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Abstract—Uplift modeling has shown very promising results
in online marketing. However, most existing works are prone
to the robustness challenge in some practical applications. In
this paper, we first present a possible explanation for the above
phenomenon. We verify that there is a feature sensitivity problem
in online marketing using different real-world datasets, where
the perturbation of some key features will seriously affect the
performance of the uplift model and even cause the opposite
trend. To solve the above problem, we propose a novel robustness-
enhanced uplift modeling framework with adversarial feature
desensitization (RUAD). Specifically, our RUAD can more effec-
tively alleviate the feature sensitivity of the uplift model through
two customized modules, including a feature selection module
with joint multi-label modeling to identify a key subset from the
input features and an adversarial feature desensitization module
using adversarial training and soft interpolation operations to
enhance the robustness of the model against this selected subset
of features. Finally, we conduct extensive experiments on a public
dataset and a real product dataset to verify the effectiveness of
our RUAD in online marketing. In addition, we also demonstrate
the robustness of our RUAD to the feature sensitivity, as well as
the compatibility with different uplift models.

Index Terms—Uplift modeling, Robustness, Adversarial train-
ing, Feature desensitization

I. INTRODUCTION

One of the critical tasks in each service platform is to
increase user engagement and platform revenue through online
marketing, which uses some well-designed incentives and
then delivers them to the platform users, such as coupons,
discounts, and bonuses [1]. Since each incentive usually comes
with a cost, successful online marketing must accurately find
the corresponding sensitive user group for each to avoid
ineffective delivery. To achieve this goal, an important step is
that the marketing model needs to identify the change in the
user’s response caused by different incentives, and only deliver
each incentive to its high-uplift users. This involves a typical
causal inference problem, i.e., the estimation of the individual
treatment effect (ITE) (also known as the uplift), since we
usually only observe one type of user response in practice,
which may be for a certain incentive (i.e., treatment group) or
no incentive (i.e., control group). Therefore, previous works
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have proposed uplift modeling and verified its effectiveness in
online marketing [2].

The existing methods for uplift modeling can broadly be
categorized into three research lines: 1) Meta-learner-based.
The basic idea of this line is to estimate the users’ responses
by using existing predictive models as the base learner. Two
of the most representative methods are S-Learner and T-
Learner [3], which adopt a global base learner and two base
learners corresponding to the treatment and control groups,
respectively. 2) Tree-based. The basic idea of this line is to
employ a hierarchical tree structure to systematically partition
the user population into sub-populations that exhibit sensitivity
to specific treatments [4]. An essential step involves modeling
the uplift directly by applying diverse splitting criteria. 3)
Neural network-based. The basic idea of this line is to leverage
the power of neural networks to develop estimators that are
both intricate and versatile in predicting the user’s response.
Note that most of them can be seen as the variants of meta-
learners. We focus on the neural network-based line because
they can be more flexibly adapted to modeling the complex
feature interactions in many industrial systems. Furthermore,
due to the widespread use of various neural network models in
these systems, research on this line is also easier to seamlessly
integrate than alternative lines.

Although existing works on uplift modeling have shown
very promising results, they generally suffer from the robust-
ness challenge in many real-world scenarios [5], and little
research has been conducted to reveal how such challenges
arise. In this paper, we first identify a feature sensitivity
problem in the uplift model as a possible explanation for
the above phenomenon using different real-world datasets.
Specifically, for each dataset, we randomly select 30% of all
continuous-valued features and apply a Gaussian noise with
η ∼ N (0, 0.052) as the perturbation to them. We repeat this
process multiple times to obtain a set of copies with different
feature subsets. Finally, we train the same uplift models for
each copy and compare their performance with that obtained
on the original dataset. Due to space limitations, we show
the results of using S-Learner as the uplift model on the
Production dataset used in the experiment in Fig. 1, and similar
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(a) Without perturbation
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(b) Perturbation on feature set 1
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(c) Perturbation on feature set 2
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(d) Perturbation on feature set 3

Fig. 1. Bar graphs of predicted uplift with 5 bins, w.r.t the origin dataset (i.e.,
(a)) and three kinds of varieties (i.e., (b)-(d)). For each dataset, we randomly
select 30% of all continuous-valued features and apply a Gaussian noise with
η ∼ N (0, 0.052) as perturbation while constraining ∥η∥∞ < 0.1. Note that
a good uplift model will usually have a bar graph sorted in descending order.

results are also found on other datasets or uplift models. We
can find that there are some sensitive key features and a slight
perturbation to them will seriously affect the performance of
the uplift model, and even an opposite trend appears.

The above empirical findings suggest that the sensitivity of
uplift models to these key features may be one of the important
reasons for their robustness challenges. Therefore, to alleviate
the feature sensitivity problem, we propose a novel robustness-
enhanced uplift modeling framework with adversarial feature
desensitization, or RUAD for short. Our RUAD contains two
new custom modules that match our empirical findings and
can be integrated with most existing uplift models to improve
their robustness. Specifically, a feature selection module with
joint multi-label modeling will be used to identify the desired
set of key sensitive features from the original dataset under
the supervision of a trade-off optimization objective. Then,
an adversarial feature desensitization module performs an
adversarial training operation and a soft interpolation operation
based on the selected subset of features, to force the model
to reduce sensitivity to them, thus effectively truncating a key
source of robustness challenges. Finally, we experimentally
verify the effectiveness of our RUAD on a public dataset and
a real product dataset.

II. PRELIMINARIES

To formalize the problem, we follow the Neyman-Rubin
potential outcome framework [6], to define the uplift modeling
problem. Let the observed sample set be D = {xi, ti, yi}ni=1.
Without loss of generality, for each sample, assuming yi ∈
Y ⊂ R is a continuous response variable, xi ∈ X ⊂ RN is
a vector of features, and ti ∈ {0, 1} denotes the treatment
indicator variable, i.e., whether to get an incentive delivery.
Note that the proposed framework can also be easily extended

to other types of uplift modeling problems. For a user i,
the change in user response caused by an incentive ti, i.e.,
individual treatment effect or uplift, denoted as τi, is defined as
the difference between the treatment response and the control
response,

τi = yi(1)− yi(0), (1)

where yi(0) and yi(1) are the user responses of the control
and treatment groups, respectively.

In the ideal world, i.e., obtaining the responses of a user
in both groups simultaneously, we can easily determine the
uplift τi based on Eq.(1). However, in the real world, usually,
only one of the two responses is observed for any one user.
For example, if we have observed the response of a customer
who receives the discount, it is impossible for us to observe
the response of the same customer when they do not receive
a discount, where such responses are often referred to as
counterfactual responses. Therefore, the observed response can
also be described as,

yi = tiyi(1) + (1− ti)yi(0). (2)

For the brevity of notation, we will omit the subscript i in the
following if no ambiguity arises.

As mentioned above, the uplift τ is not identifiable since
the observed response y is only one of the two necessary
terms (i.e., y(1) and y(0)). Fortunately, with some appropriate
assumptions [1], we can use the conditional average treatment
effect (CATE) as an estimator for the uplift, where CATE is
defined as,

τ(x) = E (Y (1) | X = x)− E (Y (0) | X = x)

= E(Y | T = 1, X = x)︸ ︷︷ ︸
µ1(x)

−E(Y | T = 0, X = x)︸ ︷︷ ︸
µ0(x)

. (3)

Intuitively, the desired objective can be described as the differ-
ence between two conditional means τ(x) = µ1(x)− µ0(x).

III. METHODOLOGY

A. Architecture

The proposed robustness-enhanced uplift modeling frame-
work with adversarial feature desensitization, or RUAD for
short, is shown in Fig. 2. Given a sample {x, t, y}, where
x may include the categorical features or the numerical
features, and the categorical features will be converted into
low-dimensional dense vectors through an encoding layer. The
feature selection module with joint multi-label training will
train a masker m(x) with the temperature weights on all the
input features to filter the desired key features. We will also
adopt a joint optimization involving the true response y and the
transformed response y∗ as a trade-off supervision objective of
the process to further ensure that the selected features conform
to the desired properties. After receiving the sample xm

after feature selection, the adversarial feature desensitization
module first uses an adversarial training operation to obtain the
adversarial example xadv with the largest perturbation on the
key feature level and then uses the soft interpolation operation
to combine it with the masked sample to obtain a milder
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Fig. 2. The architecture of our RUAD. The propensity network π(x) is pre-trained to calculate the transformed response y∗. The left is the feature selection
module (FS), which leverages a masker to select key sensitive features for jointly modeling transformed response y∗ and user response y. The right is an
adversarial feature desensitization module (AFD) to reduce the sensitivity of the base uplift model to these key features. Specially, Lo and Lr are used for
FS, while La is used for AFD. The detailed form of the loss function is presented in Eq.(4).

adversarial example x̃adv . Finally, we jointly train the model
with the adversarial samples and observed sample sets to free
the model from feature sensitivity, and the final optimization
objective function of our RUAD can be expressed as follows,

min
θ

LRUAD = Lo + Lr + La + λ∥θ∥, (4)

where Lo, Lr, and La denote the prediction loss of the trans-
formed and true responses for the feature selection module,
and the adversarial loss for the adversarial feature desen-
sitization module, respectively. λ and ∥θ∥ are the trade-off
parameters and the regularization terms. Next, we describe
each module in detail based on the training process.

B. Base Model

Since our RUAD is model-agnostic, it can be integrated
with most existing uplift models. For the convenience of
description, we use S-Learner [3] as the base model for an
example, but different uplift models will be integrated into
the experiments to verify the compatibility of our RUAD.
In S-Learner, the samples from the treatment group and the
control group will be distinguished by a group index and
trained through a shared base learner. During inference, the
group index of each sample will be modified to obtain another
counterfactual conditional mean function required in Eq.(3).

C. Feature Selection Module with Joint Multi-Label Modeling

Based on our experimental findings in Fig. 1, it can be
found that the perturbation of only some of the key features
will cause significant performance changes in the uplift model,
i.e., not all the features have sensitivity problems. Therefore,
to solve the feature sensitivity problem suffered by the uplift
model, we first need to enable the uplift model to identify
the key sensitive features we expect to obtain from all the
input features. This involves a feature selection process and
a reasonable optimization objective that guides the process
to perform correctly. Based on this idea, our RUAD first
formulates a feature selection module with joint multi-label
training. Note that although feature selection has been exten-
sively studied in different research areas, including different

designs for selection strategies or guidance objectives [7], it
is still less addressed in uplift modeling.

1) Feature Selection Process: In this paper, we utilize
a neural network-based masking function, denoted as ŵ(·),
to determine the contribution of each feature in the uplift
modeling. An additional Gumbel-Softmax trick [8] is used
to constrain the model to obtain an approximate k-hot mask
vector m(x). The κ-ratio features with the largest contribution
are regarded as desired key features, while the rest are regarded
as irrelevant or redundant ones. The m(x) is formulated as,

m(x) = Gumbel-Softmax(ŵ(x), κN) ∈ RN , (5)

where k = ⌊κN⌋ ∈ Z+ is the number of features expected to
be obtained, N is the number of input features. Specifically,
in Eq.(5), let z = ŵ(x) ∈ RN be a probability vector, then for
any feature dimension j ∈ {1, . . . , N}, we have zj ≥ 0 and∑

j zj = 1. Based on a pre-defined temperature weight ζ > 0,
the calculation of each feature dimension in the mask vector
can be expressed as [9],

mj = max
l∈{1,...,k}

exp
((
log zj + ξlj

)
/ζ

)
∑N

j′=1 exp
((

log zj′ + ξlj′
)
/ζ

) , (6)

where l ∈ {1, . . . , k} denotes the index of the selected feature,
ξlj = − log

(
− log ul

j

)
, and ul

j ∼ Uniform(0, 1) denotes a
uniformly distributed sampling. Note that for simplicity, we
follow the setup of previous work [9], i.e., ζ = 0.5. Finally,
we can get the masked samples xm by multiplying the original
samples x with the resulting mask vector m(x),

xm = x⊙m(x), (7)

where ⊙ denotes the element-wise multiplication.
2) Joint Multi-Label Modeling: The success of the feature

selection process largely depends on a reasonable guiding op-
timization objective. Most of the existing uplift models adopt
a traditional optimization objective for response modeling,
which directly constrains the model to fit the true response
y of each sample,

Lr = L (µt(x), y(t)) . (8)



This can ensure the coherent prediction of the model on the
user response. However, we can find that it is not consistent
with the desired objective (i.e., Eq.(3)), and this will make the
performance of the uplift model easily uncontrollable.

On the other hand, there is little work focusing on estab-
lishing the link between the user responses y and the expected
uplift effect τ [10], among which the transformed response is
one of the most representative ways. The specific form of the
transformed response is shown in Eq.(9),

y∗ =
y

π(x)
· t− y

1− π(x)
· (1− t), (9)

where π(x) is the propensity score estimation function and is
usually modeled by a neural network in practice. The Eq.(9)
transforms the observed true response y into y∗, such that the
expected uplift predictions τ equals the conditional expecta-
tion of the transformed response y∗. Since the transformed
response is a consistent unbiased estimator of the uplift effect
τ , we can fit it with the uplift prediction of the base model to
improve the base model’s ability to capture the uplift effect,

ŷ∗x = µ1(x)− µ0(x). (10)

However, using only Eq.(10) as the objective may also cause
the predicted response of the model to violate the true response
of the user, i.e., damaging the coherent prediction.

Therefore, to better guide the training of the above feature
selection process to obtain the desired key features that have
a greater impact on the performance of the uplift model, we
define a joint multi-label trade-off optimization objective,

Lo + Lr = αL
(
ŷ∗xm

, y∗
)
+ (1− α)L (µt(xm), y(t)) , (11)

where α is the loss weight, and note that each prediction is
based on masked samples xm after feature selection.

D. Adversarial Feature Desensitization Module

After obtaining the desired key features, the next key
step is how to effectively reduce the sensitivity of the uplift
model to these sensitive features during its training process.
Based on the empirical findings in Fig. 1, we find that the
feature sensitivity is reflected in the inadaptability of the uplift
model to the perturbations on these key features. Given that
existing works [11] show that adversarial training with feature
importance can effectively address the limitation of adversarial
non-robust features, our RUAD formalizes an adversarial fea-
ture desensitization module, including an adversarial training
operation and a soft interpolation process.

1) Adversarial Training Operation: In this paper, we fol-
low the virtual adversarial training framework (VAT) [12] to
obtain ideal adversarial samples. Specifically, to strengthen the
interference of adversarial samples on the model’s uplift effect
estimation, we first modify the original adversarial loss to a
form based on the transformed response,

max
xadv

L(ŷ∗adv, ŷ∗), (12)

where ŷ∗adv is estimated by using xadv as input in Eq.(10).
Then, we perform the search process based on the power

iteration method proposed by VAT, where new adversarial
samples obtained at each iteration are calculated as follows,

x
(z+1)
adv = x

(z)
adv + ϵ · ∇xadv

L(ŷ∗adv, ŷ∗)
∥∇xadv

L(ŷ∗adv, ŷ∗)∥2
⊙m(x), (13)

where ϵ is a hyper-parameter to control the step size of the
perturbation, and z is the number of iterations. Note that we
will use the masked samples after feature selection as the
initialization of this search process, i.e., x

(0)
adv = xm, and

apply the same mask m(x) to the perturbations to ensure that
adversarial training is only performed on selected key features.

2) Soft Interpolation Process: Since the adversarial train-
ing operation and the feature selection module are jointly
trained, excessively large perturbations on some features in
the early stages of model training may damage the effect of
feature selection. To control the magnitude of the adversarial
perturbation within a more moderate level, we integrate the
obtained adversarial examples (i.e., x

(Z)
adv) and the received

original samples (i.e., x(0)
adv or xm) in a soft interpolation form.

Specifically, the final adversarial examples can be obtained as
follows,

x̃adv = γ ∗ x(0)
adv + (1− γ) ∗ x(Z)

adv, (14)

where γ ∼ Uniform(0, 1), and Z is the number of iterations
for the power iteration method. After obtaining ideal adver-
sarial examples, we expect the uplift model to adapt to them
during training. Therefore, we introduce an adversarial loss to
constrain the model not to having large prediction differences
between the adversarial examples and the original samples,

La = βL(ỹ∗adv, ŷ∗), (15)

where β is the adversarial loss weight.

IV. EXPERIMENTS

A. Experiment Setup

1) Datasets: To compare the model performance from
an uplift ranking perspective, we use two datasets to show
the effectiveness of our training framework: 1) IHDP [13].
The IHDP dataset is utilized as a semi-synthetic dataset to
assess predicted uplift. This evaluation involves the synthetic
generation of counterfactual outcomes based on the original
features, along with the introduction of selection bias. The
resulting dataset contained 747 subjects (608 control and 139
treated) with 25 features (6 continuous and 19 binary features)
that described both the characteristics of the infants and the
characteristics of their mothers. t = 1 represents that the
subject is provided with intensive, high-quality childcare and
home visits from a trained healthcare provider. 2) Production.
This dataset comes from an industrial production environment,
one of the largest short-video platforms in China. For such
kind of short video platforms, clarity is an important user
experience indicator. A decrease in clarity may lead to a
decrease in users’ playback time. Therefore, through random
experiments within a week, we provided high-clarity videos
(t = 1) to the treatment group, and low-clarity videos (T = 0)
to the control group. We count the total viewing time of users’



TABLE I
OVERALL COMPARISON BETWEEN OUR MODELS AND THE BASELINES ON IHDP AND PRODUCTION DATASETS.

Methods IHDP Dataset Production Dataset
q̂ (5 bins) ρ̂ (5 bins) q̂ (10 bins) ρ̂ (10 bins) q̂ (5 bins) ρ̂ (5 bins) q̂ (10 bins) ρ̂ (10 bins)

S-NN 0.5455 ± 0.0698 0.4879 ± 0.0784 0.5071 ± 0.0674 0.4576 ± 0.0643 1.2213 ± 0.0104 0.4424 ± 0.0122 1.1766 ± 0.0076 0.3987 ± 0.0156
T-NN 0.6233 ± 0.0731 0.5098 ± 0.0541 0.6427 ± 0.0804 0.5386 ± 0.0459 1.7244 ± 0.0056 0.6766 ± 0.0231 1.8102 ± 0.0064 0.5988 ± 0.0133

Causal Forest 0.7991 ± 0.0002 0.8204 ± 0.0001 0.8185 ± 0.0003 0.7994 ± 0.0002 1.7189 ± 0.0002 0.7137 ± 0.0001 1.7002 ± 0.0002 0.6899 ± 0.0002
TO-NN 0.8301 ± 0.0922 0.7944 ± 0.0913 0.8233 ± 0.0981 0.8102 ± 0.0897 2.1798 ± 0.0089 0.7666 ± 0.0113 2.2030 ± 0.0075 0.6388 ± 0.0121
TARNet 0.7233 ± 0.1022 0.7603 ± 0.0605 0.7408 ± 0.0985 0.7780 ± 0.0806 0.9504 ± 0.0051 0.3454 ± 0.0165 0.6799 ± 0.0096 0.3089 ± 0.0145

CFRwass 0.7487 ± 0.0893 0.7463 ± 0.0703 0.7463 ± 0.0703 0.7291 ± 0.0699 0.9466 ± 0.0047 0.4666 ± 0.0137 0.8996 ± 0.0099 0.5677 ± 0.0102
CFRmmd 0.7396 ± 0.0912 0.7542 ± 0.0851 0.7782 ± 0.0925 0.7298 ± 0.0945 0.9608 ± 0.0038 0.6785 ± 0.0228 1.0452 ± 0.0088 0.6887 ± 0.0152
Dragonnet 0.8374 ± 0.0721 0.8094 ± 0.0642 0.8305 ± 0.0795 0.8575 ± 0.0844 1.6453 ± 0.0102 0.4999 ± 0.0254 1.8308 ± 0.0071 0.6544 ± 0.0164

CITE 0.8099 ± 0.1120 0.7996 ± 0.0839 0.8277 ± 0.0742 0.7893 ± 0.1198 0.8467 ± 0.0108 0.5233 ± 0.0146 0.8866 ± 0.0121 0.6017 ± 0.0221

RUAD 0.9021 ± 0.0967 0.8184 ± 0.0634 0.9127 ± 0.0847 0.8248 ± 0.0821 2.4433 ± 0.0044 0.6877 ± 0.0132 2.3733 ± 0.0083 0.7288 ± 0.0137

short videos in a week and quantify the impact of definition
degradation on user experience. The resulting dataset contains
more than 3.6 million users (1.82 million treat and 1.85 million
control) with 123 features (108 continuous and 15 categorical
features) describing user relative characteristics.

2) Baselines: We compare RUAD with S-Learner (S-
NN) [3], T-Learner (T-NN) [3], Causal Forest [14], Trans-
formed Outcome (TO-NN) [10], TARNet [15], CFR-
Net (CFRNetwass, CFRNetmmd) [15], Dargonnet [16],
CITE [17]. which are the representative methods in uplift
modeling.

3) Evaluation Metrics: Following the setup of previous
work [2], we employ two evaluation metrics commonly used
in uplift modeling, i.e., the Qini coefficient q̂, and Kendall’s
uplift rank correlation ρ̂.

4) Implementation Details: We implement all baselines
and our RUAD based on Pytorch 1.10, with Adam as the
optimizer and a maximum iteration count of 30. We use the
qini coefficient as a reference to search for the best hyper-
parameters. We also adopt an early stopping mechanism with
a patience of 5 to avoid over-fitting to the training set.

B. Overall Performance
We present the comparison results of IHDP and Production

datasets in Table I, and we can observe that our RUAD
outperforms other baselines in most cases. Note that we
use q̂ as the reference for hyperparameter search, and have
a significant advantage on this metric while maintaining a
competitive result on other metrics. This demonstrates the
effectiveness of our RUAD, where the carefully designed
two modules can effectively collaboratively discover sensitive
key features and perform adversarial feature desensitization to
improve the model’s performance.

C. Ablation Study
Next, we conduct the ablation studies of our RUAD and

analyze the role played by each module. We sequentially
remove the two components of the RUAD, i.e. the feature se-
lection module (FS) and the adversarial feature desensitization
module (AFD). We construct three variants of RUAD, which
are denoted as RUAD (w/o FS-JMM), RUAD (w/o FS), and
RUAD (w/o AFD). Note that RUAD (w/o FS-JMM) represents
that we only use the response as the training label of the base
uplift model. We present the results in Table II and we can see
that removing any part may bring performance degradation.

TABLE II
RESULTS OF THE ABLATION STUDIES ON THE PRODUCTION DATASET.

Methods q̂ (5 bins) ρ̂ (5 bins) q̂ (10 bins) ρ̂ (10 bins)

RUAD (w/o FS-JMM) 2.1910 ± 0.0083 0.5231 ± 0.0092 2.1876 ± 0.0102 0.5443 ± 0.0076
RUAD (w/o FS) 2.3224 ± 0.0079 0.6890 ± 0.0143 2.3733 ± 0.0142 0.6774 ± 0.0055

RUAD (w/o AFD) 2.1100 ± 0.0028 0.5477 ± 0.0122 2.1764 ± 0.0088 0.6088 ± 0.0104
RUAD 2.4433 ± 0.0044 0.6766 ± 0.0132 2.3766 ± 0.0083 0.7288 ± 0.0137

D. Robustness Evaluation

To analyze whether our RUAD can effectively solve the
feature sensitivity problem shown in Fig. 1, under the premise
of strictly aligning the experimental settings (i.e., the same
feature selection and perturbation), we perform a robustness
evaluation by replacing the basic uplift model with our RUAD.
We present the results in Fig. 3. By comparing Fig. 1 and
Fig. 3, we can find that after applying our RUAD and obtaining
a well-trained deep uplift model, the results of the uplift bar
become more stable than before. This observation indicates
that our RUAD can improve the feature-level robustness of
the model.
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(b) Perturbation on feature set 1
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(c) Perturbation on feature set 2
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(d) Perturbation on feature set 3

Fig. 3. Bar graphs of predicted uplift with 5 bins, w.r.t the origin dataset
(i.e., (a)) and three kinds of varieties (i.e., (b)-(d)). We present the results of
our RUAD with S-NN as the base uplift model.



E. Compatibility Evaluation (RQ4)

To verify the effectiveness of our RUAD on different uplift
models, except for S-NN, we also combine it with two typical
models, i.e., T-NN, and Dragonnet, in our experiments. The
results of the Production datasets are shown in Fig. 4. We can
find that integrating our RUAD on different uplift models can
always achieve a performance improvement. This suggests that
our RUAD can serve as a general framework to improve the
accuracy and robustness of uplift models.
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Fig. 4. Performance of our RUAD with three typical base uplift models on the
Production dataset, i.e. S-NN, T-NN and Dragonnet. We evaluate the results
by using the Qini coefficient and Kendall uplift rank correlation with 5 bins.

V. RELATED WORKS

Uplift modeling has received much attention for online
marketing in recent years [1]. Research in this area has focused
on various aspects of uplift modeling, including methods for
model building, performance evaluation, and real-world appli-
cations. For binary outcome, the intuitive approach to model
uplift is to build two classification models [3]. This consists
of two separate conditional probability models, one for the
treated users, and the other for untreated users. This method
is simple and flexible, but it can not mitigate the influence
of disparity in feature distributions between treatment and
control groups. To directly model the uplift, a transformed
response approach [10] is proposed, but it heavily relies on
the accuracy of the propensity score. For continuous outcome,
Causal Forest [14] is a random forest-like algorithm for uplift
modeling. It uses the causal tree as its base learner, which
is a general framework with theoretical guarantees. With the
development of deep learning in causal inference, there are
many works proposed that focus on ITE estimation. TARNet
[15] is a two-head structure like T-Learner, but the information
between two heads is shared by a representation layer. CFRNet
leverages the distance metrics (MMD and WASS) based on the
structure of TARNet to balance the representation between
the two heads. To solve the sample imbalance between the
treatment and control groups, Dragonnet [16] designs a tree-
head structure, which uses a separated head to learn the
propensity score. The propensity score is commonly used in
ITE estimation. CITE [17] uses it to distinguish the positive
and negative samples, and then builds a contrastive learning
structure. Unlike the above methods, our RUAD builds the
transformed outcome and conditional means together, which
can leverage the deep neural network to obtain better feature
representations for uplift modeling.

VI. CONCLUSION

In this paper, to address the feature sensitivity problem
existing in most uplift modeling methods, we propose a robust-
enhanced uplift modeling framework with adversarial feature
desensitization (RUAD). RUAD consists of two customized
modules: 1) the feature selection module with joint multi-
label modeling selects the key sensitive features for the uplift
prediction, which can help get a more accurate and robust
uplift prediction; and 2) the adversarial feature desensitization
module adding perturbations on the key sensitive features
can help solve the feature sensitivity problem. We conduct
extensive evaluations to validate the effectiveness of RUAD
and demonstrate its robustness to the feature sensitivity issue
and the compatibility with different uplift models.
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