
Self-optimizing Feature Generation via Categorical
Hashing Representation and Hierarchical

Reinforcement Crossing
Wangyang Ying1∗, Dongjie Wang2∗, Kunpeng Liu3, Leilei Sun4, Yanjie Fu1†

1 School of Computing and Augmented Intelligence, Arizona State University, Tempe, USA
2 Department of Computer Science, University of Central Florida, Orlando, USA
3 Department of Computer Science, Portland State University, Portland, USA

4 Department of Computer Science, Beihang University, Beijing, China
{wangyang.ying, yanjie.fu}@asu.edu, dongjie.wang@ucf.edu, kunpeng@pdx.edu, leileisun@buaa.edu.cn

Abstract—Feature generation aims to generate new and mean-
ingful features to create a discriminative representation space. A
generated feature is meaningful when the generated feature is
from a feature pair with inherent feature interaction. In the real
world, experienced data scientists can identify potentially useful
feature-feature interactions, and generate meaningful dimensions
from an exponentially large search space, in an optimal crossing
form over an optimal generation path. But, machines have limited
human-like abilities. We generalize such learning tasks as self-
optimizing feature generation. Self-optimizing feature generation
imposes several under-addressed challenges on existing systems:
meaningful, robust, and efficient generation. To tackle these
challenges, we propose a principled and generic representation-
crossing framework to solve self-optimizing feature generation.
To achieve hashing representation, we propose a three-step
approach: feature discretization, feature hashing, and descriptive
summarization. To achieve reinforcement crossing, we develop a
hierarchical reinforcement feature crossing approach. We present
extensive experimental results to demonstrate the effectiveness
and efficiency of the proposed method. The code is available at
https://github.com/yingwangyang/HRC feature cross.git.

Index Terms—Feature Generation, Hierarchical Reinforcement
Crossing, Self-optimizing

I. INTRODUCTION

Feature generation (FG) is a technique used in machine
learning to combine two or more input features in order to
create new, more complex features. The new features are
created by taking combinations of the original features, such
as their concatenation, products, ratios, or differences, and can
help capture interactions or nonlinear relationships between
the original features. For example, if we have two input
features, ”age” and ”income”, we could create a new feature
called ”age times income” by taking the product of these two
variables. This new feature may be more informative than
either of the original features alone, as it captures the joint
effect of age and income on the outcome variable. Feature
generation can be a powerful tool for improving the predictive
performance of machine learning models, particularly in cases
where the relationships between the input features and the
outcome variable are complex or nonlinear.

*Both author contributed equally to this research.
†Corresponding author

There are two major challenges in self-optimizing FG:
1) meaningful and robust generation to improve prediction
and fight data bias, 2) automated and efficient generation to
mimic human decision behaviors and reduce search space.
First, except for a given original feature set, all the principles
and mechanisms of FG are unknown: how the optimal target
feature set looks like? Which generation path is the best to
create a representation space where data patterns are preserved
and discriminative? Is the feature-feature crossing form robust
enough to fight against outlier or extreme data values? Under
such an open and uncertain environment, meaningful and
robust generation seeks to answer: how can we automatically
perceive implicit feature interaction, generate effective new
features, and fight against outlier feature values? Second,
the space of FG can exponentially grow. The automated
generation suffers from large search space and long calculation
time. Greedy strategies are faster but result in local optimal;
exhaustive strategies are globally optimized but unrealistically
slow. Therefore, automated and efficient generation aims to
answer: how can we navigate generation paths with a balance
between time costs and global optimum?

As Figure 1 shows, prior literature can only partially solve
the aforementioned challenges. First, this study is related to ex-
haustive FG, for example, Factorization Machines (FMs) [1]–
[3], which capture interactions between features from low
orders to high orders in order to generate new features.
However, FMs enumerate all feature-feature crossings, and,
thus, are inefficient, particularly when a given feature set is
large. Second, this study is related to greedy FG, for instance,
AutoCross [4], which iterates self-crossing in a previously
generated feature set, and always scores and selects the best
cross feature based on downstream task performance in each
iteration. However, while greedy crossing is efficient, its
greedy nature exhibits two limitations: 1) only considers the
top-1 cross-feature and ignores other cross features; 2) only
considers the reward of the current iteration, instead of the
long-term reward. Third, this study is related to reinforcement
FG, for instance, GRFG [5], which leverages reinforcement
policy to conduct feature-feature crossing. However, existing

ar
X

iv
:2

30
9.

04
61

2v
2

 [
cs

.L
G

]
 1

4
Se

p
20

23

https://github.com/yingwangyang/HRC_feature_cross.git

A, B, C, D

+AB +AC +CD

+AC +CD

+AC +ABC

+ABD

+ABCD

+AC +BD +ABCD

Original features

…

Autocross Our method FMs

Search & Evaluate Evaluate Don’t need to do anything

…

…

…

+AC +BD +ABCD…

+AB +AC +CD

+AC +CD

+AC +ABC

+ABD

+ABCD

+AC +BD +ABCD

…

…

…

…

+AC +BD +ABCD…

+AB +AC +CD

+AC +CD

+AC +ABC

+ABD

+ABCD

+AC +BD +ABCD

…

…

…

…

+AC +BD +ABCD…

Fig. 1: The comparison of search space. Autocross is
efficient, but is prone to local optima because it employs a

greedy algorithm in each iteration. FMs enumerate all
combinations, can find the global optima but are inefficient.
Our method does not require exhaustive enumeration as the

crossing policies will trim and limit the search space.

reinforcement RG is not robust to outlier feature values (e.g.,
extremely big or small values) when crossing two numeric
features. Existing studies demonstrate the inability to jointly
address meaningful, automated, and efficient generation. As a
result, we need a new perspective to derive a novel formulation
and solver for self-optimizing FG.

Our Contribution: An Integrated Hashing Representa-
tion and Reinforcement Crossing Perspective. We observe
that a meaningful new feature is usually generated by a feature
pair with statistically significant feature-feature interaction.
Detection, localization, and measurement of the latent feature
interaction are difficult, not to mention designing an explicit
crossing form to augment feature space. We show that rein-
forcement agents are a great fit for sensing the mechanism-
unknown feature-feature interaction. We formulate FG as
a self-optimizing framework to achieve meaningful, robust,
and efficient generation. We highlight three contributions in
our framework: 1) hierarchical reinforcement intelligence can
learn generation policies to perceive feature-feature interac-
tions, drive the selections of meta feature and crossed feature,
and navigate optimal feature generation path, in a way that
we reduce search space and balance between global optimal
and greedy efficiency. 2) discretization of feature values before
generation is useful because categorical feature crossing can
robustilize FG to fight against outlier numeric or continu-
ous feature values to avoid generating anomaly features and
introducing bias to future feature generation. 3) the three
steps: feature categorization, feature hashing, and descriptive
summarization are an efficient strategy to achieve fixed length
state representation of a dynamically varying feature space.

Summary of Proposed Approach. Inspired by these
findings, this paper develops a principled and generic
representation-crossing framework for the FG task by iterating
hashing-based categorical feature space state representation

and hierarchical reinforcement feature crossing (HRC). The
framework has two goals: 1) categorizing, hashing, and de-
scribing feature space to achieve outlier feature value robust-
ness and fast state extraction in the representation step; 2) hi-
erarchical reinforcement crossing of meta feature and crossed
feature to generate meaningful dimensions in the crossing step.
To achieve Goal 1, we propose a three-step approach: feature
discretization, feature hashing, and descriptive summarization.
In particular, we first discretize all the data table values feature
by feature, then hash categorical features into a small feature
table, and finally exploit dual (feature-wise and instance-wise)
descriptive statistics to extract a fixed-length feature space
representation. Feature discretization can eliminate extreme
and outlier values, which could later participate in feature
crossing and introduce bias into future generations. Unlike
one-hot encoding that creates a large feature table, feature
hashing can reduce the size of the data table, and help to
complete the next step of descriptive summarization in a
short time. Descriptive summarization can extract a fixed-
length state representation of a large dynamically-varying
feature space, because DQN usually only takes fixed-length
state representation as inputs. To achieve Goal 2, we develop
a hierarchical reinforcement feature crossing approach. This
approach has two agents: meta controller and controller. In
each iteration, the meta controller selects a meta feature
and the controller selects a feature to cross with the meta
feature. The two DQNs of the meta controller and controller
learn policies to sense and select two categorical features
to cross. We leverage mutual information to assess feature-
label relevance and feature-feature redundancy, combined with
the accuracy of a downstream task as reward quantification
to incentivize policy training. Finally, we design extensive
experiments to verify the effectiveness and efficiency of the
proposed methods.

II. PROBLEM STATEMENT

Cartesian Feature Crossing. Cartesian crossing is to use
the Cartesian join operation to cross categorical features and
generate new features. For example, if the two original features
are marriage={married, single} and salary = {high, low}, then
Cartesian join will generate a new feature with four categorical
values: {married and high, married and low, single and high,
single and low}.
Feature Generation and Key Challenge. The feature gen-
eration problem is to generate new features from original
features in order to improve feature space and help the
downstream model obtain better predictive performance. The
key challenge is that the number of potential feature sets is
extremely large. For example, given N original features, if
the highest order of generated feature is k, then the overall
number of original features together with generated features is
C1

N+
∑N

k=2 C
k
N = 2N−1. With so many features, the potential

combination of them, i.e., the number of potential feature
sets is 2(2

N−1). Aside from the large number of candidate-
generated feature sets, we need to find the best feature set
from all of the 2(2

N−1) potential candidates, which is a time-
consuming and computationally intensive process.

A

A,B,C,D

B

+AB

Iteration 1

AB

A,B,C,D,AB

D

+ABD

Iteration 2

Fig. 2: An example of the iterative HRC process.

Iterative Generation to Quickly Approach An Acceptable
Optimal. Iterative approaches can efficiently generate cross-
features to reduce search space and computational costs.
Figure 2 shows why iterative generation can allow us to select
the most important features and drop the others, and control
the number of candidates generated feature sets. Specifically,
we initialize the optimal generated feature set by the original
feature set. In the first iteration, the strategy selects one
feature as a meta feature. The strategy then selects another
feature that has the strongest interaction with the selected
meta feature in order to generate a new feature, which will be
added to the generated feature set. After multiple iterations,
we can approach an acceptable optimal generated feature set.
AutoCross [4] is also an example study.

Hierarchical Control Structure. To put this strategy into
practice, it’s critical to carefully control and manage the
selection process. Obviously, there are two crucial stages in
each iteration: (1) the initial stage selects a meta feature, (2)
and the subsequent stage selects another feature to cross with
the meta feature. It is important to note that the two stages
are not independent and are not parallel. The first stage needs
to smartly sense which meta feature can potentially lead to
a new and effective dimension based on the existing feature
space; the second stage relies on the first stage and aims to
identify another feature that exhibits the strongest interaction
with the meta feature.

The Self-optimizing Feature Generation Formulation. For-
mally, given an original feature set and a downstream predic-
tive task, we aim to automate the derivation of a generated
feature set from the original feature set to maximize the
performance improvement of the downstream predictive task.
We formulate this problem as a hierarchical reinforcement
crossing task. This framework includes a set of elements:
agents, actions, environments, states, and rewards. These ele-
ments collaboratively iterate two major steps: 1) feature space
representation; 2) crossing policy learning to automate feature
generation. Such an interaction-feedback-learning-long-term
reward targeting framework is a great fit for solving the joint
challenges: 1) the mechanism about how to select two optimal
features for crossing is unclear; 2) the generation path needs
to trade-off between efficiency and global optimum.

III. SELF-OPTIMIZING FEATURE GENERATION

A. Framework Overview

Figure 3 shows our framework iterates two iteratively-
interact components: 1) categorical hashing representation, and
2) hierarchical reinforcement crossing.

The goal of categorical hashing representation is to extract
a fixed-length state representation to describe a dynamically
varying feature space. We propose a three-step approach for
feature space state representation by integrating discretization,
hashing, and summarization. In particular, in Step 1 (feature
discretization), we first leverage discretization to convert all
the feature values into categorical. This step reformulates
FG into pairwise categorical feature crossing that is robust
against biased feature generation caused by outlier or extreme
continuous feature values crossing. Since feature values are
categorical, if we want to describe the state of feature space,
an intuitive solution is to apply one-hot encoding to categorical
features in order to ease the statistics extraction of feature
space. However, one-hot encoding can significantly increase
the dimensionality of a feature space to describe, making state
extraction inefficient. Therefore, in Step 2 (feature hashing),
we propose a faster feature hashing-based approach to encode
the categorical feature table into a hashing value table with-
out losing accuracy. In Step 3 of descriptive summarization,
we integrate both feature-wise and instance-wise descriptive
statistics to extract a fixed number of statistics as a fixed-length
state representation of the feature space. This is because:
although the feature space varies over iterations, reinforcement
policy learners (e.g., DQN) only accept a fixed-length state as
inputs.

The goal of hierarchical reinforcement crossing is to learn
a feature crossing-based operation path to achieve the auto-
mated, robust, and fast generation of new meaningful features.
For this purpose, we develop a hierarchical reinforcement
crossing approach. The reinforcement intelligence is designed
for automation: automatically decide how many cross-features
to generate in each iteration. The hierarchical agent design
includes a meta controller agent and a controller agent to
sense feature-feature interaction to select a meta feature and
a crossed feature that are the most appropriate for crossing
new meaningful dimensions. The policy-driven generation can
improve itself from the feedback of previous generations, find
the most optimized direction for future generations, and the
tradeoff between greedy search-caused local optimal issues
and exhaustive search-caused low-efficiency issues.

Finally, we iterate both categorical hashing representa-
tion and hierarchical reinforcement crossing to conduct self-
optimizing feature generation.

B. Categorical Hashing Representation

Why Categorical Hashing Representation Matters. When
feature values are continuous data, crossing two continuous
features can be easily compromised to generate biased new
features. For example, if a feature includes extremely large
or small outlier values, these outlier values can propagate

Categorical Hashing Reprensentation

Descriptive
Summarization

Discretization

Meta
Controller

Feature
Cross

Controller

···

Machine
Learning TaskReward Assignment

Add the new generated feature to to generate a new feature set
<latexit sha1_base64="rQD6eM+M288dyCVTuUzY5U+fWBM=">AAAC1nicjVHLSsNAFD2N73erSzfBIghCScTXsujGpUJbC20pk+m0Dc2LZKKUUnfi1h9wq58k/oH+hXfGCGoRnZDkzLn3nJl7rxN5biIt6yVnTE3PzM7NLywuLa+sruUL67UkTGMuqjz0wrjusER4biCq0pWeqEexYL7jiUtncKril1ciTtwwqMhhJFo+6wVu1+VMEtXOF5o+k33OvFFl3B7JXXvczhetkqWXOQnsDBSRrfMw/4wmOgjBkcKHQABJ2ANDQk8DNixExLUwIi4m5Oq4wBiLpE0pS1AGI3ZA3x7tGhkb0F55JlrN6RSP3piUJrZJE1JeTFidZup4qp0V+5v3SHuquw3p72RePrESfWL/0n1m/lenapHo4ljX4FJNkWZUdTxzSXVX1M3NL1VJcoiIU7hD8Zgw18rPPptak+jaVW+Zjr/qTMWqPc9yU7ypW9KA7Z/jnAS1vZJ9WDq42C+WT7JRz2MTW9iheR6hjDOco0re13jAI56MunFj3Bp3H6lGLtNs4Nsy7t8BShmWiQ==</latexit>Tt+1

<latexit sha1_base64="J/iJR5lT2+A/eZenifNGkb3B6oo=">AAAC1HicjVHLSsNAFD2Nr1ofrbp0EyyCq5KKr2XRjcsKfUEtZTKdtqF5kUyEUrsSt/6AW/0m8Q/0L7wzpqAW0QlJzpx7zp2599qh68TSsl4zxsLi0vJKdjW3tr6xmS9sbTfiIIm4qPPADaKWzWLhOr6oS0e6ohVGgnm2K5r26ELFmzciip3Ar8lxKDoeG/hO3+FMEtUt5K89JoecuZPatDuR026haJUsvcx5UE5BEemqBoUXXKOHABwJPAj4kIRdMMT0tFGGhZC4DibERYQcHReYIkfehFSCFIzYEX0HtGunrE97lTPWbk6nuPRG5DSxT56AdBFhdZqp44nOrNjfck90TnW3Mf3tNJdHrMSQ2L98M+V/faoWiT7OdA0O1RRqRlXH0yyJ7oq6ufmlKkkZQuIU7lE8Isy1c9ZnU3tiXbvqLdPxN61UrNrzVJvgXd2SBlz+Oc550DgslU9Kx1dHxcp5OuosdrGHA5rnKSq4RBV1PfNHPOHZaBi3xp1x/yk1MqlnB9+W8fABF2uWGQ==</latexit>Tt

Meta Feature

Crossed Feature

Meta
State

Controller
State

Hashing

<latexit sha1_base64="1K2hiogS/Hp6z43D05gG7cBPnGQ=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlOa2iahMlEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvn4RBKh3nNWfNzS8sLuWXCyura+sbxc2tRhpngvE6i8NYtHwv5WEQ8boMZMhbieDeyA950x+eq3jzlos0iKMrOU54Z+QNoqAfME8Sddnvut1iySk7etmzwDWgBLNqcfEF1+ghBkOGETgiSMIhPKT0tOHCQUJcBxPiBKFAxznuUSBtRlmcMjxih/Qd0K5t2Ij2yjPVakanhPQKUtrYI01MeYKwOs3W8Uw7K/Y374n2VHcb0983XiNiJW6I/Us3zfyvTtUi0cepriGgmhLNqOqYccl0V9TN7S9VSXJIiFO4R3FBmGnltM+21qS6dtVbT8ffdKZi1Z6Z3Azv6pY0YPfnOGdB46DsHpePLg5LlTMz6jx2sIt9mucJKqiihjp5D/CIJzxbVSuyMuvuM9XKGc02vi3r4QPmWJAZ</latexit>

f1

<latexit sha1_base64="ClgOqGE9UPN4V+saCUyf5glGnh8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlO69A0CclEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvHwcilY7zmrPm5hcWl/LLhZXVtfWN4uZWI42yhPE6i4IoafleygMR8roUMuCtOOHeyA940x+eq3jzliepiMIrOY55Z+QNQtEXzJNEXfa7B91iySk7etmzwDWgBLNqUfEF1+ghAkOGEThCSMIBPKT0tOHCQUxcBxPiEkJCxznuUSBtRlmcMjxih/Qd0K5t2JD2yjPVakanBPQmpLSxR5qI8hLC6jRbxzPtrNjfvCfaU91tTH/feI2Ilbgh9i/dNPO/OlWLRB+nugZBNcWaUdUx45Lprqib21+qkuQQE6dwj+IJYaaV0z7bWpPq2lVvPR1/05mKVXtmcjO8q1vSgN2f45wFjYOye1w+ujgsVc7MqPPYwS72aZ4nqKCKGurkPcAjnvBsVa3Qyqy7z1QrZzTb+Lashw/ouJAa</latexit>

f2

<latexit sha1_base64="n5CxS35qo56SkTWNg7n0kGNNdFQ=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwY0nE17LoxoWLCvYBtZRkOq2heTGZCCV05w+41Q8T/0D/wjtjCmoRnZDkzLnn3Jl7rxv7XiIt67VgzM0vLC4Vl0srq2vrG+XNrWYSpYLxBov8SLRdJ+G+F/KG9KTP27HgTuD6vOWOLlS8dc9F4kXhjRzHvBs4w9AbeMyRRLUGvUwe2JNeuWJVLb3MWWDnoIJ81aPyC27RRwSGFAE4QkjCPhwk9HRgw0JMXBcZcYKQp+McE5TIm5KKk8IhdkTfIe06ORvSXuVMtJvRKT69gpwm9sgTkU4QVqeZOp7qzIr9LXemc6q7jenv5rkCYiXuiP3LN1X+16dqkRjgTNfgUU2xZlR1LM+S6q6om5tfqpKUISZO4T7FBWGmndM+m9qT6NpVbx0df9NKxao9y7Up3tUtacD2z3HOguZh1T6pHl8fVWrn+aiL2MEu9mmep6jhEnU0dJWPeMKzcWUIY2xkn1KjkHu28W0ZDx9QBpHa</latexit>

ft�1

<latexit sha1_base64="sy2wEB7yB30rtQsAXmf1Q+GW2Lg=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwVVLxtSy6cVnRPqCtJUmndWxeTCZCKQVx6w+41Z8S/0D/wjtjCmoRnZDkzLn3nJl7rxN5PJaW9ZoxZmbn5heyi7ml5ZXVtfz6Ri0OE+Gyqht6oWg4dsw8HrCq5NJjjUgw23c8VncGpypev2Ui5mFwKYcRa/t2P+A97tqSqKteZ8TNluQ+i82bcSdfsIqWXuY0KKWggHRVwvwLWugihIsEPhgCSMIebMT0NFGChYi4NkbECUJcxxnGyJE2oSxGGTaxA/r2addM2YD2yjPWapdO8egVpDSxQ5qQ8gRhdZqp44l2Vuxv3iPtqe42pL+TevnESlwT+5dukvlfnapFoodjXQOnmiLNqOrc1CXRXVE3N79UJckhIk7hLsUFYVcrJ302tSbWtave2jr+pjMVq/ZumpvgXd2SBlz6Oc5pUNsrlg6LB+f7hfJJOuostrCNXZrnEco4QwVV8hZ4xBOejQtjaNwZ95+pRibVbOLbMh4+APkalN8=</latexit>

fi⇥j

···

··· ··· ···

···

<latexit sha1_base64="fe+VfeFOAMYPb8ocQ/sT26+tXG4=">AAACznicjVHLSsNAFD3GV62vqks3wSLUTUnE17LoxmUF+4BaSpJO26F5kUwKpRS3/oBb/SzxD/QvvDNOQS2iE5KcOfecO3PvdWOfp8KyXheMxaXlldXcWn59Y3Nru7CzW0+jLPFYzYv8KGm6Tsp8HrKa4MJnzThhTuD6rOEOr2S8MWJJyqPwVoxj1g6cfsh73HMEUa2Bkw5Kvc7Enh51CkWrbKllzgNbgyL0qkaFF9yhiwgeMgRgCCEI+3CQ0tOCDQsxcW1MiEsIcRVnmCJP3oxUjBQOsUP69mnX0mxIe5kzVW6PTvHpTchp4pA8EekSwvI0U8UzlVmyv+WeqJzybmP6uzpXQKzAgNi/fDPlf32yFoEeLlQNnGqKFSOr83SWTHVF3tz8UpWgDDFxEncpnhD2lHPWZ1N5UlW77K2j4m9KKVm597Q2w7u8JQ3Y/jnOeVA/Lttn5dObk2LlUo86h30coETzPEcF16iipjr+iCc8G1VjZEyN+0+psaA9e/i2jIcPG4+TVg==</latexit>

hash(f1)
<latexit sha1_base64="j0rnCPd/XZCNVUvtAVyslLLaee4=">AAAC2XicjVHLSsNAFD2Nr1pf9bFzEyxC3ZRUfC2LblxWsA+oUpJ02o7Ni8xEqKULd+LWH3CrPyT+gf6Fd8YIPhCdkOTMufecmXuvE3lcSMt6zhgTk1PTM9nZ3Nz8wuJSfnmlLsIkdlnNDb0wbjq2YB4PWE1y6bFmFDPbdzzWcAZHKt64ZLHgYXAqhxE79+1ewLvctSVR7fxa3xb9Yrc94uaZ5D4T5sV4q50vWCVLL/MnKKeggHRVw/wTztBBCBcJfDAEkIQ92BD0tFCGhYi4c4yIiwlxHWcYI0fahLIYZdjEDujbo10rZQPaK0+h1S6d4tEbk9LEJmlCyosJq9NMHU+0s2J/8x5pT3W3If2d1MsnVqJP7F+6j8z/6lQtEl0c6Bo41RRpRlXnpi6J7oq6ufmpKkkOEXEKdygeE3a18qPPptYIXbvqra3jLzpTsWrvprkJXtUtacDl7+P8CerbpfJeafdkp1A5TEedxTo2UKR57qOCY1RRI+8r3OMBj0bLuDZujNv3VCOTalbxZRl3bznkl0E=</latexit>

hash(fi⇥j)

···

··· ··· ···

···

 Original
Feature set

···

Cross-Feature

Cross-Feature

Hierarchical Reinforcement Crossing

Fig. 3: Overview of the framework. In the first part, we convert a dynamically varying feature space into a fixed-length state
using the category hashing representation technique. Based on the state, we create a globally optimal sub-feature space using

hierarchical reinforcement crossing in the second part.

bias into generated features. We highlight that feature dis-
cretization (binning) can aggregate continuous values into
category levels, and reduce the bias propagation of extreme
values in feature crossing. However, if we adopt feature
discretization and bin all the data into categorical values,
we need to equip reinforcement agents with the ability to
describe the state of a categorical feature space. Traditional
methods, such as neural representation learning or descriptive
statistics-based approaches, usually require us to apply one-
hot encoding to transform categorical data and ease state
representation extraction. Unfortunately, one-hot encoding will
significantly increase the dimensionality that we will describe
as a fixed-length feature space state vector, thereafter, increase
the computation burden of state representation extraction.
So, a dilemma is: how can we fight against outlier and
extreme values via discretization, meanwhile improving state
representation efficiency?
Leveraging the Integrated Power of Discretization, Hash-
ing, and Descriptive Summarization. We found that inte-
grating feature discretization, feature hashing, and descriptive
statistics summarization can achieve both robustness against
outlier data, and fast state representation of categorical data.
Based on our unique insight, we propose a step-by-step
testable method that includes three steps. Figure 3 illustrates
the three-step approach of categorical hashing representation.
Step 1: Binning Outliers and Noises. Outliers and noises
can introduce and propagate bias in the next and future feature
crossing. Binning smooths a continuous data value by consult-
ing its neighborhood, transforming the value into a discrete
category, and ensuring that data in the same bin is similar
and data in different bins are more distinguishable. Therefore,
binning can limit noises or anomaly by creating categorical
values with distributions comprising fewer unique values, and
robustize the crossing of categorical features. To this end, we
integrate hierarchical bottom-up clustering and X 2-distribution
to develop an automated binning approach for feature crossing.

Since the feature value distribution after binning should be
similar to the feature value distribution before binning, we
leverage a hierarchical bottom-up clustering idea to create
small bins first and then combine small bins with similar
distributions into large bins. Our approach includes two stages:
1) the initialization stage; 2) the bottom-up merging stage.
In particular, in the initialization stage, we sort the values of
a feature according to their numerical values, and then each
value of the feature column is treated as a separate bin. In
the merging stage, we iterate the following steps: i) we first
calculate the chi-square of each pair of adjacent bins; ii) based
on the chi-squares, we merge any neighbor bin pair with the
minimum chi-square; iii) we repeat i) and ii) until all the chi-
squares of the bins are larger than a certain threshold, or the
number of bins reaches a minimum number of bins.
Step 2: Feature Hashing. After Step 1, all the features in the
feature space are categorical (nominal). To extract the feature
space state representation, we need a numeric representation
of a categorical feature table that not only preserves feature
space patterns, but also eases the statistical summarization of
a feature space. An intuitive way is to use the existing one-hot
encoding to map the categorical features into a one-hot data
table for statistical summarization without losing too much
information. However, one-hot encoding will convert a single
categorical feature into multiple features, and dimensionality
will increase. Moreover, since iterative feature crossing will
keep generating more feature value categories, the dimension-
ality under one-hot encoding and the time costs of computing
the feature space state will explode. Our idea is to develop
a hashing representation for the categorical features. Since a
hashing function can map all categorical data into a smaller
fixed set, the use of hashing can greatly reduce the number of
categories and prevent a dimensional explosion. Specifically,
we use a hash function [6] to convert each feature categorical
value to an integer value, and then we reduce the integer value
modulo a pre-defined number to get a new smaller number.

…

…

… …

…

…

… …

…

…

… …

Sample 1

Sample 2

Sample M

Sample 3

Sample 4

Sample M-1

Sample 1

Sample 2

Sample M

Sample 3

Sample 4

Sample M-1

<latexit sha1_base64="PjEzgziN6cFVRJC7jp7hR5LNX9Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9jzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busXtyfV2o3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AHzdY2Y</latexit>

f1

<latexit sha1_base64="+Ijd7aCdMS564VI0llk8k3+68sY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGieUCyhNlJbzJkdnaZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9hL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1WLu7Py7WbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AH0+Y2Z</latexit>

f2

<latexit sha1_base64="3S3TNVajDTJZzevaM/ePGNOQ6Fw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ92DvtlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1Uz+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAP2fY2a</latexit>

f3

<latexit sha1_base64="1bdKN4zCaWeIT0crWuYp7v0Oz0k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6CHvnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yenF/Xqnd5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wf4AY2b</latexit>

f4

<latexit sha1_base64="y9UozUTAqherrpVpaZsnwhuo1J8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQiyeJaB6QLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQaMFDUVVN91dQSK4Nq775RSWlldW14rrpY3Nre2d8u5eU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj66nfekSleSwfzDhBP6IDyUPOqLHSfdi77ZUrbtWdgfwlXk4qkKPeK392+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiFHVumTMFa2pCEz9edERiOtx1FgOyNqhnrRm4r/eZ3UhJd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLf0nzpOqdV8/uTiu1qzyOIhzAIRyDBxdQgxuoQwMYDOAJXuDVEc6z8+a8z1sLTj6zD7/gfHwDH3iNtQ==</latexit>

fN Count Min MaxStd 75%50% Count Min MaxStd 75%50%

Select Feature Matrix Descriptive Statistic Matrix Meta Descriptive Statistic Matrix

Count

Min

Max

Std

75%

50%

State Vector

Extrct Extrct Concatenate

Fig. 4: Representation of generated feature set. We extract descriptive statistics twice from the feature set to obtain a
fixed-length state vector. The length of the represented state vector remains fixed regardless of the change in feature numbers.

Step 3: Descriptive Summarization. The feature number
(dimensionality) of the generated feature set changes at each
iteration. However, the policy network and target network in
DQN require the feature space stat representation to be a fixed-
length vector at each step. The goal of Step 3 is to derive a
fixed-length state representation of the hashed feature space
whose dimension changes over time. As shown in Figure 4
We propose a descriptive statistics-based dual summarization
method that includes two steps: 1) row-wise summarization,
and 2) column-wise summarization. Here, the eight descriptive
statistics include: count, mean, standard, minimum, maximum,
and three quartiles (25%,50%,75%). Figure 4 shows the two-
step procedure. Step 1 extracts the eight descriptive statistics
of each row in D, and thus, obtains a descriptive statistics
matrix with columns as eight statistics and rows as samples.
Step 2 extracts the eight descriptive statistics of each column of
the descriptive statistics matrix, and obtains a meta descriptive
statistics matrix with rows as eight statistics and columns as
eight statistics. Finally, we concatenate each column of the
meta matrix together as the fixed-length state representation
vector with a length of 8x8=64.
C. Hierarchical Reinforcement Crossing

Why Hierarchical Reinforcement Crossing Matters. First,
crossing categorical features can generate more explainable
and meaningful new dimensions. For instance, a driver age
feature with three categorical values (i.e., junior, youth, adult)
crosses a driver marriage feature with three categorical values
(i.e., married, single, divorced), thereafter, generates a new
dimension with eight meaningful categorical values (e.g.,
married and adult). Such dimension is more meaningful and
explainable because it describes a subpopulation (e.g, married
and adult drivers) of data with unique driving safety patterns
in a feature space. Second, the latent interaction between
two features is critical to decide whether we should cross
them. However, the feature interaction is difficult to measure.
Reinforcement is a great tool of AI for decision science when
the mechanism is unclear, as it self-learns neural policies from
feedback. Besides, a current feature generation step depends
on previously generated feature space, which can be viewed
as a Markov Decision Process. Third, as we need two agents
to select two features for crossing, a simplified idea is to
assume two agents are independent. Our large-scale analysis

shows that the state of feature space changes in a chain,
when a feature is selected to cross (we call meta feature),
and continues to change when another feature is selected to
be crossed (we call crossed feature). The two agents form a
hierarchical structure.
Leveraging Categorical Crossing, Self-optimizing Rein-
forcement, and Hierarchical Agent Structure. We propose
to develop a hierarchical reinforcement crossing framework
that includes a meta controller agent and a controller, each of
which in each iteration takes a state s as input, conducts an
action a, and generates a new feature to obtain an updated
generated feature set T . The key components of our proposed
method are as follows:
1) State. The state st is defined as the representation of the
generated feature set Tt. The agent makes decisions based on
the current generated feature set Tt to produce a better Tt+1.
The algorithm of state representation is in Section III-B.
2) Action. Figure 3 shows the agent consists of two compo-
nents: a meta controller and a controller. The action of the meta
controller is defined as a1,t = fi: select the i-th feature as the
meta feature from the Tt. The action of the controller is defined
as a2,t = fj : combined with the meta feature, the controller
visits all features in the Tt to select the j-th feature that can
be crossed with meta feature to improve the representation of
the feature set.
3) Supervised and Unsupervised Signals as Rewards. We
found that both supervised signals and unsupervised signals
can be reward measurements.

From the unsupervised signal perspective, we propose to
measure feature-feature redundancy as a utility of feature
space. Specifically, when two features have very high mutual
information, that means the two features are similar and
overlapped with a high collinearity. Therefore, adding the
two similar features into the same feature space will increase
information redundancy, instead of new information. In other
words, one of the objectives of FG is to minimize feature
redundancy. Formally, given a feature set F , we can derive
its overall mutual information Rd(F), which we call redun-
dancy:

Rd(F) =
1

|F|2
∑

fi,fj∈F

I(fi, fj) (1)

where fi is the i-th feature and fj is the j-th feature, I(fi, fj)
is the mutual information to measure the correlation between
two random variables fi and fj .

From the supervised signal perspective, we propose two re-
ward measurements: 1) feature relevancy; 2) downstream task
accuracy. First, feature relevancy describes how predictable are
labels given a feature. The higher the feature relevancy is, the
higher utility the feature has. So, one of the objectives is to
maximize feature relevancy. Formally, given a feature set F
and the label y, we can derive its overall mutual information
Rv(F , y), which we call relevance:

Rv(F , y) =
1

|F|
∑
fi∈F

I(fi, y) (2)

where fi is the i-th feature and y is the label. Second,
downstream task accuracy is clearly a signal that describes
the utility of a feature space. Therefore, another objective is
to maximize downstream task accuracy.
4) Reward Functions for the Meta Controller Agent and
Controller Agent. Since the framework has two agents: the
meta controller and the controller, we design two personalized
reward functions for the meta controller and controller.

• The meta controller reward function is quantified by a
combination of the accuracy Acc on the machine learning
task M at the current iteration, Accbest on the M at
one window time, the relevance between the generated
feature set and the target label, and the redundancy of
the generated feature set, given by:

r1 = w1 ∗ (Acc−Accbest) + w2 ∗Rv − w3 ∗Rd (3)

where wi (i ∈ 1, 2, 3) is a positive weight.
• The controller reward function is measured by the accu-

racy of the machine learning task M, relevancy, and the
redundancy:

r2 = w4 ∗ (Acc−Accbest) + w5 ∗Rv − w6 ∗Rd (4)

where wi (i ∈ 4, 5, 6) is a positive weight.
Temporal Abstraction. Figure 3 shows one iteration of
HRC. The meta controller receives the state which is the
representation of the current generated feature set, and selects
a meta feature from the feature set. Then, the controller selects
another feature based on the state and meta feature to generate
the cross-feature. Finally, add the cross-feature to the feature
set and start the next iteration. The objective of the meta
controller is to maximize the cumulative rewards r1:

O1 =
∑∞

t′=0γ
t′

1 r1,t′ (5)

where t′ is the time step, and γ1 is a discount factor. Similarly,
the objective of the controller is to maximize the cumulative
rewards r2:

O2 =
∑∞

t′′=0γ
t′′

2 r2,t′′ (6)

where t′′ is the time step and γ2 is a discount factor.
Solving the Model Training Problem. We adapt the DQN to
derive policies for both the meta controller and the controller.
The Q function for the meta controller is given by:

Q1(st, a1,t) = maxa1,t

∑
∞
t′=tγ

t′−t
1 r1,t′

= maxa1,t [r1,t +
∑

∞
t′=t+1γ

t′−(t+1)
1 r1,t′]

= maxa1,t [r1,t + γ1maxa1,t+1Q1(st, a1,t+1)]

(7)

The Q function for the controller is given by:

Q2(st, a2,t) = maxa2,t [r2,t + γ2maxa2,t+1Q2(st, a2,t+1)] (8)

We derive the loss function of Q1 based the method in [7]:

L1(θ1,t) =E(s,a,r,s′)∼D1

[(r + γ1maxa′Q1(s
′, a′; θ−1,t)−Q1(s, a; θ1,t)

2]
(9)

where θ−1,t are fixed parameters of θ1,i from the previous
iteration. Similarly, we derive the loss function of Q2:

L2(θ2,t) =E(s,a,r,s′)∼D2

[(r + γ1maxa′Q1(s
′, a′; θ−2,t)−Q1(s, a; θ2,t)

2]
(10)

We design two independent neural networks for Q1 and
Q2 and train them alternately. When making decisions, we
adapt a ϵ-greedy algorithm to enhance the exploration ability
of reinforcement learning algorithms. The decision history of
each network is stored in a memory. The new samples come
into the memory and flush the old samples to update the
memory. When samples are needed in training, we sample
a batch of historical data from the memory and use the
gradient descendent technique to update weights in the neural
network. We also strategically design a memory mechanism
to memorize the historically best version of the generated
feature set. In this way, we can still guarantee a relatively
good generated feature set, even if HRC does not converge.

IV. EXPERIMENT

A. Experiment Setup

1) Downstream Tasks: We validate our proposed feature
generation method on classification tasks compared with state-
of-the-art baselines. Specifically, we realize classification by
three algorithms: logistic regression, decision tree, and random
forest. All algorithms are implemented by the scikit-learn
package [8].

2) Data Description: For classification tasks, we use the
following four publicly available datasets:

• Access*: This dataset records the access to resources of
Amazon employees from 2010 to 2011. Label 1 denotes
allowed access and Label 0 denotes denied access.

• Bank†: This dataset is related to the direct marketing
campaigns of a Portuguese banking institution. The clas-
sification goal is to predict if a client will subscribe to a
term deposit.

• Credit‡: This dataset includes financial activities of bank
customers. The classification goal is to predict if the
customer will experience financial distress in the next two
years.

• Nomao§: This dataset is a place localization dataset from
UCI. The class label is categorical values that range from
1 to 2, which represents two geographical spots.

All the details about the datasets are shown in Table I.

*https://www.kaggle.com/c/amazon-employee-access-challenge/data
†https://www.kaggle.com/brijbhushannanda1979/bank-data
‡https://www.kaggle.com/c/GiveMeSomeCredit/data
§https://www.openml.org/d/1486

TABLE I: Details of datasets used in the experiments

Datasets

Name # Samples Features
Training Testing # Num # Cate

Access 26,216 6,553 0 9
Bank 21967 5,492 10 10
Credit 120,000 30,000 10 0
Nomao 27,572 6,893 89 30

3) Evaluation Metrics: To show the effectiveness of the
proposed method, we use the accuracy metric for evaluating
the classification of machine learning tasks. Additionally, we
use the following metrics:

• Accuracy is the ratio of the sum of True Positives
and True Negatives to the sum of True Positives, True
Negatives, False Positives, and False Negatives. Formally,
the accuracy is given by TP+TN

TP+TN+FP+FN , where TP ,
TN , FP and FN represent the number of True Posi-
tives, True Negatives, False Positives and False Negatives
respectively. Larger values indicate better performance.

• Precision is given by TP
TP+FP and presents the ratio of the

number of True Positives to the number of True Positives
and False Positives. Larger values indicate better results.

• Recall is given by TP
TP+FN and presents the ratio of the

number of True Positives to the number of True Positives
and False Negatives. Larger values indicate better results.

• F-Measure considers both precision and recall in a single
metric by taking their harmonic mean. Formally, F-
measure is given by 2∗P ∗R/(P+R), where P and R are
precision and recall, respectively. Larger values indicate
better results.

4) Baseline Methods: We compare the performances of
our proposed methods: hierarchical reinforcement crossing
feature generation (HRC) against the following four baseline
algorithms.

• Raw: Directly conduct machine learning algorithms on
the original dataset without any feature generation.

• DeepFM: DeepFM [9] combines factorization machines
and deep learning in a new neural network architecture.
It derives an end-to-end feature generation model that
emphasizes both low and high-order feature interactions.

• xDeepFM: xDeepFM [10] generates feature interactions
in an explicit fashion and at the vector-wise level. It can
also learn arbitrary low and high-order feature interac-
tions implicitly.

• AutoCross: AutoCross [4] is the state-of-the-art method
that outperforms other existing feature generation meth-
ods based on cross operation. It can automatically con-
struct high-order cross-features and uses a beam search
strategy to iteratively generate a locally optimal feature
set.

• GRFG [5] studies the problem of generation on contin-
uous features and generates features based on operations
(e.g., +, -, *, sin, cos).

Besides, we also implement ablation studies to verify the
effectiveness of our method.

• HRC∗: which means that we replace the controller with
a greedy strategy based on our hierarchical strategy.

• HRC#: which means that we replace the meta controller
with a greedy strategy based on our hierarchical strategy.

• HRC!: which represents that we don’t take any reinforce-
ment learning method.

5) Hyperparameters and Reproducibility: In the experi-
ments, for all HRC, we set the batch size to 20 and used
AdamOptimizer with a learning rate of 0.01. We set the Q
network of meta controller and controller in our methods as a
one-layer ReLU with 100 nodes, respectively. The memory is
set to 40 for each DQN. We limited the episode to 15, with
each episode consisting of 70 exploration steps. All datasets
are split with 80% for training and 20% for testing. The
weights in reward functions have equal values. We used logis-
tic regression as the default downstream task considering the
fact that logistic regression is the most popular algorithm that
is in need of feature generation in real-world applications [4].

B. Experiment Results

1) Overall Performance: This experiment aims to answer:
Whether our method can generate the best cross-feature space
and improve downstream tasks. Here, we would first like to
emphasize that the classification task is the focus of all of our
experiments. We take the approach of discretizing continuous
values for feature crossing. However, in the regression task,
this method will lose data accuracy when discretizing continu-
ous variables. And we discovered that the regression task just
got minor improvement during our experimental investigation.
Table II shows the experimental results on different classifica-
tion tasks in terms of accuracy, respectively. We observe that
HRC always yields the best results compared to the available
solutions for different datasets and different downstream tasks.
The potential reason is that the HRC approach uses a two-
stage reinforcement learning task in feature-cross that takes
into account the overall optimization reward of long-term
steps, allowing the model to search for the globally optimal
result quickly. In addition, we do not need to enumerate all
combinations of feature-cross, so it is very fast and efficient
to get the best performance. Thus, compared with state-of-
the-art baselines, our method is more practical and accurate in
real-world application scenarios.

2) Ablation Study: This experiment aims to answer: The
impact of reinforcement learning component on the final result.
In our method, we design two DQNs for the meta controller
and the controller, respectively. So in this set of experiments,
we replace any of the reinforcement learning components with
a greedy algorithm to verify the effectiveness of the HRC.
Table III shows the results of ablation studies on different
tasks evaluated by accuracy. We can discover that the results
of HRC∗ are the worst in most cases. The HRC# and HRC!

perform slightly better than the HRC∗ but still perform worse
than the HRC. Therefore, these experiments indicate that
taking account of long-term rewards is indeed an important
approach to improving feature generation.

TABLE II: Performance comparison of Hierarchical Reinforcement Crossing on different tasks evaluated by accuracy.

Logistic Regression Decision Tree Random Forest
Access Bank Credit Nomao Access Bank Credit Nomao Access Bank Credit Nomao

Raw 0.914 0.888 0.900 0.896 0.922 0.896 0.909 0.910 0.938 0.901 0.915 0.924
DeepFM 0.921 0.897 0.906 0.910 0.934 0.903 0.918 0.914 0.941 0.903 0.923 0.929
xDeepFM 0.927 0.901 0.911 0.909 0.939 0.906 0.923 0.920 0.947 0.904 0.925 0.931
AutoCross 0.930 0.903 0.919 0.921 0.941 0.908 0.931 0.928 0.951 0.910 0.929 0.934

GRFG 0.935 0.907 0.918 0.926 0.941 0.911 0.929 0.933 0.946 0.908 0.927 0.937
HRC 0.943 0.913 0.938 0.959 0.948 0.915 0.937 0.953 0.955 0.919 0.935 0.969

TABLE III: Performance comparison of ablation studies on different tasks evaluated by accuracy.

Logistic Regression Decision Tree Random Forest
Access Bank Credit Nomao Access Bank Credit Nomao Access Bank Credit Nomao

HRC∗ 0.939 0.903 0.934 0.945 0.940 0.903 0.931 0.938 0.945 0.907 0.925 0.958
HRC# 0.941 0.905 0.935 0.949 0.941 0.909 0.933 0.942 0.947 0.906 0.927 0.961
HRC! 0.941 0.907 0.934 0.951 0.943 0.906 0.931 0.937 0.951 0.911 0.929 0.961
HRC 0.943 0.913 0.938 0.959 0.948 0.915 0.937 0.953 0.955 0.919 0.935 0.969

Ac
cu
ra
cy
@
Ac
ce
ss

0.86

0.88

0.90

0.92

0.94

0.96

0.98

newton-cg liblinear sag saga

LR
AC+LR
HRC+LR

(a) Access

Ac
cu
ra
cy
@
Ba
nk

0.86

0.88

0.90

0.92

0.94

newton-cg liblinear sag saga

LR
AC+LR
HRC+LR

(b) Bank

Ac
cu
ra
cy
@
C
re
di
t

0.86

0.88

0.90

0.92

0.94

0.96

0.98

newton-cg liblinear sag saga

LR
AC+LR
HRC+LR

(c) Credit

Ac
cu
ra
cy
@
N
om

ao

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

newton-cg liblinear sag saga

LR
AC+LR
HRC+LR

(d) Nomao

Fig. 5: Performance comparison of different solvers on different datasets.

Ac
cu
ra
cy

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Access Bank Credit Nomao

Rv
Rd
Acc

Rv+Rd
Acc+Rv+Rd

(a) Accuracy

Pr
ec
is
io
n

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Access Bank Credit Nomao

Rv
Rd
Acc

Rv+Rd
Acc+Rv+Rd

(b) Precision

R
ec
al
l

0.80

0.82

0.84

0.86

0.88

0.90

Access Bank Credit Nomao

Rv
Rd
Acc

Rv+Rd
Acc+Rv+Rd

(c) Recall

F-
M
ea
su
re

0.80

0.82

0.84

0.86

0.88

0.90

Access Bank Credit Nomao

Rv
Rd
Acc

Rv+Rd
Acc+Rv+Rd

(d) F-Measure

Fig. 6: Performance comparison of different rewards in HRC on different datasets.

3) Robustness Check: This experiment aims to answer:
Whether HRC can still obtain stable results for different
downstream tasks. The predictive performance relies on not
just feature generation, but also downstream tasks. As a result,
we apply our method to logistic regression with different
kernels in the generated feature set to see if our generated
feature set is consistently stable and can consistently outper-
form other baseline methods on various predictor settings. In
this way, we can examine the robustness of our methods. We
use (1) ‘newton-cg’ solver; (2) ‘liblinear’ solver; (3) ‘sag’
solver; (4) ‘saga’ solver as the solvers of logistic regression
for this experiment. We compare our method with LR (short
for logistic regression) and the state-of-the-art AC (short for
AutoCross) +LR. Figure 5 shows the comparison of different
solvers on different datasets. We can see that in every solver,
The HRC+LR method outperforms AC+LR.

4) Study of Reward in HRC: This experiment aims to
answer: The impact of reward function design on the final
result. We study the impacts of the reward function in HRC
and consider five cases:

(1) Rv that only considers relevance in the reward function;
(2) Rd that only considers redundancy in the reward func-

tion;
(3) Acc that only considers accuracy in the reward function;
(4) Rv+Rd that only considers relevance and redundancy

in the reward function;
(5) Acc+Rv+Rd that considers accuracy, relevance and

redundancy in the reward function.
Figure 6 reveals the performance comparison of different

rewards in HRC on different datasets. We can see that Acc
is the second-best reward function, since it leads exploration
in the direction of improving accuracy. Rv and Rd are less

logiistic regression
decision tree
random forest

Ac
cu

ra
cy

0.92

0.93

0.94

0.95

0.96

Steps
0 2 4 6 8

(a) Access

logiistic regression
decision tree
random forest

Ac
cu

ra
cy

0.900

0.905

0.910

0.915

0.920

Steps
0 2 4 6 8 10 12

(b) Bank

logiistic regression
decision tree
random forest

Ac
cu

ra
cy

0.910

0.915

0.920

0.925

0.930

0.935

0.940

Steps
0 2 4 6 8

(c) Credit

logiistic regression
decision tree
random forest

Ac
cu

ra
cy

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Steps
0 2 4 6 8

(d) Nomao

Fig. 7: Convergence steps of different downstream tasks on different datasets.

satisfactory. This is because both are unsupervised indicators
of rewards and are not directly relevant to prediction accu-
racy. Their combination of Rv and Rd improves performance
slightly but does not outperform Acc. Acc+Rv+Rd achieves
the best performance since it takes both supervised and unsu-
pervised indicators into account.

5) Convergence of HRC: This experiment aims to answer:
How many steps would the HRC take before convergent? It is
important for reinforcement learning methods to converge. We
study the performances of HRC with different episodes, vary-
ing from 0 to 15 episodes over different datasets. Normally, the
convergence of reinforcement learning methods is evaluated
by the steadiness of accumulated rewards, but this is not the
case in the feature generation problem. In feature generation,
we only need to remember one optimal feature set through
all of the episodes, and the HRC feature generation method
is considered to converge when the remembered feature set
no longer changes or falls into a predefined range. Figure 7
shows that our HRC feature generation method converges in
several episodes, which is extremely fast for a reinforcement
learning method.

V. RELATED WORK

Automated Feature Generation. There are three major cat-
egories of automated feature generation methods, i.e., factor-
ization machine-based methods, cross-operation-based meth-
ods, and embedded methods [11]–[14]. Factorization machine
methods can effectively capture the low-order interactions
between features. Blondel et al. proposed the first generic yet
efficient algorithms for training arbitrary-order HOFMs [2].
Cheng et al. proposed a novel Gradient Boosting Factorization
Machine (GBFM) model to incorporate a feature selection
algorithm with Factorization Machines into a unified frame-
work [1]. Juan et al. established field-aware factorization
machines as an effective method for classifying large sparse
data including those from CTR prediction [3]. Cheng et al.
presented Wide and Deep learning-jointly trained wide linear
models and deep neural networks to combine the benefits
of memorization and generalization for recommender sys-
tems [15]. These methods were implicit and had difficulty to
capture high-order interactions. Cross operations such as [4],
[16] captured high-order feature interactions. Liu et al. gave
a definition of interpretation inconsistency in deep neural net-
works, and proposed a novel method called CrossGO, which

selected useful cross features according to the interpretation
inconsistency [17]. Luo et al. proposed successive mini-batch
gradient descent and multi-granularity discretization to further
improve efficiency and effectiveness, while ensuring simplic-
ity so that no machine learning expertise or tedious hyper-
parameter tuning was required [4]. There were also other
embedded methods like gradient boost machine [18] and group
lasso [19] which build useful features in the process of model
training. Dong et al. combined feature selection and feature
generation into a transformation graph and optimized the two
processes jointly [20]. However, these methods usually require
complex optimization procedures and thus have difficulties
dealing with large-scale datasets [21], [22].

Hierarchical Reinforcement Learning. Hierarchical rein-
forcement Learning (HRL) [23] decomposes the target Markov
decision process (MDP) [24]into a hierarchy of smaller MDPs
and solves them sequentially [25]–[27]. There are numerous
studies on HRL. Dietterich et al. defined a hierarchical Q
learning algorithm, proved its convergence, and showed ex-
perimentally that it can learn much faster than ordinary “flat”
Q learning [28]. Vezhnevets et al. employed a Manager module
and a Worker module. The Manager operated at a lower
temporal resolution and set abstract goals which are conveyed
to and enacted by the Worker. The Worker generated primitive
actions at every tick of the environment [29]. Morimoto et
al. proposed a hierarchical reinforcement learning architec-
ture that realized practical learning speed in real hardware
control tasks [30]. Ribas et al. proposed that the computations
supporting hierarchical behavior may relate to those in HRL,
a machine-learning framework that extended reinforcement-
learning mechanisms into hierarchical domains [31]. Florensa
et al. proposed a general framework that first learns useful
skills in a pre-training environment, and then leverages the
acquired skills for learning faster in downstream tasks [32].
Lin et al. proposed to tackle the large-scale fleet manage-
ment problem using reinforcement learning, and proposed a
contextual multi-agent reinforcement learning framework that
successfully tackled the taxi fleet management problem [33].
Wei et al. proposed a more effective deep reinforcement
learning model for traffic light control [34]. Nachum et al.
proposed to use off-policy experience for both higher and
lower-level training [35].

VI. CONCLUSION

In this paper, we study the problem of automated feature
generation. We propose the hierarchical reinforcement cross-
ing (HRC) method to generate the cross-feature set, which
can obtain the best performance on all datasets. In the HRC
method, we fuse predictive accuracy and information gain to
design an inspiring reward function; we use the categorical
hashing representation to reduce the dimension of an increased
feature set; and we design a descriptive state representation
method to derive a fixed-length state vector as the input
for reinforcement learning policies. The challenges of the
feature generation problem are that the number of generated
features can be explosively large and the generated feature set
extremely falls into local optima. Our method doesn’t need to
enumerate all potential combinations of features, and it can
explore a globally optimal cross-feature set quickly consid-
ering the long-term rewards. The performance superiority in
experiments demonstrates the effectiveness of our approach.

REFERENCES

[1] C. Cheng, F. Xia, T. Zhang, I. King, and M. R. Lyu, “Gradient boosting
factorization machines,” in Proceedings of the 8th ACM Conference on
Recommender systems, 2014, pp. 265–272.

[2] M. Blondel, A. Fujino, N. Ueda, and M. Ishihata, “Higher-order fac-
torization machines,” in Advances in Neural Information Processing
Systems, 2016, pp. 3351–3359.

[3] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, “Field-aware factorization
machines for ctr prediction,” in Proceedings of the 10th ACM Conference
on Recommender Systems, 2016, pp. 43–50.

[4] Y. Luo, M. Wang, H. Zhou, Q. Yao, W.-W. Tu, Y. Chen, W. Dai,
and Q. Yang, “Autocross: Automatic feature crossing for tabular data
in real-world applications,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 1936–1945.

[5] D. Wang, Y. Fu, K. Liu, X. Li, and Y. Solihin, “Group-wise reinforce-
ment feature generation for optimal and explainable representation space
reconstruction,” in Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2022, pp. 1826–1834.

[6] J.-P. Aumasson and D. J. Bernstein, “Siphash: a fast short-input prf,”
Cryptology ePrint Archive, Paper 2012/351, 2012, https://eprint.iacr.org/
2012/351.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[9] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-
machine based neural network for ctr prediction,” arXiv preprint
arXiv:1703.04247, 2017.

[10] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “xdeepfm:
Combining explicit and implicit feature interactions for recommender
systems,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 1754–
1763.

[11] M. Xiao, D. Wang, M. Wu, K. Liu, H. Xiong, Y. Zhou, and Y. Fu,
“Traceable group-wise self-optimizing feature transformation learning:
A dual optimization perspective,” arXiv preprint arXiv:2306.16893,
2023.

[12] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[13] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
techniques in bioinformatics,” bioinformatics, vol. 23, no. 19, pp. 2507–
2517, 2007.

[14] M. Xiao, D. Wang, M. Wu, Z. Qiao, P. Wang, K. Liu, Y. Zhou, and
Y. Fu, “Traceable automatic feature transformation via cascading actor-
critic agents,” in Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM). SIAM, 2023, pp. 775–783.

[15] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep
learning for recommender systems,” in Proceedings of the 1st workshop
on deep learning for recommender systems, 2016, pp. 7–10.

[16] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao, “Deep
crossing: Web-scale modeling without manually crafted combinatorial
features,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 255–
262.

[17] Z. Liu, Q. Liu, and H. Zhang, “Automatically learning feature crossing
from model interpretation for tabular data,” 2019.

[18] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[19] L. Meier, S. Van De Geer, and P. Bühlmann, “The group lasso for logistic
regression,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 70, no. 1, pp. 53–71, 2008.

[20] G. Dong and H. Liu, Feature engineering for machine learning and data
analytics. CRC Press, 2018.

[21] G. Katz, E. C. R. Shin, and D. Song, “Explorekit: Automatic feature
generation and selection,” in 2016 IEEE 16th International Conference
on Data Mining (ICDM), 2016, pp. 979–984.

[22] H. Leather, E. Bonilla, and M. O’boyle, “Automatic feature generation
for machine learning–based optimising compilation,” ACM Trans.
Archit. Code Optim., vol. 11, no. 1, feb 2014. [Online]. Available:
https://doi.org/10.1145/2536688

[23] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierarchical
reinforcement learning: A comprehensive survey,” ACM Comput. Surv.,
vol. 54, no. 5, jun 2021. [Online]. Available: https://doi.org/10.1145/
3453160

[24] M. L. Puterman, “Chapter 8 markov decision processes,” in Stochastic
Models, ser. Handbooks in Operations Research and Management
Science. Elsevier, 1990, vol. 2, pp. 331–434. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0927050705801720

[25] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” Journal of artificial intelligence re-
search, vol. 13, pp. 227–303, 2000.

[26] M. M. Botvinick, “Hierarchical reinforcement learning and decision
making,” Current opinion in neurobiology, vol. 22, no. 6, pp. 956–962,
2012.

[27] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete event dynamic systems, vol. 13, no.
1-2, pp. 41–77, 2003.

[28] T. G. Dietterich, “The maxq method for hierarchical reinforcement
learning.” in ICML, vol. 98. Citeseer, 1998, pp. 118–126.

[29] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical rein-
forcement learning,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 2017, pp. 3540–3549.

[30] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning,” Robotics and
Autonomous Systems, vol. 36, no. 1, pp. 37–51, 2001.

[31] J. J. Ribas-Fernandes, A. Solway, C. Diuk, J. T. McGuire, A. G.
Barto, Y. Niv, and M. M. Botvinick, “A neural signature of hierarchical
reinforcement learning,” Neuron, vol. 71, no. 2, pp. 370–379, 2011.

[32] C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for
hierarchical reinforcement learning,” arXiv preprint arXiv:1704.03012,
2017.

[33] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning,” arXiv preprint
arXiv:1802.06444, 2018.

[34] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 2496–2505.

[35] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” arXiv preprint arXiv:1805.08296, 2018.

https://eprint.iacr.org/2012/351
https://eprint.iacr.org/2012/351
https://doi.org/10.1145/2536688
https://doi.org/10.1145/3453160
https://doi.org/10.1145/3453160
https://www.sciencedirect.com/science/article/pii/S0927050705801720

	Introduction
	Problem Statement
	Self-optimizing Feature Generation
	Framework Overview
	Categorical Hashing Representation
	Hierarchical Reinforcement Crossing

	Experiment
	Experiment Setup
	Downstream Tasks
	Data Description
	Evaluation Metrics
	Baseline Methods
	Hyperparameters and Reproducibility

	Experiment Results
	Overall Performance
	Ablation Study
	Robustness Check
	Study of Reward in HRC
	Convergence of HRC

	Related Work
	Conclusion
	References

