe
that the three parameters α, β, γ have a low sensitivity to the
estimation bias of the DLRCE algorithm in ATE estimation. In
summary, it is recommended to set the three tuning parameters,
α, β, and γ, to small values for our DLRCE algorithm.



TABLE V
THE ESTIMATION BIAS WITH THE DIFFERENT SETTING OF TUNNING

PARAMETERS α, β AND γ .

Weight Dataset
Linear Nonlinear

{α, β, γ} = 0.1 14.23±0.54 9.31±0.57
{α, β, γ} = 0.5 14.46±1.26 12.92±1.33
{α, β, γ} = 1 13.59±0.54 10.32±0.65
{α, β, γ} = 1.5 11.60±0.88 18.18±2.12
{α, β, γ} = 2 15.15±0.59 11.03±1.00

Fig. 3. Estimation bias on both types of synthetic datasets. ‘True dimensions’
refer to the dimensions of L, F, and Z in the data, and ‘Setting dimensions’
correspond to the parameters of ∣L∣, ∣F∣, and ∣Z∣ in the DLRCE algorithm.

D. A Study on the Dimensionality of Latent Representations

In our simulation studies, we set the dimensions of L,
F, and Z to 1, respectively. We conducted a study on the
dimensionality of latent representations to demonstrate the
effectiveness of this setting. To achieve this goal, we fixed
the sample size to 10k for all synthetic datasets and repeated
the experiments 30 times independently to minimise random
noise for each setting. Following the data generation process
described in Section IV-B, we generated a set of synthetic
datasets with dimensions of the three latent variables (L, F, Z)
set to {1, 3, 5, 7, 9} respectively. In our DLRCE algorithm, we
set three parameters (∣L∣, ∣F∣, ∣Z∣) to {1, 3, 5, 7, 9} respec-
tively to conduct experiments on these synthetic datasets. The
estimation bias of the DLRCE algorithm on these datasets is
displayed in Fig. 3. From Fig. 3, we observe that the estimation
bias of the DLRCE algorithm is the smallest on both types of
synthetic datasets when (∣L∣, ∣F∣, ∣Z∣) is set to (1, 1, 1)
regardless of the true dimensions of L, F, and Z in the data.
Hence, this finding suggests that setting ∣L∣, ∣F∣, and ∣Z∣ to
1 is reasonable.

E. Ablation Study

Next, we examine the impact of three latent representations
L, F, and Z on the performance of DLRCE. To do this, we
set the dimensions of (L,F,Z) to (1,0,0), (0,1,0), (0,0,1),
(1,1,0), (1,0,1), (0,1,1), and (1,1,1), respectively. We conduct a
series of experiments on both types of synthetic datasets with
a sample size of 10k, generated using the same data generation
process described in Section IV-B. Figure 4 illustrates the
capability of each latent representation in terms of estimation
bias using a radar chart. For example, in Figure 4 (a), the
DLRCE performances achieve the smallest estimation bias

Fig. 4. Radar charts for DLRCE’s capability in learning and disentangling
the latent representations. Each vertex on the polygons denotes the latent
representations’ dimensions. For example, 0-1-1 implies that (L,F,Z)=(0,
1, 1), i.e., ∣L∣ = 0.

when the dimensions of (L,F,Z) are set to (1,1,1). It is worth
noting that (L,F,Z) = (0, 1, 1) yields the second smallest
estimation bias, consistent with the conclusion in Theorem 2.
Moreover, all three latent representations contribute to bias
reduction, with {Z,F} contributing the most.

F. Experiments on Three Real-World Datasets

In this section, we assess the performance of DLRCE
against the above-mentioned comparisons on three real-world
datasets, Schoolingreturns [29], Cattaneo2 [30] and Sachs [31]
for which the empirical causal effects are available in the
literature. The details of the three datasets are described below.
Schoolingreturns Dataset. This dataset consists of 3,010
records and 19 variables [29]. The treatment variable is the
education level of a person. The outcome variable is raw wages
in 1976 (in cents per hour). The goal of collecting this dataset
is to study the causal effect of the education level on wages.
The estimated ATE(W,Y ) = 0.1329 with 95% confidence
interval (0.0484, 0.2175) from the works [44] as the reference
causal effect.
Cattaneo2 Dataset. The Cattaneo 2 [30] is widely em-
ployed to investigate the ATE of maternal smoking status
during pregnancy (W ) on a baby’s birth weight (in grams).
Cattaneo2 consists of the birth weights of 4,642 singleton
births in Pennsylvania, USA [30], [45]. Cattaneo2 contains
864 smoking mothers (W=1) and 3,778 nonsmoking mothers
(W=0). The dataset contains several covariates: mother’s age,
mother’s marital status, an indicator for the previous infant
where the newborn died, mother’s race, mother’s education,
father’s education, number of prenatal care visits, months since
last birth, an indicator of firstborn infant and an indicator of
alcohol consumption during pregnancy. The authors [45] found
a strong negative effect of maternal smoking on the weights
of babies, namely about 200g to 250g lighter for a baby with
a mother smoking during pregnancy by statistical analysis on
all covariates.
Sachs Dataset. The dataset contains 853 samples and 11
variables [31]. The treatment is Erk (the manipulation of

It can be downloaded from the site: http://www.stata-press.com/data/r13/
cattaneo2.dta

http://www.stata-press.com/data/r13/cattaneo2.dta
http://www.stata-press.com/data/r13/cattaneo2.dta


TABLE VI
THE ESTIMATED ˆATE ON THE THREE REAL-WORLD DATASETS. NOTE

THAT THE ESTIMATED ˆATE BY OUR DLRCE FALLS IN THE EMPIRICAL
CAUSAL EFFECT INTERVAL ON ALL THREE REAL-WORLD DATASETS. THE

ESTIMATED ˆATE IS WITHIN THE EMPIRICAL INTERVAL MARKED IN
BOLDFACE.

Method Datasets
Schoolingreturns Cattaneo2 Sachs

LDML -0.045 -170.179 36.118
SLDML -0.504 -153.859 152.900
KDML -0.021 -146.824 19.360

X-Learner 0.161 -230.61 18.661
R-Learner -0.020 -234.96 24.072

LDRLearner -0.020 -179.853 37.400
CFDML -0.040 -241.436 25.774
CEVAE 0.026 -221.234 0.254

TEDVAE 0.231 -235.325 0.255
DLRCE 0.101 -226.448 1.278

concentration levels of a molecule). The outcome is the
concentration of Akt. In this work, we take the reported
ATE(W,Y ) = 1.4301 with 95% confidence interval (0.05,
3.23) in the work [46] as the reference causal effect.
Results. We report the results on the three real-world datasets
in Table VI. From Table VI, we can see that (1) the estimated
ˆATEs by DLRCE on three real-world datasets are within

the empirical intervals respectively. (2) The estimated ˆATE
by X-learner on Schoolingreturns, by X-learner, R-learner,
CFDML, CEVAE and TEDVAE on Cattaneo2, and by CEVAE
and TEDVAE on Sachs are within the empirical intervals, but
these methods do not produce estimates within the confidence
intervals for all three data sets. The other methods fail to obtain
an estimation within the empirical intervals on any of the three
datasets. (3) The estimates of LDML, SLDML, KDML, R-
learner, LDRLearner and CFDML on Schoolingreturns are
negative which is opposite to a positive estimate in the
literature [44]. (4) The estimated ˆATEs on Sachs by Machine
learning based estimators, such as LDML, SLDML, KDML,
X-learner, R-learner, LDRLearner and CFDML, are far away
from the empirical interval (0.05, 3.23).

In a word, the proposed DLRCE algorithm performs better
than the stat-of-the-art causal effect estimators on the three
real-world datasets. This further confirms the potential appli-
cability of DLRCE in real-world applications.

V. RELATED WORK

Machine learning for causal effect estimation. Causal ef-
fect estimations from observational data have received ex-
tensive attention from the artificial intelligence and statistics
communities [1], [5], [6], [8], [47]. For instance, matching
methods [48], [49] and tree-based methods [37], [50]–[52]
have been developed to address confounding bias in causal
effect estimation from observational data. Additionally, meta-
learners [35] have also been studied for estimating the average
treatment effect (ATE) and conditional average treatment effect
(CATE) from observational data.
Representation learning for causal effect estimation. Re-
cently, representation learning methods [6], [9], [53] have

been applied to causal effect estimation, but they often rely
on the unconfoundedness assumption [1]. For example, Shalit
et al. proposed a balanced representation learning method for
counterfactual regression (CFRNet) [9]. Yoon et al. first used
a GAN model to learn representations for causal effect esti-
mation. Different from these methods, our proposed DLRCE
algorithm addresses the challenging problem of confounding
M -bias variable in causal effect estimation.
Proxy variables for causal effect estimation. Proxy variables
are the measured covariates that are at best of the true
underlying confounding mechanism [26], [54], [55]. Kallus
et al. [54] proposed to infer the confounders from proxy
variables by using matrix factorisation. Miao et al. [55]
proposed the general conditions for causal effects identifica-
tion using more general proxies, but they did not propose
a practical data-driven method. CEVAE [26] uses the VAE
model to learn the representations from proxy variables for
causal effect estimation. However, CEVAE fails to deal with
the confounding M -bias problem in data studied in this work
as shown in our experiments. To the best of our knowledge,
our DLRCE algorithm is the first work to solve the problem
of confounding M -bias variable using the disentanglement of
representation learning techniques.

VI. CONCLUSION

In this paper, we identify a challenging problem in estimat-
ing causal effects from observational data in the presence of
latent confounders, i.e., the problem of confounding M -bias
as shown in the causal DAG in Fig. 1 (c). Existing meth-
ods tackle confounding bias through balanced representation
learning or covariate adjustment, but are unable to handle the
problem of confounding M -bias, and lead to biased causal
effect estimation as shown in our experiments. To address
this problem, we propose a novel disentangled representation
learning framework, the DLRCE algorithm for causal effect
estimation from observational data in the presence of latent
confounders. DLRCE learns three sets of latent representations
from proxy variables to adjust for both confounding bias and
M -bias. Extensive experiments on synthetic and three real-
world datasets demonstrate that DLRCE outperforms existing
causal effect estimation methods for ATE and CATE esti-
mation in datasets with both types of biases. The proposed
method shows promise in causal effect estimation in real-
world datasets and opens up avenues for addressing complex
confounding scenarios in causal inference.
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