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Abstract—During the past few decades, cognitive diagnostics
modeling has attracted increasing attention in computational
education communities, which is capable of quantifying the
learning status and knowledge mastery levels of students. Indeed,
the recent advances in neural networks have greatly enhanced the
performance of traditional cognitive diagnosis models through
learning the deep representations of students and exercises.
Nevertheless, existing approaches often suffer from the issue
of overconfidence in predicting students’ mastery levels, which
is primarily caused by the unavoidable noise and sparsity in
realistic student-exercise interaction data, severely hindering the
educational application of diagnostic feedback. To address this,
in this paper, we propose a novel Reliable Cognitive Diagnosis
(ReliCD) framework, which can quantify the confidence of the
diagnosis feedback and is flexible for different cognitive diagnos-
tic functions. Specifically, we first propose a Bayesian method to
explicitly estimate the state uncertainty of different knowledge
concepts for students, which enables the confidence quantification
of diagnostic feedback. In particular, to account for potential
differences, we suggest modeling individual prior distributions
for the latent variables of different ability concepts using a pre-
trained model. Additionally, we introduce a logical hypothesis
for ranking confidence levels. Along this line, we design a
novel calibration loss to optimize the confidence parameters
by modeling the process of student performance prediction.
Finally, extensive experiments on four real-world datasets clearly
demonstrate the effectiveness of our ReliCD framework.

Index Terms—Reliable cognitive diagnosis, intelligent educa-
tion, knowledge state uncertainty

I. INTRODUCTION

Cognitive diagnosis, as an essential component of computer-
aided education, has garnered increasing attention over the
past decades [1]–[3]. The primary objective of cognitive diag-
nostics modeling is to quantitatively assess students’ learning
status and knowledge mastery levels, providing valuable for-
mative feedback [1], [2]. Indeed, relevant studies have enabled
a wide range of downstream educational applications, such as
course recommendations [4], student assessment [5], and com-
puterized adaptive testing [6]. As shown in Figure 1(a), given
the answering records of student Lano concerning a series
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Fig. 1: (a) An example of cognitive diagnosis; (b) the predicted
Lano’s diagnostic feedback on concept C2 with different inter-
action data and the corresponding accuracy of her performance
prediction on all the exercises related to the concept C2 in the
test set, where e1:j denotes the exercises set {e1, e2, ..., ej}
and h̄ indicates Lano’s actual ability state on C2.

of exercises, the cognitive diagnosis model can automatically
estimate her mastery levels of various knowledge concepts.

In the literature, traditional cognitive diagnosis mod-
els (CDMs) utilize different linear psychometric functions
to measure students’ learning status by modeling the pro-
cess of student performance prediction, such as Determin-
istic Inputs, Noisy “And” gate (DINA) [7], Item Response
Theory (IRT) [8]. Recently, with the rapid development of
deep learning techniques, several neural-based cognitive di-
agnostic methods have been proposed to enhance diagnostic
performance. For instance, the neural cognitive diagnosis
framework (NCD) utilizes neural networks to model students-
exercise interactions, in order to uncover deeper features of
both students and exercises [2]. Moreover, the flexibility of
neural model design has enabled researchers to incorporate
additional information, such as concept dependency maps [3]
and student profiling [9], to further improve the effectiveness
and interpretability of the models.

Previous studies have evaluated the effectiveness of cogni-
tive diagnostic models by calculating the accuracy of student
performance prediction, but they have not measured the relia-
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bility of diagnostic feedback. Meanwhile, due to the presence
of noise and sparsity in student-exercise interaction data,
existing approaches lead to the potential overconfidence in
students’ mastery prediction, severely reducing the reliability
of real-time diagnostic feedback in practical online education
systems. More specifically, as illustrated in Figure 1(b), when
Lano interacted with each exercise (i.e., from e1 to e5), we
present the cognitive diagnosis model’s results regarding her
mastery of knowledge concept C2 and the accuracy of her
performance prediction on all the exercises related to the
concept C2 in the test set. We found that due to the noise
present in the interaction data (i.e., <Lano, e5, ✓>), the
mastery of C2 at h5 deviates from the actual state h̄. It
indicates that we cannot trust the diagnostic feedback in a
monotonic manner with the increase in interaction. Further-
more, traditional evaluation metrics like accuracy are non-
smooth functions, which can result in the same evaluation
outcome despite different diagnostic feedback. Additionally,
these indicators are often not available in real-time during
the diagnostic process in practical use. Consequently, an ideal
cognitive diagnosis model should be able to provide both
accurate diagnostic feedback and indications of its reliability.

To this end, in this paper, we propose a novel reliable
cognitive diagnosis framework, namely ReliCD. To the best of
our knowledge, this is the first one to quantify the confidence
of the diagnosis feedback and is flexible for different cognitive
diagnostic functions. Specifically, we first propose a Bayesian
method for explicitly estimating the uncertainty of students’
states for various knowledge concepts with Gaussian latent
variables, where the mean parameter represents the average
ability status and the variance enables the quantification of
diagnostic feedback’s confidence. In particular, due to the
potential difference, we model the individual prior distribution
for the latent variables of different ability concepts with a
pre-trained model. Then, we introduce a logical hypothesis
for ranking confidence levels and present a novel calibration
loss to optimize the parameters in determining diagnostic
feedback’s confidence through modeling the process of student
performance prediction. Finally, extensive experiments on four
real-world datasets demonstrate the effectiveness and flexibil-
ity of our ReliCD.

II. RELATED WORK

Generally, the related work in this paper can be grouped into
two categories: cognitive diagnosis and confidence estimation.

A. Cognitive Diagnosis

The main task of cognitive diagnosis is to use students’
responses to exercises for diagnosing students’ ability state.
Over the past decades, experts in related educational psychol-
ogy fields have proposed many cognitive diagnostic models.
The two most classic ones are IRT [8] and DINA [7]. In IRT,
Embretson et al. represented students’ ability state as a one-
dimensional and continuous scalar. And a logistic function
is used to predict the probability that the student eventually
responds correctly to the exercise. Later, some researchers

improved upon IRT and proposed MIRT [10] by extending
the ability state of students to multi-dimensional vectors.
Different from IRT, DINA uses a binary vector to model the
student’s ability state with each dimension’s value representing
his/her mastery of relevant knowledge concepts. There are two
possible values on each dimension, 1 (mastered) or 0 (not
mastered). Furthermore, Jimmy De La Torre believed that
DINA itself has strong assumptions and constraints, which
do not conform to the actual situation. Along this line, they
proposed a generalized DINA (G-DINA) [11] to improve the
diagnostic performance by weakening these constraints.

In recent years, neural-based cognitive diagnosis models
have achieved state-of-the-art prediction performance, ben-
efiting from the successful application of neural networks
in various fields, including recommendation systems [12],
knowledge tracing [13], and computer vision [14]. These
works can be mainly divided into two aspects. The first
aspect focuses on designing diagnostic functions that leverage
the power of neural networks to capture complex and non-
linear interactions between students and exercises, such as
NCD [2]. The second is to use neural networks to enrich
the representation of students and exercises by considering
more additional information (e.g., the exercise text infor-
mation, the relationship between knowledge concepts). For
example, deep IRT (DIRT) [15] uses the semantic information
of the exercise text to enrich the parameter representation
of the traditional IRT. Educational context-aware cognitive
diagnosis (ECD) [16] was proposed by incorporating the
student’s educational background into the modeling of student
knowledge status. Gao et al. [3] proposed the relation map-
driven cognitive diagnosis (RCD) framework by exploiting the
prerequisite relation and similarity relationship of knowledge
concepts. Ma et al. [17] proposed a prerequisite attention
model (PAKP) for knowledge proficiency diagnosis of students
by considering the prerequisite relationship of knowledge
concepts and learning the influence weights of predecessor
knowledge concepts on successor knowledge concepts. Fur-
thermore, Li et al. [18] proposed a novel CDM, namely
HCDF, to enhance diagnostic performance by modeling the
hierarchical relationship between knowledge concepts.

The majority of existing studies primarily concentrate on
enhancing the accuracy of student performance prediction.
However, there has been a notable lack of comprehensive
investigation into the aspect of reliability in diagnostic feed-
back. In this paper, we introduce a novel approach for reliable
cognitive diagnosis, which is the first to quantitatively assess
the reliability of diagnostic feedback.

B. Confidence Estimation

Confidence estimation has been incorporated within the
machine learning community in some specific areas including
autonomous driving [19], medical applications [20], and career
mobility analysis [21], [22], so as to provide insight into the
reliability of the results while making accurate predictions.
The reliability feedback of results can serve as a measure for
future tasks. For instance, Yukun et al. [23] suggested that
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Fig. 2: (a) The distribution of all students’ ability status
diagnosed by NCD on the Assist2009 dataset. The blue
part represents diagnostic status of knowledge concepts not
interacted with, and the red part represents diagnostic status
of knowledge concepts interacted with. (b) The density plot of
all students’ status on the knowledge concepts that they have
interacted with.

challenging cases with low confidence levels in the field of
medicine should be reviewed by skilled surgeons.

In the past years, the research direction of confidence
modeling has evolved in two directions. The first direction is
to quantify the confidence of predicted results with diverse
heuristic approaches. For example, DeVries et al. [24] en-
hanced the model’s prediction by adding a branch of calculat-
ing the confidence value, based on the original classification
task. The confidence value is utilized to identify whether
the input sample is an out-of-distribution (OOD) sample.
Hendrycks et al. [25] used the predicted softmax probability
of the sample as the confidence estimation and detected
OOD samples by selecting the samples with the minimum
softmax probability values. Kendall et al. [26] argued that the
model uncertainty could be explained by inherent noise in the
captured data with Bayesian approaches. On the other hand,
the confidence calibration work has also received extensive
attention recently. For instance, Guo et al. [27] analyzed the
overconfidence reasons (i.e., model capacity, batch normal-
ization, and weight decay) of models based on deep neural
networks and gave some post-processing techniques (e.g.,
temperature scaling, matrix, and vector scaling) to deal with
these problems. Moon, Jooyoung et al. [28] introduced the
correctness ranking loss to ensure the credibility of the pre-
dicted probability, which defines the optimization objection
that the confidence estimate for the correctly predicted sample
is greater than the confidence estimate for the incorrectly pre-
dicted sample. However, these confidence estimation methods
cannot be directly applied to the task of cognitive diagnosis.
In this paper, we propose a novel calibration loss method that
aims to optimize parameters, thereby ensuring the reliability of
the predicted probabilities, which allows the model to maintain
confidence in its output results.

III. PRELIMINARIES

In this section, we first introduce some currently known
cognitive diagnosis functions (i.e., IRT, MIRT, and NCD).
Then, we analyze the diagnostic feedback of the previous

CDMs using NCD as a case study. Finally, we formally define
the research problem being investigated in this paper.

A. Cognitive Diagnostic Functions

Generally, cognitive diagnosis in computational education
aims to determine the student’s ability status through the
student exercising performance prediction task.

As a classic and representative diagnostic formula in ed-
ucational psychology, IRT [8] portrays the student ability
status of student si with an integrated value θi ∈ R1. The
logistic regression function is used to predict the probability
p(yij = 1) that the student si will answer the exercise ej
correctly as follows,

p(yij = 1) =
1

1 + e−Dβj(θi−αj)
, (1)

where αj and βj ∈ R1 are difficulty and discrimination of
exercise ej respectively. D is a constant.

MIRT [10] expands the student’s ability status and exercise
parameters from an integrated value to multi-dimensional
vectors on the basis of IRT, so as to assess the student’s ability
status from multiple aspects. In this paper, we resemble some
work (e.g., RCD [3]) to map each dimension of MIRT to a
specific knowledge concept by integrating the Q-matrix [2].
Under such consideration, the probability that student si with
ability status vector θi makes a correct response to exercise
ej with difficulty vector αj can be expressed as:

p(yij = 1) = ϱ(fsum(Qj ◦ (θi − αj))), (2)

where Qj indicates which knowledge concepts are relevant to
ej , θi and αj ∈ RK , fsum(.) is the sum operation and ϱ(.) is
the sigmoid function.

NCD [2] attempts to accommodate complex nonlinear
interactions between students and exercises by building a
new diagnostic function consisting of three fully connected
layers (fMLP ) and one shallow layer inspired by MIRT. The
cognitive diagnostic function of NCD can be formalized as:

p(yij = 1) = ϱ(fMLP (Qj ◦ (θi − αj)× βj)), (3)

where θi is a K-dimensional vector representing the ability
status of student si, αj and βj ∈ RK are exercise difficulty
and exercise discrimination, respectively. The value of each
dimension in θi indicates the student si’ mastery level of the
corresponding knowledge concept.

B. Diagnostic Feedback Analysis

While current CDMs show remarkable accuracy in pre-
dicting student performance, we argue that their diagnostic
feedback may not always be meaningful.

Without loss of generality, we take the NCD model as an
example. Specifically, we trained the NCD on a public real-
world dataset, namely Assist2009. Then, we can obtain all
students’ diagnostic feedback, i.e., their ability status θi. As
shown in Figure 2, we present the distribution of θi. Here, the
red part indicates all ability status θil for student si on each
knowledge concept cl that si has interacted with it. Similarly,



(a) (b)

Fig. 3: (a) The density plot of the correct rate of students’
performance prediction task related to knowledge concept #50
by NCD in the test set of Assist2009. (b) The density plot of
the correct rate after randomly adding one noisy interaction
data on concept #50 for each student.

the blue part shows the ability status that the student has not
interacted with. Clearly, we can find that although the distri-
butions of ability status values corresponding to the interactive
knowledge concepts and non-interactive knowledge concepts
are different, both of them have limited support included in
[0.4, 0.6], which impedes the discriminate diagnostic feedback.

Moreover, we further analyze the impact of noisy interaction
data on the diagnostic model. Here, Figure 3(a) shows the
density plot, which indicates the correct rate of students’
performance prediction related to the knowledge concept #50
in the test set based on the above NCD model on Assist2009.
Next, we incorporate a randomly generated interaction for
each student at knowledge concept #50. The corresponding
density plot on the correct rate of students’ performance
prediction is shown in Figure 3(b). We can find that the
student’s performance predictions were significantly degraded
after incorporating the noisy data, which also demonstrates
that even adding just one noisy interaction can undermine the
reliability of diagnostic results.

Considering the aforementioned issues in the existing
CDMs, in this paper, we focus on improving the reliability
of diagnostic feedback by quantifying the confidence of the
student’s ability status. And the proposed framework, ReliCD,
is designed to be adaptable to various cognitive diagnostic
functions, including IRT, MIRT, and NCD.

C. PROBLEM STATEMENT

1) Task Overview: Cognitive diagnosis in intelligent ed-
ucation consists of three parts, a set of students S =
{s1, s2, ..., sN}, a set of exercises E = {e1, e2, ..., eM} and
a set of knowledge concepts C = {c1, c2, ..., cK}, where
N , M , K represent the number of students, the number of
exercises and the number of knowledge concepts, respectively.
The relationship between exercises and knowledge concepts
is represented by a Q-matrix predefined by experts, where
the Q-matrix is defined as {Q}M×K . If exercise ej contains
knowledge concept cl, then Qjl = 1, otherwise Qjl = 0.
The response logs R include a set of triplets < si, ej , rij >,
where if the student si answers exercise ej correctly, rij = 1
otherwise rij = 0. Along this line, we can formally the
research problem in this paper as follows.

Problem Definition: Given the students’ answer logs R and
the experts’ predefined Q-matrix, our goal is to diagnose the
students’ proficiency level for specific knowledge concepts and
provide a confidence level for the diagnosis result.

IV. METHOD

Cognitive diagnosis is the process of diagnosing the stu-
dent’s abilities θ in a particular skill or concept. However,
the reliability of diagnosis can be affected by various factors,
such as noise in the data and the sparsity of interaction data.
To address this issue, it is crucial to incorporate methods
of modeling uncertainty in the diagnostic process, which
encourages an accurate and reliable final diagnosis. Along this
line, we design a novel reliable cognitive diagnosis (ReliCD)
framework. As shown in Figure 4, it can be divided into three
parts: 1) the student’s state and uncertainty module, 2) the
cognitive diagnosis module, and 3) the training objective. Ad-
ditionally, we have employed two effective strategies, namely
prior consensus and uncertainty regularization, to enhance the
performance of our framework.

A. Student’s State and Uncertainty

To model the uncertainty in the diagnostic process, we
argue that there should be a deviation in the ability represen-
tations of students diagnosed by traditional score prediction
methods. This deviation is caused by errors that can occur
when students interact with the exercises, which can lead to
unreliable diagnostic results. To address this issue, we model
the student’s ability representation as a Gaussian distribution.
The mean parameter represents the average ability status,
while the variance provides criteria for reliable diagnostic
results. If the variance of the distribution is small, the diagnosis
tends to be more reliable.

To obtain a personalized distribution representation (Gaus-
sian distribution) for each student si, we multiply the student’s
one-hot encoding by different transferable matrices to obtain
the means and variance parameters, respectively, i.e.,

q (zi|xs
i ) = N

(
µi, σ

2
i

)
, µi = WT

µ × xs
i , log σ

2
i = WT

σ × xs
i ,

(4)
where µi and σ2

i ∈ Rd represent mean and variance parameters
for student si, respectively. xs

i ∈ RN is the one-hot encoded
representation of student si. Wµ and Wσ ∈ RN×d are
different transferable matrices. N notes the number of students
and d indicates the dimensionality of the hidden vector (we
will discuss the setting of d in detail in Section IV-B).

Unlike previous student ability modeling techniques, here,
we randomly sample students si ability representations θi from
the constructed Gaussian distribution q(zi|xs

i ). This approach
simulates deviations in diagnostic results caused by potential
noise in interactions between student si and exercises ej . The
details are as follows,

θi = ϱ(zi), zi ∼ q (zi|xs
i ) , (5)

where θi ∈ Rd denotes the ability representation of student si.
zi is a vector randomly sampled from the constructed Gaussian



Fig. 4: The illustration of our basic idea in ReliCD. Each student si is denoted by a personalized Gaussian distribution variable
zi ∼ N (µi, σ

2
i ) and the corresponding ability state θi can be specified by applying the Sigmoid function on zi, which is also

a distribution with the support on [0, 1]. Next, prior common cognition N (µmean, 1) helps avoid the situation that students
master all knowledge concepts in advance to 0. Then, a calibration loss is induced to close the relationship between uncertainty
and the reliability of the student’s ability states by establishing a ranking relationship.

distribution of si. ϱ is a Sigmoid activation function to ensure
that each dimension of θi is in [0, 1].

B. Cognitive Diagnosis

After modeling the student’s ability status with uncertainty,
we turn to predict exercise performance with cognitive diagno-
sis functions fcd in Section III-A. Specifically, we first extract
diagnostic factors from exercise, i.e., exercise difficulty hdiff

and exercise discrimination hdisc, which are required in all
cognitive diagnosis functions. The details are as follows:

hdiff
j = ϱ(WT

diff × xe
j), hdisc

j = ϱ(WT
disc × xe

j), (6)

where xe
j ∈ RM denotes the one-hot representation of exercise

ej . hdiff
j ∈ Rd and hdisc

j ∈ R1 are exercise difficulty and
exercise discrimination of ej , respectively. Wdiff ∈ RM×d

and Wdisc ∈ RM×1 are two transferable matrices. M indi-
cates the number of exercises and d denotes the dimensionality
of the hidden vector.

Here, the predict probability p(yij = 1), indicating student
si answers correctly on exercise ej , can be derived as follows:

p (yij = 1) = fcd

(
θi, h

diff
j , hdisc

j

)
, (7)

where fcd denotes the cognitive diagnostic function. Please
noted that our framework is flexible for various diagnostic
functions. Here we further present three popular diagnostic
functions, i.e., IRT, MIRT, and NCD, and specify detailed rules
for them as follows:

• IRT: As shown in Eq. (1), IRT models student ability θ,
exercise difficulty hdiff and exercise discrimination hdisc

as a one-dimensional continuous scalar. Therefore, be-
cause of the definition of IRT itself, we set the hidden
vector dimension d=1 in Eq. (4) and Eq. (6).

• MIRT: For MIRT, we firstly let hdisc = 1 in Eq. (6).
Then, we uniformly map students’ ability representation
θ in Eq. (4) and exercise difficulty hdiff in Eq. (6) to
the K dimension (i.e., d = K) to model MIRT from the
perspective of knowledge concepts.

• NCD: For NCD, as shown in Eq. (2), it models students’
ability θ in Eq. (4) and exercise difficulty hdiff in Eq. (6)
from the dimension of knowledge concepts, i.e., d = K.

C. Training Objective

To optimize the parameters for obtaining the students’
ability status, we maximize the likelihood p(rij |xs

i ), which
indicates the true probability that the student si answers the
exercise ej . Specifically, we follow the literature [29]–[31]
and utilize the evidence lower bound as the training objective,
which is tractable. Formally, we have

log pϕ (rij |xi) ≥
∫

log p (rij |zi) p (zi|xi) dz

= −KL (qφ(zi|xi)|pϕ(zi))︸ ︷︷ ︸
LKL

+Eqφ [log p(rij |zi)]︸ ︷︷ ︸
Lpred

, (8)

where pϕ(zi) is the prior distribution for the ability status of
students. qφ(zi|xi) is the posterior distribution we constructed
for the student si. log p(rij |zi) measures the likelihood that
students with ability status θi = ϱ(zi) answers correctly on ex-
ercise ej . We follow the variational autoencoder (VAE) [32]–
[34] and leverage the sampling strategy to approximate Lpred

with one sample. Then, Lpred can be specified as:

Lpred = log p(rij |zi) = rij log yij + (1− rij) log(1− yij).
(9)



When assuming that prior distribution pϕ(zi) of student xi

satisfies the standard Gaussian distribution, LKL in the Eq. (8)
can be calculated by,

KL (qφ(zi|xi)||N (0, 1)) =

K∑
k=1

1

2

(
µ2
ik + σ2

ik − lnσ2
ik − 1

)
,

(10)

where µik, σ2
ik are the mean and variance of student si on

knowledge concept k.
Furthermore, based on the cognitive diagnosis scenario, we

can define the reliability of a student’s diagnostic feedback
on a specific knowledge concept as the probability of cor-
rectly predicting a student’s performance on the corresponding
knowledge. Formally, the diagnostic feedback reliability can
be defined as follows:

Definition 1: Given a student si, a cognitive diagnosis
model fcd(·), and si’s diagnostic feedback θi, the reliability of
diagnostic feedback (i.e., θil) on a specific knowledge concept
cl based on fcd(·) is the probability of correctly predicting si’s
performance on cl, i.e.,

∏
j p(yij = rij |θil), where yij belong

to all the response logs of student si answered exercise ej
which cover the concept cl (i.e., Qjl = 1).

Since we aim to utilize the standard deviation σi to assess
the reliability of each student si’s diagnostic feedback on dif-
ferent knowledge concepts, we design a novel calibration loss
as a regularization term for the training objective. Specifically,
given σil and σuv as the standard variances of student si’s
and su’s ability representations on the knowledge concept
cl and cv , respectively, if σij > σuv , we can assume the
reliability of si’s diagnostic feedback θil should smaller than
θuv . Formally, we have the following hypothesis for ranking
confidence levels.

Assumption 4.1: Given σil of student si and σuv of student
su, we have the relationship:

σil >= σuv ⇔∏
<si,ej ,rij>
∈Ri, Qjl=1

p (yij = rij |θil) <=
∏

<su,ej ,ruj>
∈Ru, Qjv=1

p (yuj = ruj |θuv) .

(11)

Considering the probability p(yij = rij |θil) is generally
impractical to directly obtain, we follow the idea from [35]
and [28] and hypothesis the probability of correctly predicting
student si performance on a specific knowledge concept is
proportional to the frequency of correct predictions of si on
the triples < si, ej , rij >∈ Ri where Qjl = 1 during the
training process. Along this line, we design a calibration loss
in a pairwise manner as follows,

LRL = max
(
0,−g(oil, ouv)(σ2

il − σ2
uv) + |oil − ouv|

)
,
(12)

where oil denotes the proportion of the frequency of correct
predictions of si on concept cl over the total number of

Algorithm 1 The training process of ReliCD.

Input: Students’ response logs R and Q matrix.
Output: Each student’s ability status θi and variance σ2

i .
1: Pretrain ReliCD with Eq. (16) (set β = 0);
2: µmean =

∑N
m=1 µm

N ;
3: while not convergence do
4: Sample a mini-batch < si, ej , rij >;
5: Obtain µi, σi from Eq. (4);
6: σi

2 ← gx(σ
2
i − α) + α;

7: Sample zi ∼ N (µi, σ
2
i ) and obtain θi;

8: Generate yij based on Eq. (7);
9: Sample B pairs (σil, σuv) randomly in this mini-batch;

10: Compute gradients based on loss functions Eq. (15);
11: Update all parameters;
12: end while
13: Return θi and σ2

i for each student si.

prediction on such interactions < si, ej , rij >∈ Ri, Qjk = 1
during the training process. The g(·, ·) is defined as:

g(oil, ouv) =


1, if, oil > ouv

0, if, oil = ouv

−1, otherwise.
(13)

Moreover, to reduce the training time cost, we sample the
pair (σil, σuv) under the current mini-batch when optimizing
Eq. (8). That is, given a mini-batch of the input interactions
{< sb1, e

b
1, r

b
1 > , < sb2, e

b
2, r

b
2 >, ..., < sbB , e

b
B , r

b
B >}, we

obtain the pair of standard deviations based on the sampled
i-th and j-th (Here i and j only represent the i-th and the
j-th instance) training instance pair, where < sbi , e

b
i , r

b
i >

denotes the i-th training instance in the current mini-batch
and B denotes the size of mini-batch.

For IRT, since it models the students’ ability representation
as a one-dimensional continuous scalar from a macro perspec-
tive, we revise the Eq. (12) as follows,

LIRT
RL = max

(
0,−g(oi, ou)(σ2

i − σ2
u) + |oi − ou|

)
, (14)

where oi represents the proportion of the frequency of correct
predictions of student si over the total number of predictions
on such interactions < si, ej , rij >∈ Ri and σi is the standard
deviation of student si’s ability representation.

Finally, the total loss function is defined as:

L = Lpred + γ ∗ LKL + β ∗ LRL, (15)

where γ and β are introduced to balance different items.
Particularly, we follow the approach of β-VAE [36] to weight
LKL for enhancing performance.

D. Prior Consensus and Uncertainty Regularization

Here, we propose two strategies to further improve our
model: adjusting the prior distribution of the student’s state
and regularizing the range of uncertainty.



1) Prior Consensus : Due to the potential difference be-
tween knowledge concepts, such as in terms of difficulty
and discrimination, we assume that the prior distribution of
the student’s status on each knowledge concept is different
and individual. To model the individual prior and prevent
information leakage, we only use the training set to pre-train
our model by setting β = 0. Then, we average the ability state
vector, i.e., µm of all students as the mean parameter µmean

of the prior distribution, i.e,

µmean =

∑N
m=1 µm

N
, (16)

which represents the prior common cognition of all knowledge
concepts. This method is helpful for us to understand the
overall level of students in advance, and avoid the situation
that students master all knowledge concepts in advance to 0.
Then, we train our entire model with the prior distribution
N (µmean, 1), where the variance parameter is set as 1. There-
fore, the new KL loss can be defined as:

KL
(
N (µi, σ

2
i )||N (µmean, 1)

)
=
1

2

K∑
l=1

(
(µil − µmean,l)

2 + σ2
il − log(σ2

il)− 1
)
.

(17)

2) Uncertainty Regularization: At the same time, inspired
by [37], [38], we also believe that the variance of the modeling
should be within a reasonable range, neither too fluctuating nor
too smooth. So we follow the idea in the literature [38] and
apply dropout to the variance parameter for each student i,
which discourages the large variance,

σ̂2
il = gxil

(
σ2
il − α

)
+ α, (18)

where gxil is an independent random variable generated from
a standard Bernoulli distribution. α is our empirically defined
value. At this point, the distribution we construct for student
si can be rewritten as q (zi|xi) = N

(
µi, σ̂

2
i

)
.

After designing the technical details of our framework with
two strategies for enhancing performance, we can train our
framework with the training data following Algorithm 1.

V. EXPERIMENT

In this section, we will provide a detailed description of the
benchmark datasets, baselines, and experimental setup. The
designed experiments aim to answer the following questions:

• RQ1: How does our framework perform compare to
state-of-the-art cognitive diagnosis models?

• RQ2: Whether the specially designed parts of our frame-
work effective?

• RQ3: How do the hyperparameters influence the effec-
tiveness of our framework?

• RQ4: Whether our study can improve the reliability of
cognitive diagnosis models?

TABLE I: The statistics of datasets.

Dataset Assist2009 Junyi e-Math ENEM

# Students 4.1k 1.0k 1.9k 10k
# Exercises 17.7k 0.7k 1.6k 0.1k
# Knowledge concepts 123 39 61 4
# Response logs 324k 203k 62k 18500k
# Avg logs per student 77.96 203.94 120.71 185
# Avg concepts per exercise 1.19 1.00 1.21 1.00

A. Dataset Description

We validated the performance of our framework on four
real-world datasets, which are three public datasets namely
Assistments2009 (Assist2009) 1, Junyi 2 and ENEM 3, and a
private dataset namely e-Math. ASSISTments2009 (ASSIST-
ments 2009-2010 “skill builder”) is a public dataset collected
by the assistant online tutoring systems in the 2009-2010
academic year. Junyi is a public dataset collected by the
Khan Academy in 2012 year. e-Math is a private dataset
collected by a well-known electronic educational product,
mainly containing math exercises and response records of
primary and secondary school students. ENEM is a Brazilian
students’ college entrance examination.

Table I shows the basic information of the four datasets,
including the number of students, the number of exercises,
the number of knowledge concepts, the total number of answer
logs, the average number of answer logs per student, and the
average number of knowledge concepts contained in each ex-
ercise. Moreover, we uniformly filtered out students with less
than 15 response logs to guarantee that there is enough data
for modeling each student for all datasets. Along this line, we
obtained 2, 493 students, 17, 671 exercises, and 123 knowledge
concepts in Assist2009; 1, 000 students, 712 exercises, and 39
knowledge concepts in Junyi; 517 students, 1, 582 exercises,
and 61 knowledge concepts in e-Math; 10, 000 students, 185
exercises and 4 knowledge concepts in ENEM.

We divided each dataset into training set, validation set, and
test set by splitting each student’s response records at a ratio
of 70% : 10% : 20%. And, we trained our framework on
the training set, tune the parameters of our framework on the
validation set, and verify the performance of our framework
on the test set.

B. Experimental Setup

1) Experimental settings: In the experiment, we used
Xavier initialization to initialize all parameters in our frame-
work. We leveraged the Adam optimizer to train our reliable
CDMs with a batch size of 32 and a learning rate of 0.002,
respectively. We used five-fold cross-validation to more ac-
curately evaluate the performance of our framework on all
datasets. As mentioned in Section 4.3, we set β = 0 during

1https://sites.google.com/site/assistmentsdata/home/assistment2009-2010-
data/skill-builder-data-2009-2010

2https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-
dataset-by-junyi-academy?resource=download

3https://github.com/godtn0/DP-MTL



TABLE II: Quantitative results on students’ score prediction.

Datasets Metrics IRT Reli-IRT MIRT Reli-MIRT NCD Reli-NCD

Assist2009

ACC (% ↑) 68.17 ± 0.06 69.56 ± 0.29∗ 70.62 ± 0.43 71.12 ± 0.23 72.20 ± 1.11 72.55 ± 0.20
RMSE (↓) 0.4554 ± 0.0054 0.4429 ± 0.0012 0.4536 ± 0.0018 0.4478 ± 0.0007 0.4347 ± 0.0028 0.4311 ± 0.0010

AUC (% ↑) 69.15 ± 1.35 72.36 ± 0.12∗ 72.53 ± 0.73 72.14 ± 0.09 75.10 ± 0.14 75.10 ± 0.32
ECE (% ↓) 4.75 ± 0.03 3.13 ± 0.15∗ 9.97 ± 1.16 7.81 ± 0.23∗ 6.97 ± 0.50 1.69 ± 0.19∗
MCE (% ↓) 10.91 ± 0.39 10.58 ± 0.26 13.11 ± 1.28 12.21 ± 0.52 9.00 ± 0.19 3.85 ± 0.75∗

e-Math

ACC (% ↑) 67.57 ± 0.41 70.00 ± 0.05∗ 67.49 ± 0.42 69.20 ± 0.42∗ 69.11 ± 0.32 69.13 ± 0.34
RMSE (↓) 0.4564 ± 0.0014 0.4390 ± 0.0008 0.4595 ± 0.0022 0.4506 ± 0.0007 0.4427 ± 0.0030 0.4399 ± 0.0013

AUC (% ↑) 69.77 ± 0.36 74.20 ± 0.29∗ 71.23 ± 0.24 72.52 ± 0.23∗ 73.79 ± 0.21 74.12 ± 0.20
ECE (% ↓) 3.56 ± 0.37 3.14 ± 0.24 8.88 ± 0.42 5.56 ± 0.39∗ 4.53 ± 0.01 1.17 ± 0.07∗
MCE (% ↓) 10.37 ± 0.78 9.85 ± 1.08 13.60 ± 0.63 13.49 ± 0.34 5.90 ± 1.01 2.06 ± 0.01∗

Junyi

ACC (% ↑) 71.56 ± 0.27 75.31 ± 0.19∗ 75.73 ± 0.17 75.79 ± 0.15 75.60 ± 0.26 76.05 ± 0.15
RMSE (↓) 0.4342 ± 0.0021 0.4081 ± 0.0009∗ 0.4291 ± 0.0004 0.4279 ± 0.0005 0.4068 ± 0.0006 0.4042 ± 0.0005

AUC (% ↑) 74.09 ± 0.39 78.84 ± 0.15∗ 77.18 ± 0.11 77.34 ± 0.17 79.87 ± 0.13 80.11 ± 0.14∗
ECE (% ↓) 3.89 ± 0.19 2.36 ± 0.12∗ 10.68 ± 0.17 10.13 ± 0.13 1.97 ± 0.72 1.68 ± 0.88
MCE (% ↓) 8.45 ± 0.36 4.85 ± 0.26∗ 20.90 ± 14.54 14.25 ± 0.17∗ 3.07 ± 0.94 2.59 ± 1.04

ENEM

ACC (% ↑) 71.70 ± 0.26 73.09 ± 0.44∗ 70.91 ± 0.02 72.02 ± 0.03∗ 73.45 ± 0.16 73.46 ± 0.12
RMSE (↓) 0.4448 ± 0.0009 0.4319 ± 0.020 0.4514 ± 0.0002 0.4443 ± 0.0001∗ 0.4288 ± 0.0008 0.4286 ± 0.0005

AUC (% ↑) 69.31 ± 0.14 72.18 ± 0.06∗ 69.86 ± 0.08 69.92 ± 0.02 72.93 ± 0.10 72.96 ± 0.06
ECE (% ↓) 5.03 ± 0.15 2.10 ± 0.09∗ 7.78 ± 0.06 6.63 ± 0.09∗ 1.64 ± 0.16 0.76 ± 0.08∗
MCE (% ↓) 10.96 ± 0.46 3.71 ± 0.14∗ 12.79 ± 0.11 7.56 ± 0.12∗ 3.82 ± 0.19 1.64 ± 0.16∗

the model pre-training phase. While during the training, vali-
dation, and testing phases, we set γ=1e-4, β=0.1. Our frame-
work 4 and baselines were implemented with Pytorch=1.7.1
by Python=3.6, and all experiments were conducted on an
NVIDIA GeForce RTX 3090-24GHB.

2) Evaluation metrics: Here we evaluate our work from
two aspects. The first aspect is the performance of our
framework, which can be measured by ACC (Accuracy),
RMSE (Root Mean Square Error), and AUC (Area Under an
ROC Curve), using the same metrics as previous work (e.g.,
NCD). The second is the quality of confidence estimation
on the student’s ability status, which can not be evaluated
directly. Here, we turn to measure the confidence of our
framework in predicting exercise performance by the expected
calibration error (ECE) [39] and the Maximum Calibration
Error (MCE) [39], which are widely used in confidence
estimation related literature [27], [28]. The smaller the value of
ECE or MCE, the better the quality of confidence estimation.
Specifically, we first divide the prediction probability interval
into a certain number of bins. Then, ECE and MCE can
be calculated by adding up and taking the maximum of the
differences between the mean probability in each bin and
the accuracy among the corresponding samples with weight,
respectively. The calculation formulas are as follows,

ECE =

M∑
n=1

|Bn|
a
|acc (Bn)− avgProb (Bn) |,

MCE = maxn∈{1,2,...,M}|acc (Bn)− avgProb (Bn)|,
(19)

where M is the number of interval bins, Bn denotes the set of
samples with prediction probability in [n−1

M , n
M ], a is the total

number of samples, acc(Bn) is the accuracy of the samples
in Bn, avgProb(Bn) is the average prediction probability of
our framework for the samples in Bn.

C. Performance Comparison (RQ1)
To verify the effectiveness of our proposed framework, we

applied it to different cognitive diagnostic functions, including

4https://github.com/BIMK/Intelligent-Education/tree/main/ReliCD

Fig. 5: Results of Reli-NCD and its variants.

IRT, MIRT, and NCD. As a result, we obtained three reliable
cognitive diagnosis methods: Reli-IRT, Reli-MIRT, and Reli-
NCD. Our goal is to substantially enhance confidence metrics
(i.e., ECE and MCE) while making slight improvements to
traditional metrics (i.e., ACC, RMSE, and AUC). Specifically,
all these generated reliable cognitive diagnosis methods sam-
pled the students’ ability state from a constructed distribution
to model students’ uncertainty. As illustrated in Table II, we
compared our ReliCDs with the corresponding baselines on
four real-world datasets and we bolded the best experimental
results with black lines. Moreover, we conducted the standard
student t-test for the pair of our ReliCDs and the baselines
at all indicators. Results are summarized in in Table II with
significant improvement (p-value < 0.01) denoted with an
asterisk (∗). We can obtain the following observations. Firstly,
we can find that our ReliCDs have a significant decline
compared to the corresponding baseline in ECE and MCE
on almost all datasets. It not only shows that capturing the
uncertainty of students can calibrate the confidence value of
the prediction results but also demonstrates our method largely
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(c) Junyi (d) ENEM

Fig. 6: Impact of different sizes of γ on the performance.

improves the reliability of the diagnostic results. Secondly,
we observed that our ReliCDs have significantly improved
the performance in terms of ACC, AUC, and RMSE in some
datasets. It reveals that estimating the uncertainty of students’
ability status on different knowledge concepts can enhance the
effectiveness of the student performance prediction. Thirdly,
we found that our Reli-NCD achieved the best performance on
all datasets. Meanwhile, we observed that basic NCD did not
achieve the best performance on the ECE at Assistments2009
and e-Math. It also shows that our solution brings a good
reliability improvement to strengthen cognitive diagnostic
functions like NCD.

D. Ablation Study (RQ2)

To verify the effectiveness of each specially designed com-
ponent of our framework, we constructed two variants of our
ReliCD by removing the corresponding components. Without
loss of generality, we used Reli-NCD as the baseline, which
is an implementation of our framework with the specific diag-
nostic function NCD. The variants are described as follows:

• w/opre− training: It is a variant of Reli-NCD by
removing the pre-training process, so as to explore its
impact on the experimental results.

• w/ocalibrationloss: It is a variant of Reli-NCD by
removing the calibration loss, so as to explore its impact
on the experimental results.

The results are summarized in Figure 5. Clearly, we can
find that Reli-NCD has achieved the best performance on all
datasets. Meanwhile, we observe that both pre-training strategy
and calibration loss can significantly improve the performance
of ECE and MCE in almost all datasets. Specifically, the pre-
training strategy effectively reduces about 26.4%, 19.2%, and
37.9% on ECE at Assist2009, Junyi, and e-Math, respectively.
Correspondingly, the calibration loss effectively reduces about
10.2%, 7.2%, and 24.8% on ECE at the above datasets. It
clearly demonstrates the effectiveness of those components in
our framework, which also answers RQ2.

(a) e-Math (b) Assist2009

(c) Junyi (d) ENEM

Fig. 7: Impact of different sizes of β on the performance.

Fig. 8: The distribution of the student’s ability statue θ under
different numbers of interaction data.

E. Parameter Sensitivity Analysis (RQ3)

To evaluate the sensitivity of hyperparameters γ and β in
the loss function and answer the RQ3, we conducted multiple
experiments on e-Math, Assist2009, Junyi, and ENEM. We
varied γ and β individually from 1e − 6 to 1, while keeping
the other parameter fixed.

As depicted in Figure 6, it is evident that the size of γ
has a significant effect on the results of both the AUC and
ECE. The model’s performance is optimal within the range
of 0.0001− 1. This observation indicates that considering the
constraints of student distribution within a reasonable range
is beneficial to the model performance. As for β shown in
Figure 7, varying the size of β did not greatly affect the
AUC values in e-Math and Assist2009, while the ECE values
varied significantly on all three datasets under different sizes.
The observation regarding β suggests that the partial order
relationship we established has a certain level of calibration
effect on the final prediction of the model.

F. Case Study (RQ4)

Here we first show an example of predicted ability status
via our framework. Specifically, we trained our Reli-NCD on
the Assist2009 dataset. Figure 8 shows the predicted student



(a) (b)

Fig. 9: (a) The distribution of all students’ ability status
diagnosed by Reli-NCD on the Assist2009 dataset includes
the left part for knowledge concepts not interacted with and
the right part for those interacted with. (b) The density plot of
all students’ ability status of the knowledge concepts that they
have interacted with. The red one is the predicted ability status
based on NCD and the blue one is based on our Reli-NCD.

#4164’s ability status θ distribution of knowledge concept #15
corresponding to training with different numbers of exercises
on this concept. Clearly, we can observe that the fluctuation
of student ability state decreases with more interaction data on
this concept, while the mean value of the student ability status
is also regionally stable. Therefore, our model can effectively
identify the reliability of the diagnostic feedback, which will
serve as a great aid to educators in assessing the usability of
the diagnostic feedback.

Moreover, similar to the diagnostic feedback analysis in
the preliminaries, we trained our Reli-NCD on the Assist2009
and obtained the distributions of students’ ability status of the
interactive knowledge concepts and non-interactive knowledge
concepts. As shown in Figure 9, we can find that our Reli-NCD
provides more discriminate diagnostic feedback than NCD,
as its predicted ability status distribution span is significantly
wider. Meanwhile, we obtained our Reli-NCD can achieve
concentrated distribution on students’ ability status of the
knowledge concepts that they have not interacted with, which
demonstrates the reliability of our diagnostic feedback.

VI. CONCLUSION

In this paper, we introduced a reliable cognitive diagnosis
framework with confidence awareness, namely ReliCD, which
is the first one to quantify the confidence of the diagnosis
feedback and is flexible for different cognitive diagnostic
functions. To be specific, we first proposed a Bayesian method
to explicitly estimate the state uncertainty of different knowl-
edge concepts for students, which enables the confidence
quantification of diagnostic feedback. In particular, to avoid
the potential difference, we proposed to model the individual
prior distribution for the latent variables of different ability
concepts with a pre-trained model. Then, we introduced a
logical hypothesis for ranking confidence levels. Moreover, we
designed a novel calibration loss to optimize the confidence
parameters by modeling the process of student performance
prediction. Finally, we have conducted extensive experiments

on 4 real-world datasets, and the experimental results have
clearly demonstrated the effectiveness of our ReliCD.
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