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Abstract—Panoramic Narrative Grounding (PNG) is an emerg-
ing visual grounding task that aims to segment visual objects in
images based on dense narrative captions. The current state-
of-the-art methods first refine the representation of phrase by
aggregating the most similar k image pixels, and then match the
refined text representations with the pixels of the image feature
map to generate segmentation results. However, simply aggregat-
ing sampled image features ignores the contextual information,
which can lead to phrase-to-pixel mis-match. In this paper, we
propose a novel learning framework called Deformable Attention
Refined Matching Network (DRMN), whose main idea is to bring
deformable attention in the iterative process of feature learning
to incorporate essential context information of different scales of
pixels. DRMN iteratively re-encodes pixels with the deformable
attention network after updating the feature representation of
the top-k most similar pixels. As such, DRMN can lead to
accurate yet discriminative pixel representations, purify the top-
k most similar pixels, and consequently alleviate the phrase-to-
pixel mis-match substantially. Experimental results show that our
novel design significantly improves the matching results between
text phrases and image pixels. Concretely, DRMN achieves new
state-of-the-art performance on the PNG benchmark with an
average recall improvement 3.5%. The codes are available in:
https://github.com/JaMesLiMers/DRMN.

Index Terms—Visual Grounding, Panoptic Narrative Ground-
ing, One-stage Method

I. INTRODUCTION

Panoptic Narrative Grounding (PNG) [1], one emerging
visual grounding task, has recently drawn great attention in
data mining and computer vision including grounded context
recognition [2], visual question answering [3], and visual-
language model pre-training [4]. Given an image and its
associated dense narrative caption, the goal of PNG is to
segment the visuals of things and stuff based on the visu-
als mentioned in the caption (see illustration in Fig. 1). In
contrast to other related tasks, PNG extends the grounding
range from the bounding box of the foreground class (called
“object”) to a segmentation mask containing both foreground
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and background classes (named “object” and “Stuff”), thus
defining the finest-grained alignment between multiple noun
phrases and segments. A detailed comparison between PNG
and other related vision-based tasks can be seen in Sect. II.

Fig. 1: Illustration of the PNG problem: Given an image (left)
and corresponding caption (middle), the goal is to generate
a panoptic segmentation (right) based on all visual objects
contained in the caption (i.e., labeling each object and its
associated segmented region with the same color).

In general, there are two families of methods for PNG. The
first type of methods typically exploits a two-stage pipeline [1],
which matches by computing the affinity matrix between
object proposals (extracted by off-the-shelf models) and noun
phrases. As such, the object proposal model, i.e., the off-the-
shell model will limit the performance ceiling. On the other
hand, the one-stage or end-to-end methods [5], [6] alleviate
this problem by directly generating a response map between
all noun phrases and image pixels. To better fuse information
from different modalities, Ding et al. [5] propose a language-
compatible pixel aggregation (LCPA) module to aggregate
the most compatible features from images to noun phrases.
Namely, taking each noun phrase as a query feature, LCPA
samples top-k image-compatible features, which are then used
as key and value features. Finally the multi-head cross-modal
attention is adopted to aggregate visual features.

Albeit its promising performance, LCPA simply aggregates
sampled image features without taking into account the con-
textual information, which could lead to serious phrase-to-
pixel mis-match. Concretely, LCPA tends to push the phrase
feature towards the center of top-k sampled image features.
This algorithm works well when the top-k sampled features
are related to the target visual object with high similarity.
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Fig. 2: Insight of our proposed method. The upper part addresses the limitation of LCPA with a hard example. We introduce the
essential context information in the multi-scale feature map as a cue to refine the sampled top-k image feature. By sharpening
the representation of different visual objects points, our method can filter out the sampled points by purifying unrelevant visual
objects, which further enhances the final segmentation result.

However, such strategy may also inevitably introduce un-
related image pixels. As illustrated in a hard example of
Fig. 2, the unrelated object’s pixels (for “feet”) fused with
the related object’s pixels ( for “ball”) dominate the top-k
sampled features with high similarity, thus inducing a serious
mis-match. To alleviate this problem, we argue that relevant
context information is crucial for differentiating and purifying
the top-k sampled points. Essentially, integration of context
information would enable more accurate and discriminate pixel
representation, since related pixels enjoy more similar context
whilst unrelated ones may share distinctive context. In other
words, integration of context information could sharpen the
representation of different visual pixels, thereby providing
potentials to improve the segmentation performance.

Motivated from the above observations and inspired by
the current object detection method [7], we design a novel
deformable attention mechanism to extract essential pixel
contextual information in multi-scale feature maps in an
iterative way, resulting in a simple yet effective end-to-end
model, called Deformable Attention Fine Matching Network
(DRMN). An overview of its framework is shown in Fig.
3. Similar to Transformer, DRMN is a multi-scale encoding-
decoding method that offers a full range of context information
at different scales, including global information and local
information. For feature extraction, we engage the deformable
attention to encode image features at different levels, which
will generate a cross-fused multi-scale word-pixel matching

matrix to obtain initial word-pixel matching results. In addi-
tion, in the feature aggregation stage, we further incorporate
word embedding representations into pixel encoding repre-
sentations. Specifically, we follow insights from the DETR
decoder [8] to refine the sampled features: for each word
vector, our model queries its nearest k pixels and applies an
attention mechanism to encode them after updating the vector
representations of these pixels with the word vector.

Our contributions are four-fold:

• From the perspective of multimodal information fusion,
we design a deformable attention model with multi-
scale encoding and decoding functions in the aggregation
process of pixel features to better encode the context
information around the pixel, effectively alleviating the
phrase-to-pixel mis-match problem.

• From the perspective of model structure, unlike the
existing DETR-based models [8], [9], our novel design
leverages directly multimodal transformers for highly
intertwined feature aggregation. Inheriting insights from
DETR feature aggregation, our new approach offers a
more sparse and interpretable way of exploiting DETR
for vision-based tasks.

• From an algorithmic perspective, we simplify the multi-
round pixel feature refinement process into an iterative
process of two subproblems: the fuzzy K-means clus-
tering subproblem and the multi-objective assignment
subproblem, the latter of which can be efficiently solved



by online gradient descent.
• From an experimental point of view, the results of multi-

ple categories and the overall results on the public PNG
benchmark show the superiority of our method compared
to previous methods, where the average recall rate is 3.5%
higher than the second-ranked method.

II. RELATED WORK

In this section, we overview PNG in contrast to differ-
ent related vision-based tasks. Overall, Table I shows the
comparison granularities of related vision-based tasks, among
which the PNG task provides the most fine-grained alignment
between different types of nouns and segmentation.

TABLE I: Comparison of different granularities of related
vision-based tasks. Considering the typical segmentation cat-
egories in computer vision tasks between things (countable
objects) and stuff (amorphous regions of similar texture), the
datasets of the other tasks mainly focus on things categories.

Grounding Language Visual Semantic
Task Granularity Granularity Generality
REC [10] Short phrase Bounding box Things
PG [11] Noun phrase Bounding box Mainly Things
RES [12] Short phrase Segmentation Things
PNG [1] Noun phrase Segmentation Things + Stuff

A. Visual Grounding with Bounding Box Regression

The goal of Referent Expression Comprehension (REC) task
is to predict the corresponding bounding box in an image
for a given referring expression. Current methods can be
categorized into two-stage and one-stage approaches. Two-
stage methods [13] first propose bounding box proposals in
the image, then match the proposal-referring expression pairs.
Inspired by object detection techniques [14], the one-stage
methods [15] directly generate results based on the input
textual information without explicit matching. Recently, some
methods have explored multi-modal pre-training models [16]
in REC [17], taking architectures similar to BERT, to obtain
joint representations of images and texts.

The phrase grounding task aims to find the corresponding
bounding box in an image for multiple noun phrases men-
tioned in an input caption. Early methods [11], [18] adopted
representation learning, which first project region proposal and
phrase embeddings onto a same subspace, then learn semantic
similarity between them. In recent years, researchers have
explored various methods [19]–[21] for fusing and learning
multi-modal features. It is worth mentioning that recent large-
scale visual-language pre-training models [22], [23] have
adopted weakly supervised phrase grounding [24] loss to align
image-noun phrase pairs.

Recently, some methods [8], [9], [25] have modified
the transformer-based object detection framework to ad-
dress the aforementioned bounding box regression problems.
TransVG [25] first proposed a pure transformer framework for
visual grounding tasks. Furthermore, some methods [8], [9]

drew inspirations from the DETR object detection framework.
MDETR [8] employed a transformer encoder-decoder struc-
ture, where the transformer simultaneously extracted features
from both the image and text in the encoder, and introduced
QA-specific queries in the decoder for visual grounding-
related task decoding. Dynamic MDETR [9] engaged the idea
of deformable attention in the decoder to reduce computa-
tion. It is worth noting that our approach differs from the
aforementioned methods. Instead of using a transformer to
simultaneously encode image and text information, we handle
the multi-modal feature interaction in the decoder through top-
k sampling. In particular, in the decoder, we consider the
features of the top-k image positions as object queries, and
design the deformable attention mechanism to extract object-
relevant features and then aggregate the extracted object query
features into the textual features.

B. Visual Grounding with Segmentation

The task of Referent Expression Segmentation (RES) is to
generate a segmentation map of the referred object according
to the input referring expression. The first proposed method
[12] on this task is a one-stage model that first concatenated
textual features and global image feature, then decoded the
segmentation mask through deconvolution layers. Recently,
inspired by multi-modal transformers, various fine-grained
modeling approaches [26], [27] have been proposed to facil-
itate interactions between different modalities. For example,
SHNET [28] concatenated textual features with different levels
of image features as joint input of the transformer, then
adopted language features to guide the information exchange
between different levels of image features. The LAVT model
[27] developed the PWAM module, which directly used at-
tention to expand textual information to the size of the image
feature map for pixel-word feature fusion.

PNG aims to segment corresponding things or stuff in an
image based on the multiple noun phrases mentioned in the
image caption. This task was initially proposed with a two-
stage method by González et al. [1], along with a dataset. They
extracted segmentation proposals from off-the-shelf models
which were matched with the extracted noun phrase features.
Later, some work explored the one-stage paradigm. For ex-
ample, PPMN [5] achieved feature fusion between different
modalities through a sampling strategy end-to-end. EPNG [6]
further optimized the inference speed and achieved real-time
segmentation effects while sacrificing little accuracy.

III. MAIN METHOD

In this section, we first introduce the process of feature
extraction for image text (III-A). Then, we describe how initial
segmentation results are generated (III-C). Subsequently, we
present our proposed Multi-round Visual-Language Aggrega-
tion Module, which selectively aggregates image features into
textual features to enhance the model’s performance (III-D).
Finally, we detail the loss function and introduce the training
process of the model (III-E). The overall workflow of our



Fig. 3: Overview of our model. We integrate essential image context information in feature extraction and multi-round feature
aggregation phases with deformable attention. First, we utilize BERT to encode textual features and employ deformable attention
to encode multi-scale image feature maps. Furthermore, we generate initial image-text matching results based on textual and
image features. Finally, in the multi-round feature aggregation, we aggregate the top-k image features into text feature based
on the matching results. The model utilizes deformable attention to refine sampled image features further, then aggregates the
refined features into textual features through a cross-attention mechanism to generate improved matching results.

model is shown in Fig. 3 and the pseudo code of the algorithm
is shown in Alg. 1.

A. Feature Extraction

In the feature extraction stage, we can employ off-the-
shelf methods to extract features from visual and linguistic
modalities.

For the text modality, we leverage BERT to extract features
for each word in the image caption. Specifically, we focus on
extracting features from the noun phrase part T of the title
G = BERT(T ) ∈ Rn×d, where n represents the maximum
number of words in all input noun phrases and d denotes the
dimensionality of the textual feature embedding representa-
tion.

As for image modality, given any image I , we use ResNet
as the backbone to extract multi-scale feature pyramid S =
{F2, F3, F4, F5} such as

Fl = flatten(ResNet(I, l)), l = 2, 3, 4, 5. (1)

Here I is an RGB image with height h and width w and the
l-th scale output will be a matrix of size hw

4l
× c, where c is

the number of channels in the output map.
In the subsequent feature extraction stage, first we normalize

the coordinates x’s and y’s of all points in the feature map
of each scale to the range [0, 1]. We then grid them to
obtain the reference point matrix with the same size pl =

flatten(grid(Ml)) ∈ R
hw

4l
×2, where the size of the tensor M

is h
2l

× w
2l

× 2 and its elements Ml(i, j) = (i, j).

Meanwhile, we add the feature maps of multiple scales
obtained by the feature pyramid and their position codes and
straighten them to get the matrix of hw

4l
× c

F̂l = Fl + pos(Fl), l = 2, 3, 4, 5, (2)

where pos(·) represents the positional encoding function. We
take these feature representations and concatenate them row
by row into a matrix as the input of the DeformLayer function
in the initial stage

F̂ = catrow({F̂l}). (3)

B. Deformable Layer

In order to better integrate feature information at different
scales, we use multiple deformable attention layers to aggre-
gate information from various levels of the feature pyramid ac-
cording to the position and characteristics of the input feature
points, where the input of deformable attention is the query
features Q = F̂ , the reference positions P = {p2, p3, p4, p5}
corresponding to the feature point in the image and multi-scale
feature map S = {F2, F3, F4, F5}.

Similar to Transformer, on multiple feature maps of the
pyramid, each feature point will be re-expressed as a linear
combination of other feature points. The difference is that its
value V is based on the feature map with a bilinear sampling
operation instead of itself. Moreover, both the sampling offset



and the self-attention correlation coefficient depend on the
query Q, specifically described as follows

∆pl = F̂W p
l (4)

Vl = ϕbilin(Fl, pl +∆pl) (5)
V = catrow({Vl}) (6)
V̂ = softmax(F̂W a)VW v, (7)

where l = 2, 3, 4, 5 means transformation on multiple scales,
W p

l , W v and W a represent the linear mapping to be learned,
and ϕbilin(Fl, pl + ∆pl) indicates that pixels are sampled by
bilinear interpolation on the position pl + ∆pl of the feature
map Fl. Similarly, multiple heads are introduced to obtain
image feature representations with multiple attentions, and
these representations are concatenated and linearly mapped to
obtain a multi-scale refined representation V .

Subsequently, we can construct a deformable coding layer
with deformable attention representation

F = FFN(norm(V + dropout(V))), (8)

where FFN, norm and dropout indicate feedforward network
layer, normalization layer, and dropout layer respectively.

For convenience, we represent the above whole process as
the following function

F = DeformLayer(F̂ , {Fl}, {pl}). (9)

C. Image and Text Matching

Below we describe how to match text embedding G with
multiple feature maps Fl of different scales to obtain multiple
similarity matrices.

In the initial stage, we concatenate multi-scale feature
maps by row as DeformLayer function to get their attention
representation, and then we restore them into multiple feature
maps Fl (line 8-12 in Alg. 1). Then, using the third layer as
a benchmark, all the other layers are down-sampled or up-
sampled to the same size as the feature map of the third layer

F̄l = ϕsampling(reshape(Fl), 2
l−3), l = 2, 3, 4, 5. (10)

In this way, we can fuse the feature map output with the
same scale, and convert the fused image output into vectors
to facilitate matching with the text vector (line 13 in Alg. 1)

F = vect

(
1

4

5∑
l=2

F̄l

)
, (11)

where vect(·) means pulling a three-dimensional tensor
F ∈ R(h/8)×(w/8)×c into a two-dimensional vector F ∈
R(hw/82)×c.

Now, we map the representation G of phrases to the feature
space of pixels to compute their similarity matrix (line 15 in
Alg. 1)

Ĝ = GV g, H = sigmoid
(
ĜFT

)
, (12)

where V g is a projection matrix and sigmoid is the sigmoid
function.

It is worth noting that during the iterative process, we
directly use the latest representation F̂ of the pixel to calculate
the similarity matrix (line 25 in Alg. 1)

H = sigmoid
(
ĜF̂T

)
. (13)

D. Multi-round Feature Aggregation Module

Algorithm 1 Multi-round Feature Aggregation

1: Input: Image I and caption T
2: G = BERT(T )
3: for l = 2, 3, 4, 5 do
4: pl = flatten(grid(Ml))
5: Fl = flatten(ResNet(I, l))
6: F̂ = Fl + pos(Fl)
7: end for
8: F̂ = catrow({F̂l})
9: for t = 1, 2, · · · , T do

10: F̂ = DeformLayer(F̂ , {Fl}, {pl})
11: end for
12: {Fl} = splitrow(F̂ )
13: F̂ = avg({Fl})
14: Ĝ = GV g

15: H = sigmoid(ĜF̂T )
16: H = []
17: for i = 1, 2, · · · , I do
18: S = topk(H, k)
19: for j = 1, 2, · · · , n do
20: s = S[j, :]
21: F̂ [s, :] = F̂ [s, :] + pos(F̂ [s, :]) + Ĝ[j, :]
22: F̂ [s, :] = DeformLayer(F̂ [s, :], {Fl}, {pl})
23: Ĝ[j, :] = CrossAttention(Ĝ[j, :], F̂ [s, :], F̂ [s, :])
24: end for
25: H = sigmoid(ĜF̂T )
26: H.append(ϕsampling(H, 2−3)))
27: end for
28: return H

Alg. 1 shows the entire process of our multi-round feature
aggregation: initially establish the relationship between text
and pixels, and then refine these relationships through contin-
uous iteration.

First, we select k pixels with the highest similarity for each
row on the multi-scale similarity matrix S = topk(H, k),
where S is a matrix of dimension n× k.

In the refinement phase (lines 12-24), we first update the
embedded representations of the k nearest image pixels each
time with the text’s representation based on the previous
iteration (line 20-21 in Alg. 1). Next, we apply DeformLayer
again to regenerate the multi-scale representation of pixels for
the top-k image positions (line 22 in Alg. 1). Notably, we
re-use the multi-scale output {Fl} of DeformLayer from the
initial stage as its input.

Subsequently, we update the representation of noun phrases
using the weighted sum of the current top-k image features



(line 23 in Alg. 1). Below we will describe its implementation
in detail.

Given a query Q, a key K and a value V , through the
attention we can get Q’s updated weighted representation

attn(Q,K, V ) = softmax
(
QWq(KWk)

T

√
c

)
VWv. (14)

Here Wq , Wk and Wv represent the projection matrices, which
project a row vector to the c-dimensional space.

We treat each row of Ĝ as a query, F̂ as key and value, and
split them into M blocks along the dimension of representa-
tion. The multi-head attention representation of Ĝ[j, :] can be
computed (s = S[j, :])

G[j, :] = catcol({attn(Ĝ[j, ids(i)], F̂ [s, idx(i)], F̂ [s, idx(i)])}).

where j = 1, 2, · · · , n and catcol represents the concatenation
along the column and idx(i) represents the column index set
of the i-th sub-block. Then we sequentially perform addition,
dropout, norm, and FFN operations on G and Ĝ

Ḡ = dropout(G+ Ĝ), (15)
Ĝ = FFN(norm(Ĝ + Ḡ)). (16)

E. Loss Function

Once we have a series of predicted values H of the
correlation coefficient of text and pixel, we can define the
optimized loss function based on Binary Cross Entropy (BCE)
and Dice loss according to the true value Y

L(H, Y ) =

I∑
i=1

λbceLbce(Hi, Y ) + λdiceLdice(Hi, Y ), (17)

where λbce and λdice are the weight coefficients of the loss
which are both set to 1 in our experiments. Specifically, BCE
loss is the average loss of all text-pixel pairs

Lbce(Hi, Y ) =
1

nhw

n∑
j=1

hw∑
k=1

CE(Y (j, k),Hi(j, k)), (18)

where CE is the cross entropy loss.
In general, the goal of BCE loss is to compute a binary

classification loss for all pixels, but this loss does not consider
the problem of class imbalance. To alleviate this problem, we
introduce the Dice loss as an additional loss

Ldice(Hi, Y ) =
1

n

n∑
j=1

(
1−

2
∑hw

k=1 Hi(j, k)Y (j, k)∑hw
k=1 Hi(j, k) + Y (j, k)

)
.

To provide sufficient intermediate supervision during the
encoding stage, we follow the setup of [5], which applies the
loss L to the predicted value H of all refinement stages. For
the inference, we obtain grounded results from the previous
round of response maps with a threshold of 0.5.

F. Discussion on Multi-round Feature Aggregation
In our task, we are given an embedded representation tj

of n words, and the goal is to assign all m pixels xi in the
image to these n noun phrases. For convenience, we assume
that xi and tj are located in a common vector space. We then
iteratively optimize the representations of xis and tjs through
the objective function 1

2

∑m
i=1

∑n
j=1 u

2
ij∥xi− tj∥2, where uij

represents the probabilty that xi belongs to tj .
1) Solving xi’s for known tj’s: We can define the following

loss function

min
u,x

L(u, x) = 1

2

m∑
i=1

n∑
j=1

u2
ij∥xi − tj∥2, (19)

s.t.

m∑
i=1

uij = k, uij ∈ {0, 1}, k < n. (20)

We add the constraint
∑m

i=1 uij = k and k < n to avoid trivial
solutions. Obviously, if m = n, then xj = tj .

Assume that for each target point tj , its k closest points
are xr(j,1), xr(j,2), · · · , xr(j,k). If we fix xi to find the optimal
point of uij , we have

uij =

{
1, i ∈ {r(j, 1), r(j, 2), · · · , r(j, k)},
0, otherwise.

(21)

Next, if we fix uij , we then calculate the gradient of L(u, x)
with respect to x to get

∂L
∂xi

=

n∑
j=1

u2
ijxi −

n∑
j=1

u2
ijtj . (22)

Hence, we get the update formula of xi

xi = xi − α
∂L
∂xi

= (1− α

n∑
j=1

u2
ij)xi +

n∑
j=1

αu2
ijtj , (23)

where α (0 < α < 1) is a step size. Note that the above
equation is a batch processing method for n targets, and its
online update method for target tj can be given as

xi =
(
1− αu2

ij

)
xi + αu2

ijtj , (24)

which can be further simplified to

xi =

{
(1− α)xi + αtj , xi ∈ topk(tj),
xi, otherwise.

(25)

Here xi ∈ topk(tj) means i ∈ r(j, 1), r(j, 2), · · · , r(j, k).
Note that uij is fixed, the optimization problem is a strictly
convex optimization problem about x. Therefore, setting an
appropriate step size can ensure that the function value de-
creases after each gradient descent.

In line 21 of Alg. 1, we update xi with the following
formula

xi =

{
f(xi) + tj , xi ∈ topk(tj),
xi, otherwise.

(26)

Here f(xi) represents the encoded representation of xi. At
the same time, when we solve the nearest k points from tj ,
we exploit the predicted correlation coefficient instead of the
Euclidean distance.



2) Solving ti’s for known xi’s: Drawing the idea of fuzzy
K-means, we define the following loss function

min
u,t

L(u, t) = 1

2

m∑
i=1

n∑
j=1

u2
ij∥xi − tj∥2, (27)

s.t.

n∑
j=1

uij = 1, i = 1, 2, · · · ,m, (28)

whose Lagrangian function is

J (u, t, λ) =
1

2

m∑
i=1

n∑
j=1

u2
ij∥xi−tj∥2+

m∑
i=1

λi

 n∑
j=1

uij − 1

 .

According to KKT, we obtain the optimal uij and tj satisfying

uij =
1/∥xi − tj∥2∑n
k=1 1/∥xi − tk∥2

, (29)

tj =

∑n
i=1 u

2
ijxi∑n

i=1 u
2
ij

. (30)

The above updating formulas show that tj is the weighted
average of xi, and the weight of each item is inversely
proportional to the distance, or proportional to the similarity.

In line 23 of our algorithm, we apply a multi-head attention
mechanism to represent each tj as an adaptive weighting sum
of top-k xi, where the weight of xi with respect to tj is
expressed as a normalized dot product.

IV. EXPERIMENTS

A. Dataset and Evaluation Criteria

We compare the performance of our proposed method with
the other methods on the benchmark PNG dataset, which
matches noun phrase annotations in the Localized Narrative
dataset [29] with panoptic segmentation annotations in the MS
COCO dataset [30]. As the only publicly available benchmark
in PNG, this dataset contains 726,445 noun phrases matched
to segments involving 659,298 unique segments, and it covers
47.5% of the segmentation annotations in the MS COCO
panoptic segmentation dataset and 45.1% of the noun phrases
in the Localized Narrative dataset. On average, each title in the
dataset has 5.1 noun phrases. The train and validation splits
contains 133,103 and 8533 localized narratives, respectively.

We adopt the average recall as the evaluation metric for
model performance following the previous practice. It calcu-
lates the recall for different intersection over (IoU) thresholds
between the segmentation result and the ground truth, then
draws curves based on different thresholds. The area under
the curve represents the average recall value, i.e., for plural
noun phrases. All ground truth annotations are merged into a
single segment to compute the IoU result.

B. Implementation Details

Our backbone configuration is consistent with the PPMN
baseline model [5], where we utilize official pre-trained [31]
ResNet101 model (with 3x schedule) on the MS COCO dataset
[30] as the image backbone. For the text input, we use the pre-
trained “base-uncased” BERT model [32] to convert each word

in the narrative captions into a 768-dimensional vector. The
longest caption contains 230 characters, with up to 30 different
noun phrases that need be localized. We do not update the
image and text pre-trained backbone models during training.

Furthermore, we only apply image size augmentation to the
input image, which is resized to a resolution between 800 and
1,333 pixels while maintaining the aspect ratio. We implement
our proposed model using PyTorch and train it with a batch
size 10 for 20 epochs on three NVIDIA 3090 GPUs. The
Adam optimizer is used with a fixed learning rate of 10−4.
During inference, we obtain segmentation results following
the configuration of the two-stage model [1], which averages
the matching graphs of all words in each noun phrase.

C. Experimental Results

To validate the effectiveness of the context information we
introduced, we compare the performance of our proposed
model with other methods on the PNG dataset. The main
results are shown in Table II. We also compare the recall
curves of these methods in Fig. 4. It is worth noting that our
best model do not update the image and text backbones during
training, and the results obtained using the same training
strategy are labeled with PPMN†.

Compared to the current state-of-the-art methods on the
PNG dataset, our proposed model achieves an average
3.5% (from 2.7% to 3.9%) improvements in average recall
across various metrics. Specifically, our method achieves
3.5/3.1/3.9/3.6/2.7 improvements in whole/thing/thing/singu-
lar/plural categories, validating the effectiveness of our pro-
posed method.

Fig. 4 depicts recall values for different classes at different
IOU thresholds. In Fig. 4a, when the IoU threshold is larger
than 0.3, our method (blue curve) consistently outperforms the
baseline model (green curve), showing that the image con-
text information can indeed benefit the segmentation results.
Furthermore, in Fig. 4b, we can see that our method exhibits
significant performance gains in object categories compared to
the baseline model, even approaching the accuracy of the two-
stage method. This further demonstrates that context informa-
tion could enhance the representation ability of the aggregated
text feature, leading to better segmentation results. In Fig. 4c,
we further investigate the detailed performance of our method
on object categories (stuff and singular): our method still
improves the segmentation results on both categories, which
indicates that the essential context information may benefit all
object categories’ results.

D. Ablation Studies

To validate the effectiveness of our proposed method on
different components, we conduct ablation experiments on the
PNG task and compare the results under different parameter
settings.

1) Number of deformable encoder layer: In Table III,
we show how various deformable encoder layers affect the
model’s performance. The results show that combining multi-
scale image context information can improve segmentation



(a) Overall performance (b) Things and stuff performance (c) Singulars and plurals performance

Fig. 4: Average recall curves for the PNG dataset: (a) overall performance compared to other state-of-the-art methods, (b)
curves for things and categories of things, and (c) curves for singular and plural noun phrases.

TABLE II: Results of our method for the panoptic narrative base task, compared with state-of-the-art methods.

Method Average Recall
model overall singulars plurals things stuff
PNG [1] 55.4 56.2 48.8 56.2 54.3
PPMN† [5] 56.7 57.4 49.8 53.4 61.1
EPNG [6] 58.0 58.6 52.1 54.8 62.4
PPMN [5] 59.4 60.0 54.0 57.2 62.5
DRMN(Our) 62.9 (+3.5) 63.6 (+3.6) 56.7 (+2.7) 60.3 (+3.1) 66.4 (+3.9)

performance, whereas too many encoder layers may lead to
performance degradation.

TABLE III: Ablation study on the number of encoder layers.

Num of Encoder Average Recall
Layers overall singulars plurals things stuff

0 61.5 62.2 55.4 58.7 65.4
1 62.4 62.9 57.1 60.1 65.6
2 62.9 63.6 56.7 60.3 66.4
3 62.6 63.3 55.8 60.2 65.9

2) Number of rounds for multi-round feature aggregation:
We also examine the performance of different rounds of
feature aggregation on the model in Table IV where the
results show that introducing multi-round feature aggregation
suddenly improves model performance. We also observe that
the performance of the Singular and Stuff categories gradually
improves as the number of stages increases. However, there are
some fluctuations in the performance of the plurals category.
Since we find some incomplete annotations in the PNG dataset
for the plurals category during training (as shown in Fig. 5),
we believe it is reasonable for the model to be slightly unstable
in testing on this category.

3) Number of sample points for multi-round feature aggre-
gation module: We conduct further studies to evaluate our
proposed multi-round feature aggregation module by exam-
ining the impact of different numbers of sampling points on
model performance. The results are reported in Table V. Since
the context information convers a large extent on image during

TABLE IV: Ablation study on the number of feature aggre-
gation round.

Number of Average Recall
Rounds overall singulars plurals things stuff

0 59.6 60.2 54.5 57.1 63.0
1 62.7 62.7 57.2 60.4 65.9
2 62.7 63.5 56.2 60.1 66.4
3 62.9 63.6 56.7 60.3 66.4

top-k image refinement stege, as further shown in Fig. 8, our
model can perform well even with a small number of sample
points, This indicates a small set for the context information
refined top-k image features may be enough to cover the
object information. We observe that increasing the number of
sampling points improves the stuff category more. We attribute
this to the mask of stuff category which usually covers more
space in the image. Hence increasing the sampling points may
help to preserve the semantics of different parts of the ground
truth mask information.

TABLE V: Ablation on the number of sampled image points.

Sampling Average Recall
Points (k) overall singulars plurals things stuff

10 62.8 63.4 56.9 60.4 66.1
50 62.9 63.6 56.7 60.4 66.4
100 62.9 63.6 56.7 60.3 66.4
400 62.7 63.3 56.5 60.2 66.2



E. Qualitative Analysis

We illustrate the qualitative results of our proposed model
for text paragraphs in Fig. 5. It is observed that comparing
to the baseline model, our model predicts more complete
segmentation results (“doors”, “windows” and “refrigerator” in
the fist row, “person”, “group of people” in the second row),
indicating that refinement of top-k sampled image features
benefits to cluster more related pixels. It is worth mentioning
that the model is even able to locate more complete ground
truth annotation (the “few bowls” result in the first row, the
“two persons” result in the third row).

Fig. 5: Qualitative results for Panoptic Narrative Grounding.
The segmentation masks in the image correspond one-to-one
to the colors mentioned in the text.

Fig. 6: Refinement results in each stage for specific visual
objects. Distracting objects and target objects are highlighted
in dashed yellow and red boxes, respectively.

To visualize how the context information benefits seg-
mentation, we show the instructive results during the multi-
round feature aggregation process in Fig. 6. In the first and
third rows, the model gradually filters out irrelevant results
in each round of refinement, improving segmentation results
despite irrelevant or similar objects in the initial matching.
The example in the second row shows how a segmented
object goes from a low response matching result to an almost
correct matching during refinement. Compared to the example
in Fig. 2, such results validate that context information does
matter in alleviate the phrase-to-pixel mis-match and thus
improve the performance in PNG.

We further visualize the top-k image locations most similar
to the text during each round of refinement and corresponding
weights in the cross-attention mechanism in Fig. 7. As seen in

the figure, our proposed method generally puts the weight on
the most relevant objects and gradually filters out the impact
of irrelevant objects.

Fig. 7: Attention weights for top-k image locations. Weights
are averaged over all heads in a multi-head cross-attention
layer. Lighter colors indicate greater weight and vice versa.

To better visualize what context information is introduced
by deformable attention during the aggregation stage, we
further visualize the 50 most important offset points obtained
by sampling the top-k most relevant points in the last round
of the deformable attention mechanism for different layers in
Fig. 8. We can find that in the primary layers containing
relatively detailed low-level information, the offset point is
around the target object, which may refine more detailed
information for the target object. In the latter layers that
contain relatively high-level information, the offset points
attend to the general context around the target object. The
above observations indicate our proposed refinement method
effectively concentrates on both detailed and general context
information for the top-k sampled image points.

Fig. 8: Visualization of the most important offset points in the
deformable attention layer, according to the top-k query of
phrase “few bowel”. We visualize the top-50 most important
points based on the attention weights for each layer of the
multi-scale feature map.

V. CONCLUSION

In this paper, we propose a novel one-stage model named
Deformable-Attention Refined Matching Network (DRMN)
for Panoptic Narrative Grounding (PNG) task. Built upon
the end-to-end one-stage model architecture, we integrate the
essential context information of multi-scale image features



in the multi-modal information fusion module as an addition
cue to enhance the feature discriminative ability. Furthermore,
we employ a clustering framework to interpret our proposed
module and validate our method through experiments on the
benchmark PNG dataset. The results demonstrate that our
proposed model can achieve new state-of-the-art performance,
with a 3.5% improvement on the average recall metric.
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