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Abstract—Skin lesion segmentation is a fundamental task in
dermoscopic image analysis. The complex features of pixels in the
lesion region impede the lesion segmentation accuracy, and ex-
isting deep learning-based methods often lack interpretability to
this problem. In this work, we propose a novel unsupervised Skin
Lesion sEgmentation framework based on structural entropy and
isolation forest outlier Detection, namely SLED. Specifically, skin
lesions are segmented by minimizing the structural entropy of
a superpixel graph constructed from the dermoscopic image.
Then, we characterize the consistency of healthy skin features
and devise a novel multi-scale segmentation mechanism by
outlier detection, which enhances the segmentation accuracy
by leveraging the superpixel features from multiple scales. We
conduct experiments on four skin lesion benchmarks and com-
pare SLED with nine representative unsupervised segmentation
methods. Experimental results demonstrate the superiority of
the proposed framework. Additionally, some case studies are
analyzed to demonstrate the effectiveness of SLED.

Index Terms—skin lesion segmentation, structural entropy,
medical image analysis

I. INTRODUCTION

Skin lesion segmentation of dermoscopic images is essential
for skin cancer diagnosis [1]. Accurate segmentation of skin
lesions from the surrounding skin is challenging because skin
lesions, especially melanoma ones, vary in color, texture,
shape, size, and location. Moreover, low contrast between
the lesion and healthy skin, changing illumination, and the
existence of artifacts like hairs, blood vessels, and color
calibration charts make this task even harder.

A large amount of unsupervised skin lesion segmentation
methods have been proposed by researchers in recent years, in-
cluding thresholding-based methods [2], region-based methods
[3], saliency-based methods [4], and clustering-based methods
[5]. They segment skin lesions without labeled datasets, reliev-
ing medical experts from the laborious work of data labeling.
However, the fine-grained characteristics of lesion skins and
healthy skins are under-explored. Figure 1 illustrates examples
of skin lesions from the PH2 dataset [6]. On the one hand,
the features like color and texture of pixels within the lesion
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Fig. 1. Examples of skin lesion dermoscopic images. (a) Example lesion
1; (b) The segmentation regions of (a), which contains two sub-regions; (c)
Example lesion 2; (d) The segmentation regions of (c), which contains four
sub-regions.

regions are diverse, and the lesion region can be further divided
into some unspecified number of sub-regions as shown in
Figures 1(b) and 1(d). Ignoring the diversity in a fine-grained
level of those pixels leads to sub-optimal segmentation results.
On the other hand, the features of pixels in healthy skin are
generally consistent, which is one of the most important prior
information for skin lesion segmentation. Existing methods fail
to fully and effectively utilize this prior, thus being unable to
accurately segment the margin between the lesion region and
healthy skin.

Regarding the diversity of pixel features in the lesion region,
some works directly segment the dermoscopic image into
two regions, i.e., the lesion region and healthy skin [2], [3].
They ignore the fine-grained level distinction within the lesion
region, which can lead to inaccurate segmentation of pixels at
lesion borders. Other works segment dermoscopic images into
a proper number of regions [5], and then classify regions into
the lesion region and healthy skin. Though being better at
distinguishing the fine-grained features, they require a pre-
defined number of sub-regions, which lacks generalization
ability to new scenarios. Regarding the consistent healthy skin
prior, RSSLS [7] utilizes reconstruction error-based saliency
to segment skin lesions. With the detected background, i.e.,
the healthy skin, the whole image is reconstructed based on
the background, forming the saliency map. However, the back-
ground detection process is complex and imprecise, inducing
noise into the segmentation procedure.

In this work, we propose a novel unsupervised Skin Lesion
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sEgmentation framework via structural entropy (SE) and out-
lier Detection, namely SLED, which adaptively determines
the number of segments by SE minimization, and utilizes the
consistent healthy skin prior through isolation forest outlier
detection. The basic idea is that we take image segmentation
as the graph partition problem where graphs are constructed to
incorporate both color features and spatial position of pixels
(or superpixels). First, we segment the dermoscopic image
into a proper number of regions by minimizing the SE of
a graph constructed from the image without the need to
know the number of sub-regions a priori, which is critical
as shown in Figure 1 the number of sub-regions of a lesion
is unknown and unpredictable. The nodes of the graph are
pre-segmented superpixels and edge weights are the similarity
between superpixels. Modules in the graph partition obtained
by SE minimization represent the regions. Second, we distin-
guish these regions into the lesion region and healthy skin by
maximizing the between-class variance, forming a single-scale
segmentation. Third, we integrate single-scale segmentation
results from different superpixel scales into multi-scale seg-
mentation. To achieve this integration, we train isolation forest
models using superpixels in the healthy skin regions from
single-scale segmentation results and generate a multi-scale
outlier score map by combining outlier scores from different
scales. The consistency of pixel features in healthy skin helps
isolation forest models to distinguish the lesion region from
healthy skin with higher outlier scores. Thresholding on the
multi-scale score map gives the multi-scale segmentation.
Source code is available on Github1.

We comprehensively evaluate our framework with state-
of-the-art unsupervised segmentation methods and several
clustering-based methods on four popular skin lesion seg-
mentation datasets. The results show that our framework
is more accurate in skin lesion segmentation. We also test
the performance of several outlier detection methods, finding
that isolation forest best models healthy skin in dermoscopic
images. The main contributions of this paper are summarized
as follows: (1) An unsupervised skin lesion segmentation
framework guided by iteratively refined structural entropy is
proposed, which adaptively determines the number of seg-
ments in the segmentation process. (2) We characterize the
fact that features in healthy skin are consistent and devise a
novel multi-scale segmentation mechanism via isolation forest
outlier detection method. (3) Comprehensive experiments on
four popular skin lesion segmentation datasets demonstrate
that our framework achieves new state-of-the-art performance
among unsupervised skin lesion segmentation methods.

II. RELATED WORK

A. Unsupervised Skin Lesion Segmentation

Compared to supervised methods, unsupervised skin lesion
segmentation methods avoid the laborious work of lesion
labeling, and have attracted great interest in recent years.
Here we briefly review existing unsupervised skin lesion

1https://github.com/SELGroup/SLED

segmentation methods, including thresholding-based, region-
based, saliency-based, and clustering-based approaches.

Histogram thresholding is a simple yet effective way for
skin lesion segmentation. The thresholding histograms are
constructed in different ways, such as principle component
analysis (PCA) on color bands [8] and carefully chosen color
bands [2]. More specialized thresholding techniques are also
designed for skin lesion segmentation, including weighted
thresholding [9] and adaptive thresholding [10]. Region-based
methods iteratively merge image regions until the desired
lesion region is found. In [3], a simple region merging method
that merges superpixels into two regions, i.e., the lesion region
and healthy skin, is proposed. In [11], a superpixel region
labeling method via continuity classification for skin lesion
segmentation is proposed. Saliency detection-based methods
treat skin lesions in dermoscopic images as the salient object.
They construct a saliency map by assigning each pixel a
saliency score, and segment the lesion region by thresholding
on the saliency map. The saliency scores are defined by
reconstruction errors [7], color and brightness prior [12],
color channel volume [4] in unsupervised manners, or lists of
regional contrast and regional property in a supervised manner
[13]. Clustering-based methods group pixels or superpixels
into regions and then classify them to find the skin lesion. Ahn
et al. [5] proposed a spatial guided self-supervised clustering
network (SGSCN) for skin lesion and liver tumor segmentation
that iteratively determines the number of segments. Zhang
et al. [14] proposed a deep hyperspherical clustering method
based on the theory of belief functions to achieve unsupervised
skin lesion segmentation. In the single-scale segmentation step
of our framework, we group superpixels by minimizing SE and
classify regions by maximizing the between-class variance.

B. Unsupervised Image Segmentation

Apart from methods specifically designed for skin lesion
segmentation, there exist a large number of unsupervised
image segmentation methods for more general usage. Classical
image segmentation methods group pixels into meaningful
regions. Representative methods include K-means and spectral
clustering [15]. More recent works utilize the power of deep
learning such as convolutional neural networks (CNNs) to
learn vision features. Kanezaki et al. [16] proposed a CNN-
based model to group spatially continuous pixels of similar
features to facilitate unsupervised natural image segmentation.
In order to perform the segmentation of the target region, there
are several other research lines in unsupervised image segmen-
tation related to skin lesion segmentation, which focuses on
different scenarios. The first line is unsupervised salient object
detection, which aims at localizing and segmenting salient
objects simultaneously without manual annotations. Yan et al.
[17] pointed out the unreliability of usually used noisy labels
generated by traditional unsupervised salient object detection
methods and proposed unsupervised domain adaptive salient
object detection which learns from synthetic labels with higher
quality. Zhou et al. [18] proposed a texture-guided saliency
distilling unsupervised salient object detection model through



a confidence-aware saliency distilling strategy that assigns
scores to samples based on confidence, and a boundary-
aware texture matching strategy which refines boundaries by
matching textures. The second line is unsupervised foreground
extraction, which aims for a binary partition of an image with
a foreground containing identifiable objects and a background
with remaining regions. Yu et al. [19] presented deep re-
gion competition (DRC) to solve the foreground extraction
problem by reconciling energy-based prior with generative
image modeling in the form of mixture of experts. Ding et
al. [20] pointed out two kinds of trivial solutions in the image
compositional generation process when performing foreground
extraction, and solved trivial solutions with the proposed
ComGAN model. For the task of skin lesion segmentation,
lesions can be taken as salient objects or image foregrounds,
so both methods belonging to these two research lines can be
used to tackle the task of skin lesion segmentation.

C. Structural Entropy

SE [21] is first proposed to measure the complexity of the
hierarchical structure of graphs through associated encoding
trees, which is naturally a node clustering method. As the SE
of a graph G is the minimum overall number of bits required
to determine the codewords of the graph nodes, it measures the
uncertainty embedded in G. SE has been successfully applied
in the field of bioinformatics [22], reinforcement learning [23],
[24], and graph neural networks [25]–[27]. In this work, we
use the two-dimensional SE, i.e., SE of a graph by a partition,
to perform skin lesion segmentation. Without confusion, SE
in the following sections means two-dimensional SE.

Let G = (V,E,W) be an undirected weighted graph, where
V = {v1, ..., vN} is the node set, E is the edge set, and W ∈
RN×N is the edge weight matrix. A graph partition P defined
on G can be formulated as P = {X1, X2, ..., XL}, where Xi

is the i-th module containing a subset nodes of V . Given a
graph G and its graph partition P , the SE of G given by P is
defined as:

HP(G) = −
∑
X∈P

∑
vi∈X

gi
vol(G)

log2
di

vol(X)

−
∑
X∈P

cut(X)

vol(G)
log2

vol(X)

vol(G)
,

(1)

where di is the degree of node vi, gi is the weight sum of
edges connecting vi and other nodes, vol(X) and vol(G) are
volumes, i.e., the sum of the node degrees, in module X and
graph G, respectively, and cut(X) is the cut of X , i.e., the
weight sum of edges between nodes in and not in module X .

III. METHODOLOGY

In this section, we present SLED, a novel unsupervised
skin lesion segmentation framework based on SE and outlier
detection. The overview of SLED is depicted in Figure 2.
SLED composes of three components: superpixel graph con-
struction, SE guided segmentation, and multi-scale segmen-
tation mechanism by outlier detection. Different scale super-
pixels are grouped by SE to form single-scale segmentation

TABLE I
DEFINITION OF NOTATIONS.

Symbol Domain Description

G - Superpixel graph
V,E,W - Node set, edge set, edge weight matrix
v - graph node/superpixel
P - Graph partition (image segmentation)
L Z Number of modules/regions
X,Y - Modules in graph partition (regions in images)
HP (G) - SE of G given by P
cut(X) R Cut of X

(weight sum of edges connected to nodes in X)
vol(X) R Volume of X (degree sum of nodes in X)
σ2
B Z Between class variance of regions

o R Outlier score of a superpixel
O ZN×N Outlier score map
ϵ N superpixel scale

results, which are then integrated by the outlier detection-based
multi-scale mechanism to generate the final segmentation.

A. Basic Notations

In this paper, superpixel graphs are constructed from images
to perform segmentation, so some notations refer to elements
both in graphs and images. In particular, v denotes both
a graph node and a superpixel, P denotes both a graph
partition and an image segmentation, and X and Y denote
both modules in graph partition and regions in images. We
list some important notations in Table I.

B. Superpixel Graph Construction

Graph-based segmentation methods [15], [28] integrate the
information of both color features and spatial position of
pixels (or superpixels) in the procedure of graph construction.
This gives graph-based methods the ability to segment images
accurately and keep the spatial continuity of segments in
the meantime. Among the graph-based methods, SE-based
methods give a high-quality graph partition by SE minimiza-
tion. Furthermore, SE-based methods adaptively determine the
number of modules in the partition, which are segments cor-
responding to sub-regions in images in the case of skin lesion
segmentation. This gives SE-based methods the advantage of
accurate segmentation of pixels at lesion borders.

We construct a graph G = (V,E,W) based on the image,
where the nodes in V = {v1, ..., vN} correspond to superpixels
of image segmented by SLIC algorithm [29], the edges in
E connect spatially close superpixels, and the weight matrix
W measures the similarities among superpixels. To utilize the
spatial information of superpixels, we only connect the nodes
whose spatial distance is smaller than a threshold r. For nodes
vi and vj with edge connected, the similarity weight Wi,j is
computed as follows:

Wi,j = exp

(
−d(vi, vj)2

σiσj

)
, (2)

where d(vi, vj) is the mean color distance between vi and vj ,
σi and σj are the local scaling parameters for nodes [30]. We
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Fig. 2. Overview of SLED.

then sparsify this graph into a K-nearest neighbor graph by
retaining K most significant edges for each node, which avoids
the complex dense graphs for subsequent SE minimization.
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Fig. 3. Illustration of SE guided segmentation.

C. Structural Entropy Guided Segmentation

After superpixel graphs construction, images are segmented
into regions through SE minimization on these graphs. The
procedure of SE guided segmentation is depicted in Figure
3. We aim to partition the graph into several modules by SE
minimization. Since nodes in modules represent the superpix-
els of the image, those modules thus represent homogeneous
regions of the image. As such, we can simply classify those
regions to be either lesion regions or healthy skin regions to
predict accurate lesion boundaries.

We minimize the SE of G to obtain a high-quality graph
partition P = {X1, X2, ..., XL}. Greedily applying the merg-
ing operator [21] on the encoding tree gives the SE mini-
mized encoding tree and corresponding graph partition with
adaptively determined L modules. However, the partition
result by greedy merging can be sub-optimum. We propose
the iteratively refined structural entropy for better results. It
composes a merging stage and a refinement stage, as illustrated
in Algorithm 1. In the merging stage, we merge nodes to
maximize the decreasing amount of SE to obtain the encoding
tree with multiple modules. And then in the refinement stage,

we greedily adjust nodes into different modules to achieve
better SE scores.

Algorithm 1 Iteratively refined structural entropy
Input: A graph G = (V,E,W)
Output: Encoding tree T and corresponding partition P

1: Initialize T containing all graph nodes as tree leaves
2: // Merging stage
3: repeat
4: Merge a chosen module pair (X,Y ) into X ∪ Y

condition on argmaxX,Y {∆HM
X,Y } via Eq. (3)

5: Update ∆HM for node pairs connected to X or Y
6: until ∆HM < 0 for all module pairs
7: // Refinement stage
8: repeat
9: for each node vi ∈ V do

10: Remove node vi from the original module X
11: Insert node vi into a chosen module Y condition on

argmaxY {∆HR
X,vi

−∆HI
Y,vi

} via Eqs. (4) and (5)
12: Update the cut and the volume of each module
13: end for
14: until HP(G) converges

In the merging stage, we apply the merging operator on the
initial encoding tree which contains all graph nodes as tree
leaves to obtain the encoding tree by merging. For an encoding
tree T with modules X and Y contained, the decrease amount
of SE after merging X and Y is given by:

∆HM
X,Y =

1

vol(G)
[(vol(X)− cut(X)) log2 vol(X)

+ (vol(Y )− cut(Y )) log2 vol(Y )

− (vol(X ∪ Y )− cut(X ∪ Y )) log2 vol(X ∪ Y )

+ (cut(X) + cut(Y )− cut(X ∪ Y )) log2 vol(G)],

(3)

where M denotes modules Merging, X ∪ Y is a module
merged from X and Y , containing nodes from either X or Y ,
vol(X) and vol(G) are the volume of X and G, and cut(X)



is the cut of X , as defined in Section II-C. Merging operator
merges X and Y into X ∪ Y if ∆HM

X,Y > 0.
In the refinement stage, we iteratively refine the encoding

tree from the merging stage to obtain the encoding tree by
refinement. For graph node vi, the decrease amount of SE by
removing vi from the original module X is given by:

∆HR
X,vi =

vol(X)− cut(X)

vol(G)
log2

vol(X)

vol(G)

−vol(X\{vi})− cut(X\{vi})
vol(G)

log2
vol(X\{vi})
vol(G)

,

(4)

where R denotes node Removing, X\{vi} means removing
node vi from module X , and the increase amount of SE by
inserting node vi into another module Y is given by:

∆HI
Y,vi = −vol(Y )− cut(Y )

vol(G)
log2

vol(Y )

vol(G)

+
vol(Y ∪ {vi})− cut(Y ∪ {vi})

vol(G)
log2

vol(Y ∪ {vi})
vol(G)

,

(5)

where I denotes node Inserting, Y ∪ {vi} denotes inserting
node i into module Y . It should be noted that the constructed
graph G contains no self-loop, thus gi = di for graph node vi.
In each iteration, we remove nodes from the original modules
and find modules that minimize SE the most.

In the merging stage, the merging operator is performed
iff ∆HM

X,Y > 0, so HP(G) decreases after each merging
iteration and converges when no such module pair exists. In
the refinement stage, node vi transfers from module X to a
module Y with largest ∆HR

X,vi
− ∆HI

Y,vi
in each iteration,

so HP(G) decreases or stays constant after each refinement
iteration, and converges when no improvement can be made.

The time complexity of the merging stage is O(N log2N)
[21]. In the refinement stage, calculating ∆HR

X,vi
and ∆HI

Y,vi
for each node vi and every possible module Y take time
of O(NL) for each iteration. Also, updating the cut and
the volume of each module take time of O(NL) for each
iteration. Thus, the total time complexity of Algorithm 1 is
O(N log2N +NLT ), where N , L, and T denote the number
of nodes, modules, and iterations, respectively.
Homogeneous Regions Bisection. Hereafter, we classify
those segmented regions into the lesion region and healthy
skin. We adopt the between-class variance maximization
method, which is a widely used criterion in skin lesion
segmentation [2]. Specifically, we choose a color channel c
from the image, obtain a gray image, and use the intensity
of the gray image to classify the regions into classes C0 and
C1. To better separate the regions, the channel c is chosen
from the RGB channels with maximum σ2

B after bisection.
For each region Xi, the occurrence probability ωXi and the
mean intensity µXi are represented as:

ωXi =
∥Xi∥
M

, (6)

and

µXi =

∑
pixelj∈Xi

Ij

∥Xi∥
, (7)

respectively, where Ij is the intensity of pixel j, ∥Xi∥ is the
number of pixels in region Xi, and M is the total number of
pixels in the image. The between-class variance of regions is
given by:

σ2
B = ω0(µ0 − µT )

2 + ω1(µ1 − µT )
2, (8)

where ωk is the occurrence probability of class Ck defined as:

ωk =
∑

Xi∈Ci

ωXi , (9)

µk is the mean intensity of class Ck defined as:

µk =
∑

Xi∈Ck

ωXiµXi , (10)

and µT is the total mean intensity of C0 and C1, defined as:

µT =
∑

Xi∈C0,1

ωXiµXi . (11)

In practice, we arrange µXi in ascending order and separate
those regions into two classes, i.e., C0 = {Xi | µXi ≤ τ} and
C1 = {Xi | µXi > τ} using a threshold τ which gives the
greatest σ2

B . The darker class C0 is the lesion region.

D. Multi-Scale Segmentation Mechanism

Due to the complex condition of different dermoscopic
images, mis-segmentation may occur in SE-guided segmenta-
tion. We develop a multi-scale superpixel-based segmentation
mechanism to improve the segmentation accuracy. In fact, we
observed features of pixels in healthy skin are consistent. Thus,
we view superpixels in healthy skin as normal, while those
in the lesion region are outliers. Hence, we can distinguish
healthy and lesion regions by the outlier detection method.
Intuitively, a higher outlier score of a superpixel reflects a
higher possibility to be a lesion region.
Outlier Detection by Isolation Forest. Isolation For-
est (iForest) [31] detects outliers by building an ensemble of
binary trees that separate training data points called iTrees.
The susceptibility of data points to being outliers is measured
by the average traversal path length on iTrees. The average
traversal path length-based outlier scores of iForest are well-
graded. These graded scores help mis-segmented superpixels
to be reclassified correctly in the following binary segmenta-
tion procedure by thresholding.

Given a dermoscopic image segmentation with lesion region
and healthy skin, we train an iForest model containing a
collection of iTrees using superpixels {si, i = 1, ...,K} in
the healthy skin whose attributes are the average RGB colors.
With this ensemble of iTrees, the average path lengths h(si) of
all superpixels {si, i = 1, ..., N} are counted, and the outlier
score o of an superpixel si is calculated as:

o(vi, ψ) = 2−
E(h(si))

c(ψ) , (12)

where E(h(si)) is the average of h(si) from the collection
of iTrees, ψ is the number of superpixels in healthy skin,
and c(ψ) is the normalization term. The outlier scores of all



superpixels are obtained from the iTrees, forming a score map
O at the size of the image.
Multi-Scale Integration. We integrate the outlier scores from
different superpixel scales and form the multi-scale score map.
The weighted score of pixel j being an outlier is defined as:

O(j) =

∑
ϵ∈γ (w

ϵOϵ(j))∑
ϵ∈γ(w

ϵ)
, (13)

where Oϵ(j) is the score of pixel j at scale ϵ, γ is the number
of different scales, and wϵ is the weight of scale ϵ. We use
the σ2

B in Eq. (8) to indicate the confidence of single-scale
segmentation where larger σ2

B should be associated with larger
weights. Specifically, the weight of a scale ϵ is defined as:

wϵ = exp{σ
2
B(ϵ)−minϵ∈γ σ

2
B(ϵ)

minϵ∈γ σ2
B(ϵ)

}, (14)

where σ2
B(ϵ) is the between-class variance of scale ϵ.

The binary segmentation result is obtained by applying
GHT thresholding [32] on the multi-scale score map. We
also perform hole filling to avoid small holes in the lesion
part. Following [9], we compute the region score of every
connected component which increase with region size and
proximity to the image center. This is achieved by filtering
each connected component with a two-dimensional Gaussian
filter. The connected component with the largest region score
is selected as the final lesion region.

IV. EXPERIMENTS AND RESULTS

In this section, we first describe our experimental setup,
including datasets, evaluation metrics, baselines, and imple-
mentation details of SLED. Next, we quantitatively evaluate
SLED on four datasets to verify the effectiveness of SLED.
Besides, we perform ablation studies and case studies to
analyze SLED in detail. At last, we evaluate the efficiency of
SLED. All experiments are conducted to answer the following
questions:
• Q1: Does SLED outperform state-of-the-art baselines re-

garding skin lesion segmentation?
• Q2: Dose our outlier detection-based multi-scale segmen-

tation mechanism effectively utilize the consistent healthy
skin prior?

• Q3: Is SLED sensitive to major parameters?
• Q4: Is SLED efficient enough for skin lesion segmentation

compared to baselines?

A. Experimental Setup

Datasets. We evaluate SLED on four public benchmark
datasets: ISIC 2016 [33], ISIC 2017 [34], ISIC 2018 [35],
and PH2 [6]. The first three datasets are provided by the
International Skin Imaging Collaboration (ISIC) archive from
the “Skin Lesion Analysis toward Melanoma Detection” chal-
lenge hosted by the International Symposium on Biomedical
Imaging (ISBI) in 2016, 2017, and 2018 respectively. We
evaluate the performance of different methods on the test sets,
which contain 379, 600, and 1000 RGB dermoscopic images
respectively at the resolution ranging from 1022 × 767 to

4288 × 2848, along with their corresponding ground truth. The
PH2 dataset is another frequently used benchmark, especially
for unsupervised skin lesion segmentation. It contains a total
of 200 RGB dermoscopic images at the resolution of 768 ×
560 pixels, along with their pixel-level lesion ground truth
annotated by expert dermatologists.
Evaluation Metrics and Baselines. We adopt five metrics
used in ISIC challenges for evaluating all compared methods,
which are pixel-level accuracy (AC), pixel-level sensitivity
(SE), pixel-level specificity (SP), Dice Coefficient (DI), and
Jaccard Index (JA), as defined in [33]. We compare SLED with
a variety of baseline methods including unsupervised skin
lesion segmentation methods, an unsupervised foreground
extraction method, unsupervised salient object detection meth-
ods, and several clustering methods. For unsupervised skin
lesion segmentation methods, we consider superpixel merg-
ing (Sp. Merging [3]), saliency map thresholding (Saliency-
CCE), and deep learning-based clustering (SGSCN [5]). For
the unsupervised foreground extraction method, we consider
Deep Region Competition (DRC [19]), where skin lesions are
taken as foreground. For unsupervised salient object detection
methods, we consider Unsupervised Domain Adaptive Salient
Object Detection (UDASOD [17]) and texture-guided saliency
distilling (A2S-v2 [18]), where skin lesions are taken as
salient objects. For clustering methods, we consider normal-
ized cut (NCut [15]), K-means, and hierarchical clustering
(SpecWRSC [36]). The number of segments of K-means,
NCut, and SpecWRSC is set to be three, which has been
reported to perform well for skin lesion segmentation [5]. To
achieve a fair comparison, we perform the same preprocessing,
homogeneous region bisection, and postprocessing method for
clustering-based methods as SLED. The details of important
methods are as follows:
• Sp. Merging [3] segments skin lesions by greedily merging

superpixels using the distance of the mean color of each
superpixel as the criterion.

• Saliency-CCE [4] utilizes a hand-crafted color feature
extractor called color channel volume to obtain the saliency
map of skin lesions and binarize this map through adaptive
thresholding to obtain lesion masks.

• SGSCN [5] is a spatial guided self-supervised clustering
network that groups pixels that are spatially close and have
consistent features.

• DRC [19] is an unsupervised foreground extraction ap-
proach by reconciling energy-based prior with generative
image modeling in the form of Mixture of Experts.

• UDASOD [17] is an unsupervised domain adaptive salient
object detection method which learns saliency from syn-
thetic but clean labels.

• A2S-v2 [18] is an unsupervised salient object detection
method with a confidence-aware saliency distilling strategy
and a boundary-aware texture matching strategy.

• SpecWRSC [36] is an efficient hierarchical clustering al-
gorithm running in nearly-linear time in the input size of
the input graph. We choose the largest K modules from the
hierarchical clustering tree to obtain K clusters.



TABLE II
COMPARISON OF UNSUPERVISED SKIN LESION SEGMENTATION METHODS. BOLD: THE BEST PERFORMANCE ON EACH METRIC, UNDERLINE: THE

SECOND BEST PERFORMANCE.

ISIC 2016 ISIC 2017 ISIC 2018
Method% AC↑ SE↑ SP↑ DI↑ JA↑ AC↑ SE↑ SP↑ DI↑ JA↑ AC↑ SE↑ SP↑ DI↑ JA↑

UDASOD 71.15 45.44 76.57 34.50 27.96 59.07 60.07 55.99 31.19 23.70 67.87 35.92 79.60 24.51 18.86
Sp. Merging 86.67 67.13 95.39 69.97 61.06 79.89 59.16 88.72 54.66 46.02 84.53 69.82 92.79 70.11 60.89
DRC 83.78 68.51 97.11 66.84 53.32 83.77 70.35 95.58 59.11 45.40 83.85 70.00 97.00 68.71 56.05
Saliency-CCE 85.91 74.72 95.70 72.18 60.64 83.87 74.07 92.98 61.77 49.53 85.51 77.44 94.34 72.85 61.91
A2S-v2 87.51 82.64 93.85 75.52 65.67 82.85 68.65 92.80 61.35 51.10 86.22 72.13 97.35 75.01 65.94

SpecWRSC 84.83 65.95 92.69 68.76 58.05 83.03 68.21 89.96 61.01 50.52 81.20 69.39 86.34 68.97 58.41
NCut 85.24 64.86 93.54 68.78 58.14 83.79 67.12 90.90 62.13 51.84 82.48 68.12 88.31 69.11 58.78
K-means 89.24 69.88 95.76 76.13 66.37 84.90 70.77 90.64 67.78 58.11 83.70 71.73 88.09 71.46 61.57
SGSCN 86.61 63.36 96.59 71.08 60.24 85.13 54.98 95.56 59.95 50.04 82.30 71.17 87.36 70.97 61.81

SLEDSS 90.69 77.85 97.23 81.61 72.21 86.96 75.98 92.98 70.62 60.56 86.22 79.77 90.52 76.81 67.98
SLEDMS 91.82 80.83 97.72 84.33 76.02 88.81 77.96 94.61 73.90 64.45 86.93 80.12 91.84 77.68 69.35

Improvement 4.31 - 0.61 8.81 10.35 3.68 3.89 - 12.13 13.35 0.71 2.68 - 2.67 3.41

Implementation Details. For all datasets, images are resized
into 768 × 560 pixels, artifacts in dermoscopic images are
removed using existing methods, including hairs [37], dark
corners [38], and color charts [13]. Color constancy [39] is
also performed on images to cope with illumination problems.
We set the parameters of superpixel graph construction empir-
ically, with the spatial distance threshold r of 0.3 times image
height and width, the local scaling parameter σ of 30, and
retained edge number K of 50. To evaluate the effectiveness
of the multi-scale mechanism in SLED framework, we report
both the results of single-scale SLED (SLEDSS) and multi-
scale SLED (SLEDMS), corresponding to SLED without and
with the multi-scale mechanism. In the reported results, we
empirically set the number of superpixels of SLEDSS to be
400. The segmentation results of SLEDMS integrate the results
of SLEDSS with superpixel numbers from 200 to 700 at
increments of 50. All the experiments are conducted on a
server with two Intel(R) 2.30 GHz CPUs and 500 GB RAM.

B. Quantitative Results (Q1)

Table II shows the results of unsupervised skin lesion
segmentation methods on three ISIC datasets. Compared to
state-of-the-art methods, SLEDMS and SLEDSS achieve the
best and second-best performance on three metrics including
AC, DI, and JA on both three datasets. SLEDMS witnesses
improvements from 0.61% to 13.35% on these three metrics,
as shown in the last row of Table II. Since SE and SP are
a pair of metrics to measure how well methods can identify
true positives and true negatives respectively, SLEDMS failed
to achieve the best performance on both metrics. However,
SLEDMS achieves the best performance on at least one metric
on both three datasets and achieves quite well performance on
the other metric, demonstrating the superiority of SLEDMS

on this pair of metrics. Both SLEDSS and SLEDMS achieve
better performance than all other clustering-based methods,
which thanks to their ability to adaptively determine the
number of segments of SE. We can also see that SLEDMS

achieves better performance than SLEDSS on all metrics,

TABLE III
COMPARISON OF UNSUPERVISED SKIN LESION SEGMENTATION METHODS

ON PH2 DATASET.

Method% AC↑ SE↑ SP↑ DI↑ JA↑

UDASOD 63.18 48.22 68.03 31.56 23.68
Sp. Merging 89.10 79.63 96.00 82.83 73.97
DRC 82.63 69.18 97.65 72.41 59.76
Saliency-CCE 84.62 78.90 93.77 76.79 65.62
A2S-v2 85.66 87.56 91.37 78.21 67.15

SpecWRSC 85.96 79.08 89.74 78.12 68.54
NCut 88.15 76.16 94.94 80.17 70.51
K-means 91.64 83.82 95.03 86.14 77.78
SGSCN 91.80 84.26 93.82 87.89 80.15

SLEDSS 92.00 89.35 94.76 88.02 80.11
SLEDMS 93.00 89.97 96.37 90.34 83.50

Improvement 1.20 2.41 - 2.45 3.35

TABLE IV
PERFORMANCE OF SLED ON THE ISIC 2016 DATASET USING DIFFERENT

OUTLIER DETECTION METHODS.

Method% AC↑ SE↑ SP↑ DI↑ JA↑

SLEDEcod 75.58 24.51 99.51 33.36 23.77
SLEDK−NN 84.80 47.94 99.78 60.07 47.72
SLEDOCSV M 91.34 79.52 97.48 82.59 74.13
SLEDiForest 91.82 80.83 97.72 84.33 76.02

which proves the effectiveness of our outlier detection-based
multi-scale mechanism.

We also evaluate SLED on the popular PH2 dataset, as
shown in Table III. SLEDMS and SLEDSS achieve the best
and second-best performance on four metrics and achieve quite
high SP scores comparable to baseline methods. Improvements
of SLEDMS on this dataset range from 1.20% to 3.35% on
four metrics, as shown in the last row of Table III. Through
quantitative comparison with nine baselines on four datasets,
SLED is proven to achieve new state-of-the-art performance
among unsupervised skin lesion segmentation methods.



Fig. 4. Performance of SLEDSS with different number of superpixels (blue) and SLEDMS (orange) on the ISIC 2016 dataset.

Fig. 5. Parameter sensitivity experiments for threshold r on the ISIC 2016 dataset.

(a) (b) (c) (d) (e) (f) (g)

Fig. 6. Visual comparison of outlier score maps from different outlier
detection methods. (a) Dermoscopic images; (b) Ground truth; (c) Detected
healthy skin by SLEDSS ; (d)-(g) Outlier score maps from healthy skin by (d)
Ecod [40], (e) K-NN [41], (f) OCSVM [42], and (g) iForest [31] respectively.

C. Ablation Study (Q2, Q3)

Sensitivity Analysis. We analyze the sensitivity of parameters
involved in SLED. One important parameter is the superpixel
number N . A larger value of N reduces the risk of over-
merge but impeded the efficiency of SLED. We explore
the performance of SLEDSS with different values of N as
shown in Figure 4. The performance of SLEDSS is slightly
fluctuating but generally stable when N > 100, indicating
that SLEDSS adapts well among a wide range value of N .
SLEDMS outperforms any SLEDSS results in four out of five
metrics by integrating segmentation of SLEDSS at different
superpixel scales, demonstrating the effectiveness of the multi-
scale segmentation mechanism.

Another important parameter is the spatial distance thresh-
old r, which is used to balance the importance of color
features and the spatial position of superpixels in the graph
construction. A larger value of r means greater importance of
the color feature. Figure 5 shows the sensitivity of r to SLED.
It can be observed that the performance of SLED is poor when
r = 0.1 and gets stable when r is larger. SLEDSS witnesses
a small drop in performance when r is larger than 0.3, but
this drop can be eliminated by the multi-scale segmentation
mechanism of SLEDMS .
Outlier Detection Methods. The proposed multi-scale seg-

mentation mechanism is a general approach, which can be
implemented by many unsupervised outlier detection methods.
To find the method that best models healthy skin, we utilize
different outlier detection methods to implement several vari-
ants of SLED , including SLEDEcod (Ecod [40]), SLEDK−NN

(K-Nearest Neighbors [41]), SLED OCSVM (OCSVM [42]),
and SLED iForest (Isolation Forest [31]). Table IV presents
the performance of these variants. SLED iForest achieves
best performance in all metrics, which indicates that iForest
models healthy skin better. SLED OCSVM ranks second with
comparable performance.

Figure 6 illustrates examples of outlier score maps using
different outlier detection methods. Both Ecod and K-NN fail
to distinguish the lesion region and healthy skin. OCSVM
distinguishes the lesion region but fails to reflect the diverse
pixel feature in the lesion region, as shown in the second and
third rows. Visually the outlier score maps of iForest better
reflect the features of the lesion region by giving different
superpixels graded scores. When the detected healthy skin
by SLEDSS is not accurate, as shown by the last row, all
methods fail to give a good score map. However, the score
map of iForest still reflects the lesion region. In all, iForest
best models healthy skin, and best fits our framework.

D. Case Study

Qualitative Comparison. Figure 7 gives a qualitative compar-
ison of different segmentation methods. Variations of lesions
in color, texture, shape, size, and location impede lesion
segmentation accuracy. Low contrast between lesions and
healthy skin (shown by 2nd and 3rd rows) and changing
illumination (shown by 4th row) are the other two challenges.
Furthermore, many lesions show diverse features and can be
divided into several sub-regions, misleading some methods
to take less prominent parts of lesions as healthy skin. Both
K-means, NCut, and SpecWRSC suffer from the problem of
fixed segments number, leading to poor segmentation results in
some cases. Compared to other methods including SLEDSS ,
SLEDMS gives more accurate lesion boundaries.



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

Fig. 7. Comparison of segmentation results. (a) Dermoscopic images; (b) Ground truth; (c) UDASOD (d) Sp. Merging; (e) DRC; (f) Saliency-CCE; (g)
A2S-v2; (h) SpecWRSC; (i) NCut; (j) K-means; (k) SGSCN; (l) SLEDSS ; (m) SLEDMS .

(a) (b) (c) (d) (e) (f)

Fig. 8. Visualization of outlier score maps. (a) Dermoscopic images; (b)
Ground truth; (c) Segmentation results of SLEDSS ; (d) Single-scale outlier
score maps from (c); (e) Multi-scale outlier score maps; (f) Segmentation
results of SLEDMS from (e).

TABLE V
TIME USAGE OF METHODS ON PH2 DATASET.
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Examples of Outlier Score Maps. Figure 8 shows several
examples of outlier score maps. The multi-scale mechanism
helps reduce the mis-segmentation of SLEDSS , as shown
in the second and third rows. In these two rows, the seg-
mented lesion regions by SLEDSS are smaller than the ground
truths, leading to inaccurate single-scale score maps. Multi-
scale score maps however better distinguish lesion regions by
integrating different single-scale score maps, leading to more
accurate segmentation results of SLEDMS . It should also be
noted that when the features of pixels in healthy skin are
not consistent, the proposed multi-scale mechanism induces
noises. For example, the image in the last row has inconsistent
backgrounds due to the influence of light illumination, and the
segmentation result of SLEDMS is worse than SLEDSS .

E. Efficiency (Q4)

We test the efficiency of different methods on the PH2
dataset as shown in Table V. The running time of SLEDSS

is comparable to Saliency-CCE, NCut, and K-means. By
calculating the segmentation of SLEDSS with different scales
in parallel, the running time of SLEDMS is comparable to Sp.
Merging, and less than DRC and SGSCN. Although UDASOD
and A2S-v2 consume the least running time, they both require
tremendous model training time. In all, SLED is quite efficient.

V. CONCLUSION

In this paper, we have presented SLED, a novel unsuper-
vised skin lesion segmentation framework. To address the
challenges of diverse pixel features within the lesion region
and the consistency of pixel features in healthy skin, we
introduce two key components in our framework: SE guided
segmentation and a multi-scale mechanism utilizing isolation
forest outlier detection. Our extensive experimental evaluations
on four widely used skin lesion segmentation benchmarks con-
firm the superiority of SLED over existing methods in terms of
effectiveness and efficiency. We believe that SLED holds great
potential for improving dermatological diagnosis and aiding in
early disease detection.
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