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Abstract—Recommender systems are designed to learn user
preferences from observed feedback and comprise many funda-
mental tasks, such as rating prediction and post-click conver-
sion rate (pCVR) prediction. However, the observed feedback
usually suffer from two issues: selection bias and data sparsity,
where biased and insufficient feedback seriously degrade the
performance of recommender systems in terms of accuracy and
ranking. Existing solutions for handling the issues, such as data
imputation and inverse propensity score, are highly susceptible
to additional trained imputation or propensity models. In this
work, we propose a novel counterfactual contrastive learning
framework for recommendation, named CounterCLR, to tackle
the problem of non-random missing data by exploiting the
advances in contrast learning. Specifically, the proposed Coun-
terCLR employs a deep representation network, called CauNet,
to infer non-random missing data in recommendations and
perform user preference modeling by further introducing a self-
supervised contrastive learning task. Our CounterCLR mitigates
the selection bias problem without the need for additional models
or estimators, while also enhancing the generalization ability
in cases of sparse data. Experiments on real-world datasets
demonstrate the effectiveness and superiority of our method.

Index Terms—recommendation system, non-random missing
data, causal inference, contrastive learning.

I. INTRODUCTION

In real-world recommender systems, users’ interactive feed-
back on items such as rating and purchase is used to represent
and develop user preferences. By using the observed sparse
feedback matrix to inference the potential preferences or
relevance of non-interactive user-item pairs, recommendation
systems can be facilitated to provide diverse and personalized
recommendations to users. Thus, the task of rating or con-
version rate prediction has become the core problem and has
attracted increasingly attention [1]–[6].

Although many techniques have been proposed to tackle
the missing data problem in recommendation, recent studies
showed that the missing data prediction task usually suffers
from two major issues: selection bias and data sparsity [2],
[7]–[9]. The selection bias, due to the users’ self-selection
behaviors or the policies of the recommender systems, results
that the observed ratings are highly biased, which is widely
known as data Missing Not At Random (MNAR) [9]–[12].
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Specifically, since users tend to choose the items they like
to rate or the recommender systems are more likely to recom-
mend popular items to users, the higher (or the more positive)
ratings are more likely to be observed. The data sparsity means
that only a small portion of ratings are observed while the
most of the ratings are missing. It occurs since the interactions
between the users and items are rare, compared with the
number of entire user-item pairs. In summary, the selection
bias and data sparsity issues severely prevent recommender
systems from learning users’ true preferences and thus degrade
the performance of the recommender systems.

There are growing literature focusing on addressing the
selection bias and data sparsity issues [8], [9]. Among them,
causality-based methods have become increasingly popular in
recommender systems [1], [13]–[19], in which the missingness
of feedback are modeled under the widely-used “Potential
Outcome Framework” (POF) in causal inference literature.
One class of causality-based methods is reweighting-based
methods, including inverse propensity score (IPS) [13], [19],
self-normalized inverse propensity score (SNIPS) [13], and
doubly robust (DR) estimation [1], [14]–[20]. Despite showing
superior performance on debiasing, they highly rely on the
accuracy of the propensity estimation, in which an extra model
and/or unbiased datasets are required, and the performance
degenerates with mis-specified model or sparse interacted data.

As for data sparsity, many studies have proposed data
augmentation-based methods, by eliciting more pseudo user
ratings or merging the ratings of reliable similar users, so as to
provide sufficient data for training the prediction model [21].
However, these methods only exploit the observed feedback
for data augmentation and ignore the distributional difference
between the observed and potential feedback on all user-item
pairs, which leads to biased predictions. Recent studies have
proposed the use of multi-task learning [6], [22], [23] to
address both selection bias and data sparsity simultaneously.
Different from these studies, we propose a novel contrastive
learning approach to mitigate the data sparsity problem while
addressing non-random missing data.

In this work, we propose a Counterfactual Contrastive
Learning framework for Recommendations, named Coun-
terCLR, to address the non-random missing data and data
sparsity issues simultaneously. The proposed CounterCLR is
composed of a causality-based network named CauNet and a
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contrastive learning auxiliary task. Specifically, the CauNet is
designed under the potential outcome framework to model the
non-random missing feedback from the observed interactions.
The contrastive learning objective in CauNet conducts an
auxiliary task for learning user and item representations, which
enhances the generalization ability in cases of sparse data.

The contributions of this paper are summarized as follows. i)
It not only exhibits a substantial enhancement of generalization
ability under sparse interactions, but also alleviates the prob-
lem of non-random missing data, thus can address selection
bias and data sparsity issues simultaneously in recommender
systems. ii) Our framework does not require any additional
models or unbiased datasets, and thus it is practically pre-
ferred. iii) A novel casually contrastive paradigm is proposed
for debiased recommendation and user preference modeling.
Extensive experiments on real-world datasets illustrate the
above merits of CounterCLR, and show that CounterCLR
substantially outperforms state-of-the-art methods.

II. RELATED WORK

In this section, we review many previous methods designed
for debiased recommendation and recent advances on self-
supervised contrastive learning (SSCL).

Debiased Recommendation. The inconsistency between
training and test set distributions has been widely studied [4],
[24]–[31]. Existing methods tackling the non-random missing
data can be divided into three categories: generative modeling-
based, relabeling-based, and reweighting-based methods. By
assuming a data generation process and adjusting for biases
accordingly, generative modeling-based methods [32], [33]
leverage heuristic human prior knowledge and provide an
explainable solution for debiasing. Relabeling methods [1],
[34] typically mitigate the selection bias by data imputation,
which adaptively downweights the contribution of imputed
ratings for unobserved user-item pairs to the loss function.
Reweighting methods involve assigning weights induced from
the propensity scores to each instance, in order to rescale
their contributions during model training. Typical reweight-
ing methods include IPS [13], [19], self-normalized inverse
propensity score (SNIPS) [13], and DR [1], [3], [14]–[16],
[35]–[37], where the propensity scores are obtained through
naive Bayes or logistic regression. Nevertheless, the above
methods highly depend on additional imputation models or
propensity estimators, which need to be trained separately.

On the other hand, there have also been several works that
avoid the introduction of extra models or estimators. Specifi-
cally, [38] developed a model-agnostic meta learning method
by deploying the asymmetric tri-training framework for un-
supervised domain adaptation. [39], [40] built information-
theoretic frameworks, where novel non-exposure variational
information bottlenecks are derived for addressing the non-
random missing data problem. Alternatively, [21] proposed
a self-supervised learning-based method, in which an extra
collected unbiased Missing At Random (MAR) rating data
is required to calibrate the rating distribution. However, the
collection of unbiased MAR ratings can be costly or even

unavailable in practice. In contrast, in this work, we proposed a
causally contrastive learning-based framework that essentially
introduces neither additional models and estimators nor extra
unbiased MAR data, which is more practically preferred.

Self-supervised Contrastive Learning. Self-supervised
contrastive learning (SSCL) aims to boost the model gener-
alization ability by representation learning, where the embed-
dings of the augmented versions of the same sample are trained
to be close to each other, while those of different samples are
required to be pushed away. This method has been widely
utilized in CV and NLP areas [41]–[43]. [43] empirically and
theoretically shows that self-supervised contrastive learning
can learn more representative features for helping classification
task in long-tailed labeled image datasets. Recently, [44]–
[46] studied the contrastive learning methods in sequential
recommendations to learn better item representations in the
presence of long-tail items. [47] exploited a SSCL-based
method, named CLRec, to alleviate the popularity bias in deep
candidate generation. However, these methods failed to tackle
the problem of non-random missing data in recommendation.

III. PRELIMINARIES

In this section, we formulate the problem of non-random
missing data in recommendation using the widely-adopted
Potential Outcome Framework (POF) in causal inference liter-
ature, and introduce the motivation of the proposed framework
(CounterCLR) from a causal inference view.

A. Problem Setup

Let the user set and item set be U = {u1, u2, · · · , uN} and
I = {i1, i2, · · · , iM}, respectively, and the set of all user-
item pairs be D = U × I. Let R ∈ RN×M be the matrix
of true feedback (e.g., rating, conversion, etc.), with elements
ru,i be the true feedback of user u to item i. For modeling the
missing mechanism of the observed feedback, we introduce
an observing indicator matrix O = (ou,i) ∈ RN×M , where
ou,i = 1 represents that ru,i is observed or missing ou,i = 0.
For the rating or the post-click conversion rate prediction task,
we aim to train a prediction model minimizing the training loss

Error(R̂,R) =
∑

(u,i)∈D

ℓ(r̂u,i, ru,i), (1)

where R̂ = (r̂u,i) ∈ RN×M is the predicted rating matrix,
and ℓ(·, ·) is a loss function, e.g., squared loss.

In practice, recommender systems conceptually model the
user u and item i by K-dimensional embeddings, i.e., eu, ei ∈
RK , respectively. Then, each user-item pair (u, i) is repre-
sented by the embedding concatenation as xu,i = (eu, ei).
Two common rating prediction models in recommender sys-
tems are matrix factorization (MF) [48] and neural collabo-
rative filtering (NCF) [49]. The MF model directly processes
xu,i to conduct the rating prediction by r̂u,i = e⊤u ei, while the
NCF model applies a multi-layer feedforward neural network
to obtain the feedback prediction r̂u,i.



B. Problem Formulation under POF

Conceptually, the POF is formulated by three components:
the covariate set X , the treatment set T , and the potential
outcome set Y . For example, for a diabetic patient with
covariate x ∈ X , doctors are usually interested in whether
a new medical treatment affects the blood sugar level y ∈ Y .
The potential outcomes in this example can be modeled as
y(0), y(1) ∈ Y , and T = {0, 1} with 0 and 1 denote the
patient not take and take this new medication, respectively.

Similarly, the missing mechanism in recommendation can
be modeled by an treatment assignment mechanism in the
POF. To see this, note that ou,i = 1 can be treated as assigning
an exposure treatment to the user-item pair (u, i), i.e., the item
i is recommended to the user u. Consequently, we can follow
the POF to redefine the rating prediction task as follows.

Example 1 (Rating Prediction Task under POF). For each
user-item pair (u, i), ou,i is the treatment indicator and there
are two potential outcomes ru,i(1) and ru,i(0), named expo-
sure rating and non-exposure rating, respectively. The rating
prediction task is to estimate the exposure ratings of users to
all items, i.e., estimate ru,i(1) for all (u, i) ∈ D.

For simplicity, hereafter we denote ru,i(1) and ru,i(0) as
r1u,i and r0u,i, respectively. In the above example, the observed
ratings are the exposure ratings, i.e., the potential outcomes of
the units with the exposure treatment. Meanwhile, the ratings
of the units without the exposure treatment are missing. This
motivates us to introduce a causal rating prediction model
CauNet into the rating prediction task. Notably, the rating
prediction task under POF is different with the traditional
POF problems like investigating the therapeutic effects of
different treatments as in the previous diabetes example, and
two challenges are raised from the differences in consequence.
First, since users tend to rate the items they like, the higher
ratings become more likely to be observed. Therefore, the
collected user-item pairs with observed ratings could not be
used as a representative of the target population, i.e., the
entirety of the user-item pairs, which leads to the sample
selection bias. Second, only the potential outcomes r1u,i are
observable, while r0u,i are unavailable if the item i is not
recommended to the user u, which arises the data sparsity
issue. These challenges call for new methods for modeling
the causalities in the rating prediction task.

IV. METHODOLOGY

In this section, we introduce the proposed causality-based
contrastive learning framework for addressing non-random
missing data in recommendation, named CounterCLR, which
also greatly alleviates the data sparsity issue simultaneously.
The CounterCLR consists of two parts: (1) a causality-based
prediction model and (2) a contrastive learning objective.

A. Causality-Based Prediction

The CauNet is a three-headed architecture, which can pre-
dict the exposure and non-exposure ratings, i.e., predict r1u,i
and r0u,i, and also estimate the propensity score with a simple

and efficient procedure at the same time. The predicted ex-
posure and non-exposure ratings are passed to the contrastive
learning objective to construct positive and negative pairs. In
addition, the propensity score estimation can help to learn a
better representation for predicting the treatment and reduce
the selection bias.

The processing steps in CauNet are presented in Figure 1.
Given an embedding concatenation xu,i = (eu, ei), we first
use a neural network for encoding xu,i to zu,i ∈ Rp, i.e.,
zu,i = hW1(xu,i). With the feature embedding zu,i, we use
another two neural networks to predict the exposure and non-
exposure ratings r̂1u,i and r̂0u,i when ou,i = 1 and ou,i = 0,
respectively, i.e., r̂1u,i = hW2(zu,i, 1) and r̂0u,i = hW3(zu,i, 0).
Here, W1,W2, and W3 are the parameters inside the neural
networks hW1

, hW2
, and hW3

, respectively. Since the true
ratings are determined by the user preference and should not
be influenced by the exposure treatment in the rating prediction
task, we update W3 in a momentum manner, i.e., W3 ←
mW3 + (1−m)W2, to ensure that hW2

and hW3
are close,

where m is a hyper-parameter controlling the weights of W2

in the momentum update. Additionally, in Section IV-B, we
will see this momentum update mechanism cooperates with the
contrastive learning objective to help minimize the discrepancy
between the distributions of r1u,i and r0u,i.

Since the propensity score estimates are not passed to the
contrastive learning objective and do not explicitly influence
the quality of the CounterCLR, we can construct a rather
simple model for the propensity score estimation. Motivated
by the random feature regression models [50], [51], we use a
linear transformation with a random vector h ∈ Rp followed
by a sigmoid function, i.e., ôu,i = Sigmoid(h⊤zu,i). Note that
h is fixed after initialization.

In summary, the model parameter of CauNet is θ =
(W1,W2,W3), which is trained to minimize

Lcau = Lbase + αLpro, (2)

where Lbase =
∑

(u,i)∈O1(r̂1u,i − ru,i)
2/ôu,i, and Lpro =∑

(u,i)∈D CrossEntropy(ôu,i, ou,i). Hereby O1 = {(u, i) ∈
D : ou,i = 1}, and α is a hyper-parameter.

B. Contrastive Learning Objective

In order to better learn the causality in rating prediction
task, we deploy a contrastive learning objective cascading to
CauNet. The contrastive learning objective leverages SSCL on
user preference embeddings extracted from the ratings First,
let r̂u = [r̂u,i1 , · · · , r̂u,iM ] stores the predicted ratings of
a user u to all items. An ideal user preference embedding
should not only be informative to the ratings but also reserve
the statistical properties of the rating distribution. Hence, we
adopt the aggregation function f(·) proposed by [21] as a user
preference extractor, for mapping the predicted ratings r̂u to
the user preference embedding fr̂u as

fr̂u = f(r̂u) =[f (1)(r̂u), · · · , f (K)(r̂u)], (3)

where K is the dimension of the user embedding eu,
f (k)(r̂u) =

1
M

∑M
i=1 σ

(
τ
(

k
K rmax +

K−k
K rmin − r̂u,i

))
, rmax
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Fig. 1. The architecture of CounterCLR, including a causality-based prediction model with an auxiliary contrastive learning objective.

and rmin are the maximum and minimum possible ratings
respectively, σ(·) is the sigmoid function, and τ is the scale
parameter. It has been proved by [21] that the user preference
extractor f(·) is indeed an approximation of the empirical
cumulative distribution function of r̂u. In addition, Eq. (3)
is differentiable and adapted to gradient-based optimization
methods, and theoretically guarantees the user preference
embeddings and rating vectors share the same distributions
between observed and unobserved user-item pairs.

Next, we define the exposure rating vector of the user u
as r̂1u = [ou,i1ru,i1 + (1− ou,i1)r̂

1
u,i1

, · · · , ou,iM ru,iM + (1−
ou,iM )r̂1u,iM ], and his/her non-exposure rating vector as r̂0u =
[r̂0u,i1 , · · · , r̂

0
u,iM

]. Through the user preference extractor, we
can obtain the exposure user preference embedding fr̂1u =
f(r̂1u) and the non-exposure one fr̂0u = f(r̂0u). Then, we
define our causally contrastive loss as

Lcon =
∑
u∈U

ℓ(u) =
∑
u∈U
− log

 exp(f⊤
r̂1u
fr̂0u

/t)∑
u′∈U exp(f⊤

r̂1u
f
r̂0
u′
/t)

 ,

(4)
where t is called temperature hyper-parameter.

An illustration of the contrastive learning objective is pre-
sented in Figure 1. In practice, Lcon is optimized in a batch-
wise manner. Notice that, as previously highlighted in Section
IV-A, the distributions of r̂1u,i and r̂0u,i should be close,
indicating that the exposure and non-exposure user preference
embeddings, i.e. fr̂1u and fr̂0u , should be similar. To this end,
by minimizing Lcon, we can pull closer fr̂1u and fr̂0u for the
user u, and push away fr̂1u and fr̂0

u′
for u′ ̸= u.

C. Overall Loss

Taking the above two components together, we define the
overall loss L as

L = Lcau + βLcon = Lbase + αLpro + βLcon, (5)

where β is a hyper-parameter to control the contribution of
the contrastive learning objective.

V. EXPERIMENT

In this section, we empirically validate the performance
of CounterCLR by answering the research questions (RQs):

RQ1. Does the proposed CounterCLR achieve the state-of-the-
art capability in mitigating selection bias in rating prediction
task? RQ2. Does the proposed CounterCLR outperform the
baselines with varying data sparsity level?

A. Experiment Setup

We consider three real world datasets: Coat1, Yahoo! R32,
and KuaiRec3. All datasets contain biased training data ac-
quired through traditional data collection process and unbiased
test data acquired through randomized controlled trials (Coat,
Yahoo! R3), and full exposure of test items (KuaiRec). For
methods requiring unbiased data for training or propensity
estimation, we randomly split out 5% test data and use Naive
Bayes propensity estimator (NB) and User-Item propensity
estimator (UI). We adopt three widely-used metrics, namely
MSE, MAE, and NDCG@5, for performance evaluation and
report the mean results over five runs.

We choose representative debiasing methods as baselines,
including HEI [34], Naive [48], DR [14], AT [38], CVIB [39],
ESCM2 [23], RDC [21], and SDR [17]. All methods are taking
Matrix Factorization (MF) model and Neural Collaborative
Filtering (NCF) model as base model on Pytorch with Adam
as the optimizer. We use cross validation to select the learning
rate in {5e−3, · · · , 1e−1}, weight decay in {1e−7, · · · , 1e−
1}, and batch size in {128, · · · , 4096}. For the proposed
CounterCLR, we also use cross-validation to select K among
{5, 10, 20, 30, 40}, α among {0.1, 1, 5, 10, 50, 100, 200}, and
β among {0.01, 0.1, 1, 5, 10}. We set the momentum number
m as 0.999, the hyper-parameter τ as 1, and temperature
hyper-parameter t as 0.07 by following [21] and [52].

B. Experiments Results (RQ1)

The debiasing performance is shown in Table I. First, the
proposed CounterCLR outperforms the baseline methods both
with unbiased data and without unbiased data on all three
datasets, which suggests that the integration of the CauNet and
the contrastive learning objective does facilitate reducing the
influence of the selection bias. Second, we note that SNIPS-
NB and DR-NB methods perform better than SNIPS-UI and

1https://www.cs.cornell.edu/˜schnabts/mnar/
2http://webscope.sandbox.yahoo.com/
3https://kuairec.com/



TABLE I
THE MSE, MAE AND NDCG@5 ON THREE REAL-WORLD DATASETS. THE BEST RESULTS AMONG THE METHODS WITHOUT UNBIASED MAR DATA ARE

BOLD. THE BEST RESULTS AMONG ALL METHODS ARE UNDERLINED. NRU REPRESENTS “NOT REQUIRE UNBIASED MAR DATA”.

Model Method NRU Coat Yahoo! R3 KuaiRec

MSE MAE nDCG@5 MSE MAE nDCG@5 MSE MAE nDCG@5

MF

HEI ✓ 1.3614 0.8927 0.7785 2.3874 1.2127 0.8013 2.3227 1.3705 0.3448
Naive ✓ 1.2851 0.8704 0.7850 2.3887 1.2131 0.8015 2.3817 1.3935 0.3326

SNIPS-UI ✓ 1.2342 0.8564 0.7846 1.9772 1.0519 0.7774 1.2084 0.8663 0.3255
DR-UI ✓ 1.2330 0.8486 0.7704 2.5912 1.2543 0.7813 2.0233 1.0457 0.3466

AT ✓ 1.1603 0.8294 0.7912 1.8389 0.9613 0.7973 1.2274 0.8752 0.3622
CVIB ✓ 1.2000 0.9025 0.7232 1.1270 0.8537 0.7321 1.1940 0.9733 0.3327

ESCM2 ✓ 1.1368 0.8173 0.7976 1.1675 0.8154 0.8157 2.0414 1.2712 0.5403
CounterCLR ✓ 1.0956 0.8008 0.8002 1.1137 0.8117 0.8049 1.1586 0.8523 0.5893

RDC × 1.0946 0.8097 0.7930 1.3260 0.8521 0.8040 1.2733 0.9297 0.5941
SNIPS-NB × 1.1770 0.8367 0.7720 1.3314 0.8524 0.8039 1.3599 0.9692 0.4920

DR-NB × 1.2254 0.8673 0.7617 1.1875 0.8278 0.8058 1.4308 0.9872 0.5484
SDR-NB × 1.1923 0.8645 0.7749 1.1599 0.8103 0.8125 1.2793 0.9053 0.6102

NCF

HEI ✓ 1.3557 0.9388 0.7321 2.1483 1.2070 0.7995 0.4239 0.5009 0.3576
Naive ✓ 1.4343 0.9583 0.7320 2.1967 1.2521 0.7963 0.4268 0.5279 0.4252

SNIPS-UI ✓ 1.3052 0.9228 0.7341 2.3317 1.2412 0.7930 0.5735 0.5978 0.3439
DR-UI ✓ 1.3998 0.9453 0.7347 2.7590 1.3169 0.7769 0.3517 0.4243 0.6093

AT ✓ 1.2641 0.9102 0.7402 2.2167 1.2346 0.7961 0.5030 0.5958 0.3183
CVIB ✓ 1.2197 0.8893 0.7265 1.2505 0.9795 0.7895 0.3978 0.4774 0.5298

ESCM2 ✓ 1.2505 0.9105 0.7410 2.1919 1.2279 0.7999 0.4780 0.4973 0.5916
CounterCLR ✓ 1.1743 0.8733 0.7421 1.2203 0.8180 0.8040 0.3425 0.4129 0.6198

RDC × 1.2857 0.9147 0.7415 2.0037 1.2411 0.8006 0.3590 0.4389 0.6193
SNIPS-NB × 1.2353 0.8788 0.7376 1.0838 0.8311 0.7948 0.3949 0.4820 0.6050

DR-NB × 1.1760 0.8593 0.7362 1.3213 0.8815 0.7913 0.3302 0.3874 0.6257
SDR-NB × 1.2330 0.8824 0.7367 1.0821 0.8195 0.8027 0.3865 0.4323 0.6180

DR-UI methods, which is because that NB can provide a
more accurate propensity score estimation since the additional
5% unbiased MAR test data. It verifies that the propensity-
based methods rely on an accurate propensity score estimator
to achieve desirable performance. The proposed CounterCLR,
on the other hand, does not requires additional unbiased MAR
data, and thus is more robust and practical.
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Fig. 2. Rating prediction accuracy and recommendation quality with varying
observed ratio of the Small matrix in KuaiRec Dataset.

C. Influence of Data Sparsity (RQ2)

In order to evaluate the recommendation performance under
data sparsity issue, we exploit the “full observed” small

matrix in KuaiRec to synthesize partially-observed data, with
the observed ratio varying in {10%, 30%, 50%, 70%, 90%}.
Meanwhile, we follow the positive-oriented exposure strategy
in [53] to simulate MNAR training data to model different
selection bias level. The unobserved parts in small matrix are
used as the test sets to evaluate the imputed missing data.

We compare our CounterCLR with the baselines without
unbiased MAR data for a fair comparison. From Figure 2, we
first can observe that our CounterCLR stably outperforms the
baselines in both rating prediction accuracy and recommen-
dation quality. This shows the superior generalization ability
of CounterCLR under data sparsity issues. Besides, with the
observed ratios increasing, the curves of our CounterCLR and
all the baselines show a downward trend in terms of MSE
and MAE, and an upward trend in terms of nDCG@5. This is
because the higher observed ratio, the more training data will
be accessed to train the recommender systems for providing
more accurate recommendations.

VI. CONCLUSION

In this work, we propose a novel causality-based contrastive
learning framework CounterCLR for debiased rating predic-
tion, which consists of a causal network CauNet and a con-
trastive learning objective. The proposed method CounterCLR
can effectively address the selection bias and data sparsity
issues simultaneously without introducing separate imputation
and propensity estimators, or unbiased MAR data. Extensive
experiments on real-world datasets show that CounterCLR
outperforms other state-of-the-art rating prediction methods.
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